Echium vulgare and Echium plantagineum: A Comparative Study to Evaluate Their Inclusion in Mediterranean Urban Green Roofs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bibliographic and Field Surveys
2.2. Experimental Site
2.3. Plant Materials
2.4. Morphological and Morphometric Comparison of the Two Species
2.5. Evaluation of Vegetation Coverage and Water Stress Imposition on the GR
2.6. Entomological Biodiversity
2.7. Statistical Analysis
3. Results
3.1. Bibliographic Survey
3.2. Field Surveys
3.3. Morphological and Morphometric Comparative Analysis of the Two Species Growing on the GR
3.3.1. Seed Comparison
3.3.2. Rosette and Growing Trend Comparison
3.3.3. Adult Plant and Inflorescence Comparison
3.3.4. Root Comparison
3.4. Vegetation Coverage and Adaptation to Water Stress on the GR
3.5. Urban Ecosystem Service of Pollination
4. Discussion
4.1. Comparison between E. vulgare and E. plantagineum and their Growth Performance on a Mediterranean GR
4.2. The Urban Ecosystem Service of Safeguarding Pollinators
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vanbergen, A.J. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 2013, 11, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Dicks, L.V.; Breeze, T.D.; Ngo, H.T.; Senapathi, D.; An, J.; Aizen, M.A.; Basu, P.; Buchori, D.; Galetto, L.; Garibaldi, L.A.; et al. A global-scale expert assessment of drivers and risks associated with pollinator decline. Nat. Ecol. Evol. 2021, 5, 1453–1461. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Progress in the implementation of the EU Pollinators Initiative. In Report from the Commission to the Euro-pean Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; COM (2021) 261 final; European Commission: Brussels, Belgium, 2021. Available online: https://ec.europa.eu/environment/pdf/nature/conservation/species/pollinators/Progress_in_the_implementation_of_the_EU_Pollinators_Initiative.pdf (accessed on 29 July 2022). [CrossRef]
- Marshman, J.; Blay-Palmer, A.; Landman, K. Anthropocene crisis: Climate change, pollinators, and food security. Environments 2019, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Brühl, C.A.; Zaller, J.G. Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front. Environ. Sci. 2019, 7, 117. [Google Scholar] [CrossRef] [Green Version]
- Drivdal, L.; van der Sluijs, J.P. Pollinator conservation requires a stronger and broader application of the precautionary principle. Curr. Opin. Insect Sci. 2021, 46, 95–105. [Google Scholar] [CrossRef]
- Kovács-Hostyánszki, A.; Földesi, R.; Báldi, A.; Endrédi, A.; Jordán, F. The vulnerability of plant-pollinator communities to honeybee decline: A comparative network analysis in different habitat types. Ecol. Ind. 2019, 97, 35–50. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Towards an EU research and innovation policy agenda for nature-based solutions & re-naturing cities. In Final Report of the Horizon 2020 Expert Group on “Nature-Based Solutions and Re-Naturing Cities”; European Commission: Brussels, Belgium, 2015. Available online: https://op.europa.eu/en/publication-detail/-/publication/fb117980-d5aa-46df-8edc-af367cddc202 (accessed on 29 July 2022).
- Daniels, B.; Jedamski, J.; Ottermanns, R.; Ros-Nickoll, M. A “plan bee” for cities: Pollinator diversity and plant-pollinator interactions in urban green spaces. PLoS ONE 2020, 15, e0235492. [Google Scholar] [CrossRef]
- Brenneisen, S. The Natural Roof (NADA)—Research Project Report on the Use of Extensive Green Roofs by Wild Bees; University of Wädenswil: Wädenswil, Switzerland, 2005. [Google Scholar]
- European Parliament. European Parliament Resolution on the EU Pollinators Initiative. 2019/2803 (RSP). 2019. Available online: https://www.europarl.europa.eu/doceo/document/B-9-2019-0233_EN.pdf (accessed on 29 July 2022).
