The Optimization of Gelatin Extraction from Chicken Feet and the Development of Gelatin Based Active Packaging for the Shelf-Life Extension of Fresh Grapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Gelatin from Chicken Feet
2.3. Characterization of Gelatin
2.4. Preparation of Gelatin/Chitosan/ZnO Composite Films
2.5. Characterization of Chitosan-Gelatin Composite Film
2.5.1. Film Thickness and Total Soluble Matter
2.5.2. Mechanical Properties and Water Vapor Permeability (WVP)
2.5.3. Biodegradability
2.5.4. FTIR Analysis
2.5.5. Thermogravimetric Analysis (TGA)
2.5.6. Antimicrobial Activity
2.6. Preservation Studies
Microbiological Analysis
2.7. Statistical Analysis
3. Results
3.1. Optimized Extraction of Gelatin
3.2. Characterization of Gelatin
3.2.1. Proximate Analysis, Emulsifying and Foaming Properties
3.2.2. FTIR and SDS-PAGE Analysis
3.3. Characterization of Gelatin Composite Films
3.3.1. Film Thickness, Biodegradability and Total Soluble Matter
3.3.2. Mechanical Properties and WVP
3.3.3. FTIR and TGA Analysis of Films
3.3.4. Antibacterial Activity
3.4. Preservation Studies
3.4.1. Weight Loss and Browning Index of Grapes
3.4.2. Microbial Analysis of Grapes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, M.R.; Sadiq, M.B. Importance of gelatin, nanoparticles and their interactions in the formulation of biodegradable composite films: A review. Polym. Bull. 2021, 78, 4047–4073. [Google Scholar] [CrossRef]
- Chakka, A.K.; Muhammed, A.; Sakhare, P.Z.; Bhaskar, N. Poultry processing waste as an alternative source for mammalian gelatin: Extraction and characterization of gelatin from chicken feet using food grade acids. Waste Biomass Valorization 2017, 8, 2583–2593. [Google Scholar] [CrossRef]
- AL-Kahtani, H.A.; Jaswir, I.; Ismail, E.A.; Ahmed, M.A.; Monsur Hammed, A.; Olorunnisola, S.; Octavianti, F. Structural characteristics of camel-bone gelatin by demineralization and extraction. Int. J. Food Prop. 2017, 20, 2559–2568. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Ghoshal, G.; Goyal, M. Synthesis and functional properties of gelatin/CA–starch composite film: Excellent food packaging material. J. Food Sci. Technol. 2019, 56, 1954–1965. [Google Scholar] [CrossRef]
- Dhakal, D.; Koomsap, P.; Lamichhane, A.; Sadiq, M.B.; Anal, A.K. Optimization of collagen extraction from chicken feet by papain hydrolysis and synthesis of chicken feet collagen based biopolymeric fibres. Food Biosci. 2018, 23, 23–30. [Google Scholar] [CrossRef]
- Aykın-Dinçer, E.; Koç, A.; Erbaş, M. Extraction and physicochemical characterization of broiler (Gallus gallus domesticus) skin gelatin compared to commercial bovine gelatin. Poult Sci. 2017, 96, 4124–4131. [Google Scholar] [CrossRef]
- Sadiq, M.B.; Singh, M.; Anal, A.K. Application of food by-products in medical and pharmaceutical industries. Food Process. By-Prod. Util. 2017, 29, 89–110. [Google Scholar]
- Groh, K.J.; Backhaus, T.; Carney-Almroth, B.; Geueke, B.; Inostroza, P.A.; Lennquist, A.; Leslie, H.A.; Maffini, M.; Slunge, D.; Trasande, L.; et al. Overview of known plastic packaging-associated chemicals and their hazards. Sci. Total Environ. 2019, 651, 3253–3268. [Google Scholar] [CrossRef]
- Khan, M.R.; Di Giuseppe, F.A.; Torrieri, E.; Sadiq, M.B. Recent advances in biopolymeric antioxidant films and coatings for preservation of nutritional quality of minimally processed fruits and vegetables. Food Packag. Shelf Life 2021, 30, 100752. [Google Scholar] [CrossRef]
- Mehmood, Z.; Sadiq, M.B.; Khan, M.R. Gelatin nanocomposite films incorporated with magnetic iron oxide nanoparticles for shelf life extension of grapes. J. Food Saf. 2020, 40, e12814. [Google Scholar] [CrossRef]
