Integral Analysis of Liquid-Hot-Water Pretreatment of Wheat Straw: Evaluation of the Production of Sugars, Degradation Products, and Lignin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material and Reagents
2.2. Process Condition and Description
2.3. Product Characterization
3. Results
3.1. Calculated Severity Factor
3.2. Sugar Content
3.3. Degradation Products
3.4. Lignin
3.5. Integrated Analysis of Sugars, Degradation Products, and Lignin
3.6. Future Outlook: Study Case—Theoretical Valorization of the Solids for Lignin Hydrolysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Palmeros Parada, M.; Osseweijer, P.; Posada Duque, J.A. Sustainable biorefineries, an analysis of practices for incorporating sustainability in biorefinery design. Ind. Crops Prod. 2017, 106, 105–123. [Google Scholar] [CrossRef]
- Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. Moving towards the second generation of lignocellulosic biorefineries in the EU: Drivers, challenges, and opportunities. Renew. Sustain. Energy Rev. 2019, 101, 590–599. [Google Scholar] [CrossRef] [Green Version]
- Cardona-Alzate, C.A.; Serna-Loaiza, S.; Ortiz-Sanchez, M.; Cardona Alzate, C.A.; Serna-Loaiza, S.; Ortiz-Sanchez, M. Sustainable Biorefineries: What was learned from the design, analysis and implementation. J. Sustain. Dev. Energy Water Environ. Syst. 2020, 8, 88–117. [Google Scholar] [CrossRef]
- Serna-Loaiza, S.; Miltner, A.; Miltner, M.; Friedl, A.A. Review on the Feedstocks for the Sustainable Production of Bioactive Compounds in Biorefineries. Sustainability 2019, 11, 6765. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.H.; Hao, N.; Shinde, S.; Olson, M.L.; Bhagia, S.; Dunlap, J.R.; Kao, K.C.; Kang, X.; Ragauskas, A.J.; Yuan, J.S. Codesign of Combinatorial Organosolv Pretreatment (COP) and Lignin Nanoparticles (LNPs) in Biorefineries. ACS Sustain. Chem. Eng. 2019, 7, 2634–2647. [Google Scholar] [CrossRef]
- Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M.; et al. Lignin valorization: Improving lignin processing in the biorefinery. Science 2014, 344, 6185. [Google Scholar] [CrossRef]
- Karimi, K.; Taherzadeh, M.J. A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity. Bioresour. Technol. 2016, 200, 1008–1018. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, R.; Satlewal, A.; Kapoor, M.; Mondal, S.; Basu, B. Investigating the enzyme-lignin binding with surfactants for improved saccharification of pilot scale pretreated wheat straw. Bioresour. Technol. 2017, 224, 411–418. [Google Scholar] [CrossRef]
- Satlewal, A.; Agrawal, R.; Das, P.; Bhagia, S.; Pu, Y.; Puri, S.K.; Ramakumar, S.S.V.; Ragauskas, A.J. Assessing the Facile Pretreatments of Bagasse for Efficient Enzymatic Conversion and Their Impacts on Structural and Chemical Properties. ACS Sustain. Chem. Eng. 2019, 7, 1095–1104. [Google Scholar] [CrossRef]
- Xia, F.; Gong, J.; Lu, J.; Cheng, Y.; Zhai, S.; An, Q.; Wang, H. Combined liquid hot water with sodium carbonate-oxygen pretreatment to improve enzymatic saccharification of reed. Bioresour. Technol. 2020, 297, 122498. [Google Scholar] [CrossRef]
- Rocha, G.J.M.; Gonçalves, A.R.; Oliveira, B.R.; Olivares, E.G.; Rossell, C.E.V. Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind. Crops Prod. 2012, 35, 274–279. [Google Scholar] [CrossRef]
- Neves, P.V.; Pitarelo, A.P.; Ramos, L.P. Production of cellulosic ethanol from sugarcane bagasse by steam explosion: Effect of extractives content, acid catalysis and different fermentation technologies. Bioresour. Technol. 2016, 208, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Shen, F.; Yang, G.; Deng, S.; Long, L.; He, J.; Zhang, J.; Huang, C.; Luo, L. Liquid hot water extraction followed by mechanical extrusion as a chemical-free pretreatment approach for cellulosic ethanol production from rigid hardwood. Fuel 2019, 252, 589–597. [Google Scholar] [CrossRef]