- Dachbegrünungsrichtlinien (Green Roof Directive). Richtlinien für die Planung, Bau und Instandhaltungen von Dachbegrünungen; Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau e.V. (FLL): Bonn, Germany, 2018. [Google Scholar]
- Dvorak, B.; Volder, A. Green roof vegetation for North American ecoregions: A literature review. Landsc. Urban Plan. 2010, 96, 197–213. [Google Scholar] [CrossRef]
- Mayrand, F.; Clergeay, P. Green roofs and green walls for biodiversity conservation: A contribution to urban connectivity? Sustainability 2018, 10, 985. [Google Scholar] [CrossRef] [Green Version]
- Campiotti, C.A.; Gatti, L.; Campiotti, A.; Consorti, L.; De Rossi, P.; Bibbiani, C.; Muleo, R.; Latini, A. Vertical greenery as natural tool for improving energy efficiency of buildings. Horticulturae 2022, 8, 526. [Google Scholar] [CrossRef]
- Oberndorfer, E.; Lundholm, J.; Bass, B.; Coffman, R.R.; Doshi, H.; Dunnett, N.; Gaffin, S.; Köhler, M.; Liu, K.K.Y.; Rowe, B. Green roofs as urban ecosystems: Ecological structures, functions, and services. BioScience 2007, 57, 823–833. [Google Scholar] [CrossRef]
- Francis, L.F.M.; Jensen, M.B. Benefits of green roofs: A systematic review of the evidence for the three ecosystem services. Urban For. Urban Green. 2017, 28, 167–176. [Google Scholar] [CrossRef]
- Campiotti, C.A.; Scibetta, C.; Caltabellotta, N.; Consorti, L.; Joustas, A. Green roofs for the energy and environmental sustainability of buildings. Rev. Stud. Sustain. 2019, 2, 27–44. [Google Scholar] [CrossRef]
- Benvenuti, S.; Bacci, D. Initial agronomic performances of Mediterranean xerophytes in simulated dry green roofs. Urban Ecosyst. 2010, 13, 349–363. [Google Scholar] [CrossRef]
- Vanuytrecht, E.; Van Mechelen, C.; Van Meerbeek, K.; Willems, P.; Hermy, M.; Raes, D. Runoff and vegetation stress of green roofs under different climate change scenarios. Landsc. Urban Plan. 2014, 122, 68–77. [Google Scholar] [CrossRef]
- Raimondo, F.; Trifilò, P.; Lo Gullo, M.A.; Andri, A.; Savi, T.; Nardini, A. Plant performance on Mediterranean green roofs: Interaction of species-specific hydraulic strategies and substrate water relations. AoB Plants 2015, 7, plv007. [Google Scholar] [CrossRef]
- Tuttolomondo, T.; Fascella, G.; Licata, M.; Schicchi, R.; Gennaro, M.C.; La Bella, S.; Leto, C.; Aprile, S. Studies on Sedum taxa found in Sicily (Italy) for Mediterranean extensive green roofs. Ital. J. Agron. 2018, 13, 1077. [Google Scholar] [CrossRef] [Green Version]
- Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.T.; Aizen, M.A.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J.; et al. Safeguarding pollinators and their values to human well-being. Nature 2016, 540, 220–229. [Google Scholar] [CrossRef] [Green Version]
- Gioannini, R.; Al-Ajlouni, M.; Kile, R.; Van Leeuwen, D.; St. Hilaire, R. Plant communities suitable for green roofs in arid regions. Sustainability 2018, 10, 1755. [Google Scholar] [CrossRef] [Green Version]
- Van Mechelen, C. Nature as a template for a new concept of extensive green roofs. Agricultural sciences. Université d’Avignon. English. NNT: 2015AVIG0334. 2015. Available online: https://tel.archives-ouvertes.fr/tel-01252839 (accessed on 29 July 2022).
- Descamps, C.; Marée, S.; Hugon, S.; Quinet, M.; Jacquemart, A.L. Species-specific responses to combined water stress and increasing temperatures in two bee-pollinated congeners (Echium, Boraginaceae). Ecol. Evol. 2020, 10, 6549–6561. [Google Scholar] [CrossRef]
- Sedivy, C.; Dorn, S.; Widmer, A.; Müller, A. Host range evolution in a selected group of osmiine bees (Hymenoptera: Megachilidae): The Boraginaceae-Fabaceae paradox. Biol. J. Linn. Soc. 2013, 108, 35–54. [Google Scholar] [CrossRef] [Green Version]
- Müller, A. Hoplitis (Hoplitis) galichicae spec. nov., a new osmiine bee species from Macedonia with key to the European representatives of the Hoplitis adunca species group (Megachilidae, Osmiini). Zootaxa 2016, 4111, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Thuring, C.; Grant, C. The biodiversity of temperate extensive green roofs—A review of research and practice. Isr. J. Ecol. Evol. 2015, 62, 44–57. [Google Scholar] [CrossRef]
- ISPRA (Istituto superiore per la protezione la ricerca ambientale). Specie erbacee mediterranee per la riqualificazione di ambienti antropici: Stato dell’arte, criticità e possibilità di impiego. Manuali e Linee Guida 86/2013; ISBN 978-88-448-0590-6. Available online: https://www.isprambiente.gov.it/files/pubblicazioni/manuali-lineeguida/manuale_86_2013.pdf (accessed on 29 July 2022).