- Duan, C.; Meng, X.; Meng, J.; Khan, M.I.; Dai, L.; Khan, A.; An, X.; Zhang, J.; Huq, T.; Ni, Y. Chitosan as a preservative for fruits and vegetables: A review on chemistry and antimicrobial properties. J. Bioresour. Bioprod. 2019, 4, 11–21. [Google Scholar] [CrossRef]
- Kumar, S.; Mitra, A.; Halder, D. Centella asiatica leaf mediated synthesis of silver nanocolloid and its application as filler in gelatin based antimicrobial nanocomposite film. LWT Food Sci. Technol. 2017, 75, 293–300. [Google Scholar] [CrossRef]
- Erge, A.; Zorba, Ö. Optimization of gelatin extraction from chicken mechanically deboned meat residue using alkaline pre-treatment. LWT Food Sci. Technol. 2018, 97, 205–212. [Google Scholar] [CrossRef]
- Sarbon, N.M.; Badii, F.; Howell, N.K. Preparation and characterisation of chicken skin gelatin as an alternative to mammalian gelatin. Food Hydrocoll. 2013, 30, 143–151. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis of AOAC International, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2002. [Google Scholar]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Kumar, S.; Mudai, A.; Roy, B.; Basumatary, I.B.; Mukherjee, A.; Dutta, J. Biodegradable hybrid nanocomposite of chitosan/gelatin and green synthesized zinc oxide nanoparticles for food packaging. Foods 2020, 9, 1143. [Google Scholar] [CrossRef]
- Nilsuwan, K.; Guerrero, P.; de la Caba, K.; Benjakul, S.; Prodpran, T. Properties of fish gelatin films containing epigallocatechin gallate fabricated by thermo-compression molding. Food Hydrocoll. 2019, 97, 105236. [Google Scholar] [CrossRef]
- Liu, Z.; Ge, X.; Lu, Y.; Dong, S.; Zhao, Y.; Zeng, M. Effects of chitosan molecular weight and degree of deacetylation on the properties of gelatine-based films. Food Hydrocoll. 2012, 26, 311–317. [Google Scholar] [CrossRef]
- Adhikary, T.; Gill, P.P.; Jawandha, S.K.; Bhardwaj, R.D.; Anurag, R.K. Efficacy of postharvest sodium nitroprusside application to extend storability by regulating physico-chemical quality of pear fruit. Food Chem. 2021, 346, 128934. [Google Scholar] [CrossRef]
- Da Almeida, P.F.; da Silva Lannes, S.C.; Calarge, F.A.; da Brito Farias, T.M.; Santana, J.C. FTIR characterization of gelatin from chicken feet. J. Chem. Chem. Eng. 2012, 6, 1029. [Google Scholar]
- GME. Standardize methods for the testing of edible gelatin. In Gelatin Monograph Version 12; Gelatin Manufacturers of Europe: Brussels, Belgium, 2017. [Google Scholar]
- Widyasari, R.; Rawdkuen, S. Extraction and characterization of gelatin from chicken feet by acid and ultrasound assisted extraction. Food Appl. Biosci. J. 2014, 2, 85–97. [Google Scholar]
- Ahmadi, A.; Ahmadi, P.; Ehsani, A. Development of an active packaging system containing zinc oxide nanoparticles for the extension of chicken fillet shelf life. Food Sci. Nutr. 2020, 8, 5461–5473. [Google Scholar] [CrossRef]
- Ediyilyam, S.; George, B.; Shankar, S.S.; Dennis, T.T.; Wacławek, S.; Černík, M.; Padil, V.V. Chitosan/gelatin/silver nanoparticles composites films for biodegradable food packaging applications. Polymers 2021, 13, 1680. [Google Scholar] [CrossRef]
- Liu, Z.; Lv, M.; Li, F.; Zeng, M. Development, characterization, and antimicrobial activity of gelatin/chitosan/ZnO nanoparticle composite films. J. Aquat. Food Prod. Technol. 2016, 25, 1056–1063. [Google Scholar] [CrossRef]
- Fakhouri, F.M.; Martelli, S.M.; Caon, T.; Velasco, J.I.; Mei, L.H. Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biol. Technol. 2015, 10, 57–64. [Google Scholar] [CrossRef]
- Kanikireddy, V.; Kanny, K.; Padma, Y.; Velchuri, R.; Ravi, G.; Jagan Mohan Reddy, B.; Vithal, M. Development of alginate-gum acacia-Ag0 nanocomposites via green process for inactivation of foodborne bacteria and impact on shelf life of black grapes (Vitis vinifera). J. Appl. Polym. Sci. 2019, 136, 47331. [Google Scholar] [CrossRef]