- Wang, W.; Yuan, T.; Wang, K.; Cui, B.; Dai, Y. Combination of biological pretreatment with liquid hot water pretreatment to enhance enzymatic hydrolysis of Populus tomentosa. Bioresour. Technol. 2012, 107, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Serna-Loaiza, S.S.; Zikeli, F.; Adamcyk, J.; Friedl, A. Towards a wheat straw biorefinery: Combination of Organosolv and Liquid Hot Water for the improved hydrolysis of lignin and hemicellulose. Bioresour. Technol. Reports 2020, 14, 100667. [Google Scholar] [CrossRef]
- López, L.; Rivas, S.; Moure, A.; Vila, C.; Parajó, J.C. Development of Pretreatment Strategies for the Fractionation of Hazelnut Shells in the Scope of Biorefinery. Agronomy 2020, 10, 1568. [Google Scholar] [CrossRef]
- Michelin, M.; Liebentritt, S.; Vicente, A.A.; Teixeira, J.A. Lignin from an integrated process consisting of liquid hot water and ethanol organosolv: Physicochemical and antioxidant properties. Int. J. Biol. Macromol. 2018, 120, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Michelin, M.; Teixeira, J.A. Liquid hot water pretreatment of multi feedstocks and enzymatic hydrolysis of solids obtained thereof. Bioresour. Technol. 2016, 216, 862–869. [Google Scholar] [CrossRef] [Green Version]
- Carvalheiro, F.; Silva-Fernandes, T.; Duarte, L.C.; Gírio, F.M. Wheat Straw Autohydrolysis: Process Optimization and Products Characterization. Appl. Biochem. Biotechnol. 2009, 153, 84–93. [Google Scholar] [CrossRef]
- Pérez, J.A.; Ballesteros, I.; Ballesteros, M.; Sáez, F.; Negro, M.J.; Manzanares, P. Optimizing Liquid Hot Water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 2008, 87, 3640–3647. [Google Scholar] [CrossRef]
- Wildschut, J.; Smit, A.T.; Reith, J.H.; Huijgen, W.J.J. Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresour. Technol. 2013, 135, 58–66. [Google Scholar] [CrossRef]
- Weinwurm, F.; Turk, T.; Denner, J.; Whitmore, K.; Friedl, A. Combined liquid hot water and ethanol organosolv treatment of wheat straw for extraction and reaction modeling. J. Clean. Prod. 2017, 165, 1473–1484. [Google Scholar] [CrossRef]
- Alvira, P.; Tomás-Pejó, E.; Ballesteros, M.; Negro, M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kreke, T.; Mosier, N.S.; Ladisch, M.R. Severity factor coefficients for subcritical liquid hot water pretreatment of hardwood chips. Biotechnol. Bioeng. 2014, 111, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Hames, B.; Ruiz, R. Technical Report NREL/TP-510-42623: Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples. Gold. Natl. Renew. Energy Lab. 2006, 11, 65–71. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Technical Report NREL/TP-510-42618: Determination of Structural Carbohydrates and Lignin in Biomass. Lab. Anal. Proced. 2008, 1617, 1–16. [Google Scholar]
- Huang, C.; Lai, C.; Wu, X.; Huang, Y.; He, J.; Huang, C.; Li, X.; Yong, Q. An integrated process to produce bio-ethanol and xylooligosaccharides rich in xylobiose and xylotriose from high ash content waste wheat straw. Bioresour. Technol. 2017, 241, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Beisl, S.; Quehenberger, J.; Kamravamanesh, D.; Spadiut, O.; Friedl, A. Exploitation of Wheat Straw Biorefinery Side Streams as Sustainable Substrates for Microorganisms: A Feasibility Study. Processes 2019, 7, 956. [Google Scholar] [CrossRef] [Green Version]
- Palmqvist, E.; Grage, H.; Meinander, N.Q.; Hahn-Hägerdal, B. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol. Bioeng. 1999, 63, 46–55. [Google Scholar] [CrossRef]