- Zhu, X.; Weston, P.A.; Skoneczny, D.; Gopurenko, D.; Meyer, L.; Lepschi, B.J.; Callaway, R.M.; Gurr, G.M.; Weston, L.A. Ecology and genetics affect relative invasion success of two Echium species in southern Australia. Sci. Rep. 2017, 7, 42792. [Google Scholar] [CrossRef] [Green Version]
- Nagase, A.; Dunnett, N. Establishment of an annual meadow on extensive green roofs in the UK. Land. Urban Plan. 2013, 112, 50–62. [Google Scholar] [CrossRef]
- Rivest, S.; Forrest, J.R.K. Defence compounds in pollen: Why do they occur and how do they affect the ecology and evolution of bees? New Phytol. 2020, 225, 1053–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burger, H.; Ayasse, M.; Häberlein, C.M.; Schulz, S.; Dötterl, S. Echium and Pontechium specific floral cues for host–plant recognition by the oligolectic bee Hoplitis Adunca. South. Afr. J. Bot. 2010, 76, 788–795. [Google Scholar] [CrossRef] [Green Version]
- Dolan, R.W.; Moore, M.E.; Stephens, J.D. Documenting effects of urbanization on flora using herbarium records. J. Ecol. 2011, 99, 1055–1062. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.C.; Willis, C.G.; Connolly, B.; Kelly, C.; Ellison, A.M. Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species’ phenological cueing mechanisms. Am. J. Bot. 2015, 102, 1599–1609. [Google Scholar] [CrossRef]
- Pignatti, S. Flora d’Italia; Edagricole: Milan, Italy, 1982; ISBN 978-88-506-5242-6. [Google Scholar]
- Conti, F.; Abbate, G.; Alessandrini, A.; Blasi, C. An Annotated Checklist of the Italian Vascular Flora; Palombi Editori: Rome, Italy, 2005; ISSN 88-7621-458-5. [Google Scholar]
- Bartolucci, F.; Peruzzi, L.; Galasso, G.; Albano, A.; Alessandrini, A.; Ardenghi, N.M.G.; Astuti, G.; Bacchetta, G.; Balelli, S.; Banfi, E.; et al. An updated checklist of the vascular flora native to Italy. Plant Biosyst.—Int. J. Deal. All Asp. Plant Biol. 2018, 152, 179–303. [Google Scholar] [CrossRef]
- Portal of the Flora of Italy. Available online: http://dryades.units.it/floritaly/index.php (accessed on 29 July 2022).
- Campiotti, C.A.; Giagnacovo, G.; Latini, A.; Margiotta, F.; Nencini, L.; Pazzola, L.; Puglisi, G. Le coperture vegetali per la sostenibilità energetica ed ambientale degli edifici. Report Ricerca di Sistema Elettrico RdS/PAR2016/075. September 2017. Available online: https://www.enea.it/it/Ricerca_sviluppo/documenti/ricerca-di-sistema-elettrico/adp-mise-enea-2015-2017/edifici-intelligenti/rds_par2016_075.pdf (accessed on 29 July 2022).
- Available online: https://www.semenostrum.it/wp-content/uploads/2020/07/Echiumvulgare.pdf (accessed on 29 July 2022).
- Available online: https://gardenseedsmarket.com/patersons-curse-semi-miscelati-echium-plantagineum-250-semi.html (accessed on 29 July 2022).
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Simpson, M.G. 9—Plant Morphology. In Plant Systematics (Second Edition); Simpson, M.G., Ed.; Academic Press: Cambridge, MA, USA, 2010; pp. 451–513. ISBN 9780123743800. [Google Scholar] [CrossRef]
- Kent, M.; Coker, P. Vegetation Description and Analysis: A Practical Approach; John Weley and Sons: New York, NY, USA, 1992. [Google Scholar]
- Dunnett, N.; Gedge, D.; Little, J.; Snodgrass, C. Small Green Roofs: Low-Tech Options for Greener Living; Timber Press: Portland, OR, USA, 2011; ISBN 1604690593. [Google Scholar]
- Perrino, E.V.; Calabrese, G. Endangered segetal species in southern Italy: Distribution, conservation status, trends, actions and ethnobotanical notes. Genet. Resour. Crop. Evol. 2018, 65, 2107–2134. [Google Scholar] [CrossRef]
- Perrino, E.V.; Signorile, G.; Marvulli, M. A first checklist of the vascular flora of the Polignano a Mare coast (Apulia, Southern Italy). Nat. Croat. 2013, 22, 295–318. [Google Scholar]
- CABI. Invasive Species Compendium. Available online: http://www.cabi.org/ISC (accessed on 29 July 2022).