- Nagarajan, M.; Benjakul, S.; Prodpran, T.; Songtipya, P. Properties and characteristics of nanocomposite films from tilapia skin gelatin incorporated with ethanolic extract from coconut husk. J. Food Sci. Technol. 2015, 52, 7669–7682. [Google Scholar] [CrossRef]
No | Acetic Acid (%) | Temperature (°C) | Time (h) | Yield (%) | Gel Strength (g) |
---|---|---|---|---|---|
1 | 4.0 | 50 | 4 | 3.50 | 101.3 |
2 | 4.5 | 70 | 6 | 6.34 | 183.0 |
3 | 4.0 | 60 | 6 | 7.65 | 178.5 |
4 | 4.0 | 70 | 4 | 6.77 | 181.0 |
5 | 3.5 | 50 | 6 | 4.0 | 172.5 |
6 | 4.5 | 60 | 4 | 7.35 | 186.0 |
7 | 4.0 | 60 | 6 | 7.54 | 179.3 |
8 | 4.5 | 60 | 8 | 7.40 | 179.8 |
9 | 4.0 | 60 | 6 | 7.50 | 182.0 |
10 | 4.5 | 50 | 6 | 3.53 | 122.3 |
11 | 3.5 | 70 | 6 | 6.45 | 182.5 |
12 | 4.0 | 50 | 8 | 6.75 | 167.8 |
13 | 3.5 | 60 | 8 | 7.30 | 183.0 |
14 | 3.5 | 60 | 4 | 7.55 | 132.5 |
15 | 4.0 | 60 | 6 | 7.6 | 177.4 |
16 | 4.0 | 60 | 6 | 7.65 | 184.5 |
17 | 4.0 | 70 | 8 | 7.52 | 163.1 |
Films | Thickness (mm) | TSM (%) | TS (MPa) | EAB (%) | WVP (g mm m−2 h−1 kPa−1) | Biodegradability (%) |
---|---|---|---|---|---|---|
Gel | 0.087 ± 0.01 b | 100% ± 0.0 a | 17.4 ± 0.78 e | 33.97 ± 0.92 a | 0.42 ± 0.01 a | 70.02 ± 2.51 a |
Chi | 0.113 ± 0.03 ab | 28.22 ± 2.28 b | 34.26 ± 0.66 a | 20.86 ± 1.06 c | 0.33 ± 0.03 b | 39.66 ± 2.69 b |
Gel + Chi | 0.100 ± 0.01 b | 27.72 ± 2.63 b | 27.33 ± 0.80 b | 23.73 ± 0.75 b | 0.30 ± 0.02 bc | 31.97 ± 1.83 c |
Gel + Chi 0.2% ZnO NPs | 0.110 ± 0.01 ab | 21.19 ± 2.41 c | 23.76 ± 0.45 c | 18.1 ± 0.40 d | 0.28 ± 0.02 c | 30.63 ± 0.86 c |
Gel + Chi 0.3% ZnO NPs | 0.143 ± 0.01 a | 20.86 ± 2.10 c | 21.21 ± 0.48 d | 15.16 ± 0.50 e | 0.20 ± 0.02 d | 19.72 ± 1.42 d |
Days | Uninoculated Unwrapped Grapes C | Inoculated Unwrapped Grapes D | Inoculated Grapes Wrapped in Plastic C | Inoculated Grapes Wrapped in Gelatin + Chitosan Film B | Inoculated Grapes Wrapped in Gelatin + Chitosan +0.2% NPs Film A | Inoculated Grapes Wrapped in Gelatin + Chitosan +0.3% NPs Film A |
---|---|---|---|---|---|---|
1 a | 2.30 ± 0.30 | 3.87 ± 0.07 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
2 b | 3.08 ± 0.14 | 4.02 ± 0.03 | 3.95 ± 0.05 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
3 c | 3.76 ± 0.06 | 4.26 ± 0.05 | 4.07 ± 0.04 | 3.21 ± 0.10 | 0.00 ± 0.00 | 0.00 ± 0.00 |
4 d | 5.04 ± 0.03 | 6.03 ± 0.05 | 4.16 ± 0.03 | 3.91 ± 0.04 | 3.05 ± 0.10 | 2.39 ± 0.36 |
5 e | 6.15 ± 0.06 | 6.97 ± 0.06 | 6.07 ± 0.04 | 3.97 ± 0.04 | 3.90 ± 0.11 | 3.81 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatima, S.; Mir, M.I.; Khan, M.R.; Sayyed, R.Z.; Mehnaz, S.; Abbas, S.; Sadiq, M.B.; Masih, R. The Optimization of Gelatin Extraction from Chicken Feet and the Development of Gelatin Based Active Packaging for the Shelf-Life Extension of Fresh Grapes. Sustainability 2022, 14, 7881. https://doi.org/10.3390/su14137881
Fatima S, Mir MI, Khan MR, Sayyed RZ, Mehnaz S, Abbas S, Sadiq MB, Masih R. The Optimization of Gelatin Extraction from Chicken Feet and the Development of Gelatin Based Active Packaging for the Shelf-Life Extension of Fresh Grapes. Sustainability. 2022; 14(13):7881. https://doi.org/10.3390/su14137881
Chicago/Turabian StyleFatima, Saeeda, Mahnoor Iqtidar Mir, Muhammad Rehan Khan, R. Z. Sayyed, Samina Mehnaz, Sawaid Abbas, Muhammad Bilal Sadiq, and Rashid Masih. 2022. "The Optimization of Gelatin Extraction from Chicken Feet and the Development of Gelatin Based Active Packaging for the Shelf-Life Extension of Fresh Grapes" Sustainability 14, no. 13: 7881. https://doi.org/10.3390/su14137881
APA StyleFatima, S., Mir, M. I., Khan, M. R., Sayyed, R. Z., Mehnaz, S., Abbas, S., Sadiq, M. B., & Masih, R. (2022). The Optimization of Gelatin Extraction from Chicken Feet and the Development of Gelatin Based Active Packaging for the Shelf-Life Extension of Fresh Grapes. Sustainability, 14(13), 7881. https://doi.org/10.3390/su14137881