- Casey, E.; Sedlak, M.; Ho, N.W.Y.; Mosier, N.S. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS Yeast Res. 2010, 10, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, B.; Bautista, J. Effects of furfural and 5-hydroxymethylfurfural on the fermentation of Saccharomyces cerevisiae and biomass production from Candida guilliermondii. Enzyme Microb. Technol. 1988, 10, 315–318. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Roberto, I.C. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: A review. Bioresour. Technol. 2004, 93, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Delgenes, J.P.; Moletta, R.; Navarro, J.M. Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzym. Microb. Technol. 1996, 19, 220–225. [Google Scholar] [CrossRef]
- Nigam, J.N. Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J. Biotechnol. 2001, 87, 17–27. [Google Scholar] [CrossRef]
Temp (°C) | Aimed Holding Time (min) | Real Holding Time (min) | Severity Factor (R0, min) | Contribution of Stages to the Severity Factor (%) | ||
---|---|---|---|---|---|---|
Heating | Holding | Cooling | ||||
160 | 30 | 30.7 ± 0.2 | 3.38 ± 0.02 | 16.4 | 79.4 | 4.2 |
60 | 61.0 ± 0.3 | 3.61 ± 0.00 | 6.5 | 91.0 | 2.4 | |
90 | 90.2 ± 0.2 | 3.77 ± 0.01 | 5.7 | 92.3 | 2.0 | |
180 | 30 | 31.6 ± 0.6 | 4.05 ± 0.02 | 20.6 | 76.1 | 3.2 |
60 | 60.7 ± 0.3 | 4.22 ± 0.01 | 7.6 | 90.2 | 2.2 | |
90 | 91.1 ± 0.6 | 4.38 ± 0.01 | 5.3 | 93.1 | 1.7 | |
200 | 30 | 30.6 ± 0.4 | 4.60 ± 0.04 | 20.8 | 76.1 | 3.1 |
60 | 60.5 ± 0.3 | 4.81 ± 0.02 | 11.9 | 86.3 | 1.8 | |
90 | 87.1 ± 4.2 | 4.97 ± 0.02 | 12.6 | 86.2 | 1.2 |
T (°C) | Time (min) | Severity Factor | Concentration (mg/L) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Arabinose | Galactose | Glucose | Xylose | Mannose | ||||||||
M | T | M | T | M | T | M | T | M | T | |||
160 | 30 | 3.38 | 422 ± 23 | 987 ± 53 | 18 ± 1 | 385 ± 15 | 63 ± 7 | 1014 ± 17 | 58 ± 6 | 2146 ± 193 | 10 ± 1 | 165 ± 11 |
60 | 3.61 | 582 ± 8 | 1465 ± 172 | 36 ± 1 | 616 ± 63 | 59 ± 0 | 1333 ± 144 | 105 ± 3 | 5526 ± 564 | 12 ± 0 | 335 ± 38 | |
90 | 3.77 | 666 ± 2 | 1499 ± 163 | 56 ± 2 | 660 ± 73 | 57 ± 3 | 1431 ± 161 | 186 ± 13 | 8063 ± 604 | 12 ± 1 | 366 ± 33 | |
180 | 30 | 4.05 | 487 ± 18 | 923 ± 50 | 98 ± 2 | 580 ± 14 | 59 ± 2 | 1264 ± 33 | 670 ± 85 | 8852 ± 139 | 21 ± 2 | 304 ± 11 |
60 | 4.22 | 439 ± 39 | 471 ± 13 | 158 ± 2 | 416 ± 12 | 105 ± 0 | 1621 ± 58 | 2181 ± 91 | 9678 ± 222 | 62 ± 4 | 334 ± 31 | |
90 | 4.38 | 205 ± 6 | 247 ± 29 | 156 ± 6 | 426 ± 50 | 168 ± 8 | 1655 ± 172 | 2771 ± 58 | 7868 ± 696 | 93 ± 22 | 362 ± 43 | |
200 | 30 | 4.60 | 66 ± 4 | 73 ± 7 | 145 ± 1 | 149 ± 26 | 336 ± 13 | 1098 ± 115 | 1700 ± 59 | 1630 ± 49 | 105 ± 3 | 146 ± 19 |
60 | 4.81 | 5 ± 2 | 0 ± 0 | 34 ± 4 | 47 ± 4 | 233 ± 12 | 640 ± 28 | 116 ± 16 | 172 ± 13 | 37 ± 3 | 68 ± 9 | |
90 | 4.97 | 1 ± 0 | 0 ± 0 | 7 ± 2 | 15 ± 5 | 135 ± 7 | 393 ± 26 | 40 ± 6 | 77 ± 3 | 18 ± 5 | 29 ± 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serna-Loaiza, S.; Dias, M.; Daza-Serna, L.; de Carvalho, C.C.C.R.; Friedl, A. Integral Analysis of Liquid-Hot-Water Pretreatment of Wheat Straw: Evaluation of the Production of Sugars, Degradation Products, and Lignin. Sustainability 2022, 14, 362. https://doi.org/10.3390/su14010362
Serna-Loaiza S, Dias M, Daza-Serna L, de Carvalho CCCR, Friedl A. Integral Analysis of Liquid-Hot-Water Pretreatment of Wheat Straw: Evaluation of the Production of Sugars, Degradation Products, and Lignin. Sustainability. 2022; 14(1):362. https://doi.org/10.3390/su14010362
Chicago/Turabian StyleSerna-Loaiza, Sebastian, Manuel Dias, Laura Daza-Serna, Carla C. C. R. de Carvalho, and Anton Friedl. 2022. "Integral Analysis of Liquid-Hot-Water Pretreatment of Wheat Straw: Evaluation of the Production of Sugars, Degradation Products, and Lignin" Sustainability 14, no. 1: 362. https://doi.org/10.3390/su14010362
APA StyleSerna-Loaiza, S., Dias, M., Daza-Serna, L., de Carvalho, C. C. C. R., & Friedl, A. (2022). Integral Analysis of Liquid-Hot-Water Pretreatment of Wheat Straw: Evaluation of the Production of Sugars, Degradation Products, and Lignin. Sustainability, 14(1), 362. https://doi.org/10.3390/su14010362