- Klemow, K.M.; Clements, D.R.; Threadgill, P.F.; Cavers, P.B. The biology of Canadian weds. 116. Echium vulgare L. Can. J. Plant Sci. 2002, 82, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Flora italiana. Available online: http://luirig.altervista.org/flora/taxa/floraspecie.php?genere=Echium (accessed on 29 July 2022).
- Wang, W.; Jin, J.; Xu, H.; Shi, Y.; Boersch, M.; Yin, Y. Comparative analysis of the main medicinal substances and applications of Echium vulgare L. and Echium plantagineum L.: A review. J. Ethnopharm. 2022, 285, 114894. [Google Scholar] [CrossRef]
- Available online: http://www.beewatching.it/#segnalazio (accessed on 29 July 2022).
- European Commission. EU Biodiversity Strategy for 2031. Bringing Nature back into Our Lives. COM/2020/380 final. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1590574123338&uri=CELEX:52020DC0380 (accessed on 29 July 2022).
- Piggin, C.M. The biology of Australian weeds. 8. Echium plantagineum L. J. Aust. Inst. Agric. Sci. 1982, 48, 3–16. [Google Scholar]
- Shaik, R.S.; Zhu, X.; Clements, D.R.; Weston, L.A. Understanding invasion history and predicting invasive niches using genetic sequencing technology in Australia: Case studies from Cucurbitaceae and Boraginaceae. Conserv. Physiol. 2016, 4, cow030. [Google Scholar] [CrossRef] [Green Version]
- Costea, M.; El Miari, H.; Laczkó, L.; Fekete, R.; Molnár, A.V.; Lovas-Kiss, A.; Green, A.J. The effect of gut passage by waterbirds on the seed coat and pericarp of diaspores lacking “external flesh”: Evidence for widespread adaptation to endozoochory in angiosperms. PLoS ONE 2019, 14, e022655. [Google Scholar] [CrossRef] [Green Version]
- Rimma, B.; Vitaly, A. Pubescence of vegetative organs and trichome micromorphology in some Boraginaceae at different ontogenetic stages. Wulfenia 2016, 23, 1–29. [Google Scholar]
- Forcella, F.; Wood, J.T.; Dillon, S.P. Characteristics distinguishing invasive weeds within Echium (Bugloss). Weed Res. 1986, 26, 351–364. [Google Scholar] [CrossRef]
- Eberle, C.A.; Forcella, F.; Gesh, R.; Weyers, S.; Peterson, D.; Eklund, J. Flowering dynamics and pollinator visitation of oilseed Echium (Echium plantagineum). PLoS ONE 2014, 9, e113556. [Google Scholar] [CrossRef] [PubMed]
- Ostiguy, N.; Drummond, F.A.; Aronstein, K.; Eitzer, B.; Ellis, J.D.; Spivak, M.; Sheppard, W.S. Honey bee exposure to pesticides: A four-year nationwide study. Insects 2019, 10, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egerer, M.; Cecala, J.M.; Cohen, H. Wild bee conservation within urban gardens and nurseries: Effects of local and landscape management. Sustainability 2019, 12, 293. [Google Scholar] [CrossRef] [Green Version]
- Hicks, D.M.; Ouvrard, P.; Baldock, K.C.R.; Baude, M.; Goddard, M.A.; Goddard, M.A.; Kunin, W.E.; Mitschunas, N.; Memmott, J.; Morse, H.; et al. Food for pollinators: Quantifying the nectar and pollen resources of urban flower meadows. PLoS ONE 2016, 11, e0158117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gérard, M.; Vanderplanck, M.; Wood, T.; Michez, D. Global warming and plant-pollinator mismatches. Emerg. Top. Life Sci. 2020, 4, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Jia, S.; Wang, Z.; Chen, Y.; Mo, S.; Sze, N.N. Planning considerations of green corridors for the improvement of biodiversity resilience in suburban areas. J. Infrastruct. Preserv. Resil. 2021, 2, 6. [Google Scholar] [CrossRef]
- Stinca, A.; Musarella, C.M.; Rosati, L.; Laface, V.L.A.; Licht, W.; Fanfarillo, E.; Wagensommer, R.P.; Galasso, G.; Fascetti, S.; Esposito, A.; et al. Italian vascular flora: New findings, updates and exploration of floristic similarities between regions. Diversity 2021, 13, 600. [Google Scholar] [CrossRef]
Year | Month | Activity |
---|---|---|
1st year (Dec 2018–Nov 2019) | December 2018 | E. vulgare and E. plantagineum seed sowing in trays in greenhouse |
March 2019 | Transfer of E. vulgare and E. plantagineum plantlets on the GR | |
April 2019 | First E. plantagineum blooms | |
June 2019 | First E. vulgare blooms | |
September 2019 | Water stress | |
October 2019 | Restart of E. plantagineum vegetative growth and first occasional blooms; second E. vulgare seed sowing | |
2nd year (Dec 2019–Nov 2020) | December 2019 | Second transfer of E. vulgare plantlets on the GR |
March–June 2020 | Plant rosette morphological/morphometric evaluation | |
Spring 2020 | Outstanding vegetative growth and blooming of E. plantagineum, dominant over E. vulgare | |
July 2020 | Evaluation of adult plant and inflorescence related traits | |
August 2020 | Evaluation of seed maturity (MS%) and root related traits | |
3rd year (Dec 2020–Nov 2021) | Spring 2021 | Outstanding vegetative growth and blooming of E. plantagineum, dominant over E. vulgare |
Spring–Summer 2021 | Not structured observations of pollinator visitations |
Echium vulgare | Echium plantagineum | |
---|---|---|
Additional names | Preferred common name is (common) viper’s bugloss; main international common name is Blueweed [50] | Preferred common name is Paterson’s curse; main international common names are blue weed, purple bugloss, purple viper’s bugloss [50] |
Origin | Native to Europe, Western Asia, and Western China | Native to the Mediterranean region and adjacent areas of Atlantic western Europe |
Plant biological cycle | Biennial to short-lived perennial. Very rarely annual | Mostly annual, sometimes biennial |
Habitat | Uncultivated and arid habitats [30] | Uncultivated and arid habitats [30] |
Diffusion | Not common in Mediterranean areas in rural environments [30] | Very common in Mediterranean areas, in both rural and urban environments [30,50] |
Development | It produces a 20-leaf rosette during the first year of growth and a branched flowering stem during the second year [26] | It produces a 4-leaf rosette and a branched flowering stem in one season [26] |
Auxiliary buds and shoots | It lacks auxiliary stems [26] | It presents auxiliary stems [26] |
Inflorescence | A panicle of numerous, short helicoid cymes, each subtended by an upper foliage leaf. A stem produces as many as 50 cymes, each with about 20 flowers [51] | It has too many erect flowering branches |
Blooming season | April to September [52] | March to July [52] |
Additional information |
Morpho- and Biometric Trait Description | Acronym | Unit of Measure | N | Echium vulgare | Echium plantagineum | Independent Samples t-test | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std. Dev. | Mean | Std. Dev. | t | df | p | ||||||
Seed related traits (as provided by the sellers) * | Seed length | SL | mm | 100 | 2.095 | 0.211 | 2.706 | 0.219 | −20.116 | 198 | <0.001 | |
Seed basal width | SBW | mm | 100 | 1.509 | 0.183 | 2.077 | 0.239 | −18.847 | 198 | <0.001 | ||
Rosette-related traits (at the end of April) | Larger rosette diameter | LRD | cm | 25 | 26.90 | 0.48 | 42.00 | 1.30 | −54.466 | 48 | <0.001 | |
Smaller rosette diameter | SRD | cm | 25 | 11.55 | 0.50 | 14.50 | 0.65 | −17.932 | 48 | <0.001 | ||
Largest rosette leaf length | LRLL | cm | 25 | 14.20 | 1.11 | 24.00 | 1.84 | −22.770 | 48 | <0.001 | ||
Rosette area | RA | cm2 | 10 | 15.52 | 2.31 | 22.07 | 2.23 | −6.439 | 18 | <0.001 | ||
Adult plant-related traits | Primary inflorescence length | PIL | cm | 25 | 23.27 | 3.31 | 21.00 | 3.04 | 2.517 | 48 | 0.015 | |
Number of secondary branches | NSB | cm | 25 | 33.48 | 3.53 | 14.48 | 1.92 | 23.674 | 48 | <0.001 | ||
Average internode length | aIL | cm | 25 | 1.03 | 0.23 | 2.50 | 0.41 | −15.473 | 48 | <0.001 | ||
Inflorescence-related traits | Calix length | CaL | cm | 100 | 0.74 | 0.13 | 1.06 | 0.25 | −11.644 | 198 | <0.001 | |
Corolla length | CoL | cm | 100 | 1.79 | 0.19 | 1.97 | 0.21 | −6.350 | 198 | <0.001 | ||
Corolla width | CW | cm | 100 | 1.31 | 0.21 | 2.17 | 0.37 | −20.204 | 198 | <0.001 | ||
Pistil length | PL | cm | 100 | 1.99 | 0.43 | 1.59 | 0.34 | 7.279 | 198 | <0.001 | ||
Fertility-related traits | Mature seed percentage | MS% | % | 5 | 46.9 | - | 89.5 | - | - | - | - | |
Root-related traits | Juvenile plant stage | Root length | RLjuv | cm | 25 | 6.70 | 0.30 | 5.50 | 0.43 | 11.395 | 48 | <0.001 |
Root width | RWjuv | mm | 25 | 1.10 | 0.22 | 1.02 | 0.16 | 1.432 | 48 | 0.159 | ||
Flowering plant stage | Root length | RLflo | cm | 25 | 7.21 | 0.49 | 6.10 | 0.49 | 8.015 | 48 | <0.001 | |
Root width | RWflo | mm | 25 | 1.73 | 0.52 | 1.40 | 0.42 | 2.484 | 48 | 0.330 | ||
Adult plant stage | Root length | RLadu | cm | 25 | 11.5 | 0.65 | 8.20 | 0.65 | 18.035 | 48 | <0.001 | |
Root width | RWadu | mm | 25 | 2.86 | 0.24 | 2.68 | 0.25 | 2.570 | 48 | 0.013 |
Year | Month | Vegetation Coverage Percent (%) | ||
---|---|---|---|---|
E. vulgare | E. plantagineum | E. vulgare + E. plantagineum | ||
2019 | March | 0.5 | 12.4 | 12.9 |
April | 1.3 | 25.7 | 27.0 | |
May | 1.9 | 39.5 | 41.4 | |
June | 2.8 | 55.8 | 58.6 | |
July | 2.1 | 59.2 | 61.3 | |
August | 1.8 | 52.3 | 54.1 | |
September | 0 | 0 | 0 | |
2020 | March | 4.2 | 21.1 | 25.3 |
April | 7.2 | 42.8 | 48.0 | |
May | 6.6 | 77.2 | 83.8 | |
June | 7.5 | 88.4 | 95.9 | |
July | 7.2 | 82.3 | 89.5 | |
August | 3.8 | 72.5 | 76.3 | |
September | 1.6 | 52.7 | 54.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latini, A.; Papagni, I.; Gatti, L.; De Rossi, P.; Campiotti, A.; Giagnacovo, G.; Mirabile Gattia, D.; Mariani, S. Echium vulgare and Echium plantagineum: A Comparative Study to Evaluate Their Inclusion in Mediterranean Urban Green Roofs. Sustainability 2022, 14, 9581. https://doi.org/10.3390/su14159581
Latini A, Papagni I, Gatti L, De Rossi P, Campiotti A, Giagnacovo G, Mirabile Gattia D, Mariani S. Echium vulgare and Echium plantagineum: A Comparative Study to Evaluate Their Inclusion in Mediterranean Urban Green Roofs. Sustainability. 2022; 14(15):9581. https://doi.org/10.3390/su14159581
Chicago/Turabian StyleLatini, Arianna, Ilaria Papagni, Lorenzo Gatti, Patrizia De Rossi, Alessandro Campiotti, Germina Giagnacovo, Daniele Mirabile Gattia, and Susanna Mariani. 2022. "Echium vulgare and Echium plantagineum: A Comparative Study to Evaluate Their Inclusion in Mediterranean Urban Green Roofs" Sustainability 14, no. 15: 9581. https://doi.org/10.3390/su14159581
APA StyleLatini, A., Papagni, I., Gatti, L., De Rossi, P., Campiotti, A., Giagnacovo, G., Mirabile Gattia, D., & Mariani, S. (2022). Echium vulgare and Echium plantagineum: A Comparative Study to Evaluate Their Inclusion in Mediterranean Urban Green Roofs. Sustainability, 14(15), 9581. https://doi.org/10.3390/su14159581