Comparison between Heat Flow Meter (HFM) and Thermometric (THM) Method for Building Wall Thermal Characterization: Latest Advances and Critical Review
Abstract
:1. Introduction
2. Background Theory behind the Methods
3. Equipment for Measurements
3.1. HFM Method
3.2. THM Method
4. Errors and Uncertainties
4.1. HFM Method
4.2. THM Method
5. Data Analysis
5.1. HFM Method
Authors | Building Construction Period | Methodological Approach | Measurement Time | Average Percentage Difference between Measured and Theoretical Value 1 |
---|---|---|---|---|
Doran [61] | Before 1998 | -HFM vs. ISO 6946 | At least 14 days | 21% |
Baker [26] | Before 1919 | -HFM vs. ISO 6946 | At least 14 days | 24% |
Rye and Scott [62] | Before 1919 | -HFM vs. ISO 6946 | At least 14 days | 28% |
Rhee-Duverne and Paul Baker [63] | 18th–19th century | -HFM vs. ISO 6946 | 3 to 4 weeks | 24% |
Asdrubali et al. [64] | 2007–2008 | -HFM vs. ISO 6946 | At least 7 days | 30% |
Evangelisti et al. [15] | Late 1800s, early 1950s, and 2000s | -HFM vs. ISO 6946 | 8, 12 and 7 days | 58% |
Ficco et al. [21] | 1965, 1970, 1994, 2000, 2010, and 2015 | -HFM vs. nominal design data and technical data available in Italian standard -HFM vs. endoscopic analysis and core samplings | Longer than 72 h | 24% to 90% |
Walker and Pavía [65] | 1805, insulated between December 2013 and April 2014 | -HFM vs. laboratory-measured and provider values | n.a. | 20% |
Gaspar et al. [54] | 1992, 1960, 2007 | -HFM vs. ISO 6946 | 72 h | 10% |
Bros Williamson et al. [33] | 2012 | -HFM vs. ISO 6946 | 14 to 21 days | 27% |
Lucchi [12] | 13th–20th century | -HFM vs. tabulated design method vs. abacus of masonry structures vs. analytical calculation | -7 days for walls thickness less than 0.9 m -14 days for walls thickness in the range 0.9–1.1 m | 27% |
Lucchi [66] | 12th–18th century | -HFM vs. ISO 6946 using standard suggestions from UNI 10351 and UNI 1745 | -7 days for walls thickness less than 0.9 m -14 days for walls thickness in the range 0.9–1.1 m | 31% |
Hoffmann and Geissler [25] | 1600, 1850, 1905, 1925, 1953, 1962/63, and 1965 | -HFM vs. ISO 6946 | At least 72 h | 25% |
Evangelisti et al. [24] | 2013 | -HFM vs. ISO 6946 | At least 7 days | 18% |
Evangelisti et al. [60] | 2013 | -HFM vs. ISO 6946 (different seasons and wall orientations) -Data post-processing | At least 7 days | 18% to 20% (1% to 6% after post processing) |
5.2. THM Method
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carvalho, J.P.; Bragança, L.; Mateus, R. Sustainable building design: Analysing the feasibility of BIM platforms to support practical building sustainability assessment. Comput. Ind. 2021, 127, 103400. [Google Scholar] [CrossRef]
- Nardi, I.; Lucchi, E.; de Rubeis, T.; Ambrosini, D. Quantification of heat energy losses through the building envelope: A state-of-the-art analysis with critical and comprehensive review on infrared thermography. Build. Environ. 2018, 146, 190–205. [Google Scholar] [CrossRef]
- Gan, V.J.; Deng, M.; Tse, K.; Chan, C.M.; Lo, I.M.; Cheng, J.C. Holistic BIM framework for sustainable low carbon design of high-rise buildings. J. Clean. Prod. 2018, 195, 1091–1104. [Google Scholar] [CrossRef]
- Yadav, M.; Agarwal, M. Biobased building materials for sustainable future: An overview. Mater. Today Proc. 2021, 43, 2895–2902. [Google Scholar] [CrossRef]
- Desogus, G.; Mura, S.; Ricciu, R. Comparing different approaches to in situ measurement of building components thermal resistance. Energy Build. 2011, 43, 2613–2620. [Google Scholar] [CrossRef]
- Oral, G.K.; Yilmaz, Z. The limit U values for building envelope related to building form in temperate and cold climatic zones. Build. Environ. 2002, 37, 1173–1180. [Google Scholar] [CrossRef]
- Prada, A.; Cappelletti, F.; Baggio, P.; Gasparella, A. On the effect of material uncertainties in envelope heat transfer simulations. Energy Build. 2014, 71, 53–60. [Google Scholar] [CrossRef]
- Ballarini, I.; Corrado, V.; Madonna, F.; Paduos, S.; Ravasio, F. Energy refurbishment of the Italian residential building stock: Energy and cost analysis through the application of the building typology. Energy Policy 2017, 105, 148–160. [Google Scholar] [CrossRef]
- ISO 6946. Building Components and Building Elements—Thermal Resistance and Thermal Transmittance—Calculation Methods; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Sassine, E.; Cherif, Y.; Antczak, E. Parametric identification of thermophysical properties in masonry walls of buildings. J. Build. Eng. 2019, 25, 100801. [Google Scholar] [CrossRef]
- Biddulph, P.; Gori, V.; Elwell, C.A.; Scott, C.; Rye, C.; Lowe, R.; Oreszczyn, T. Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements. Energy Build. 2014, 78, 10–16. [Google Scholar] [CrossRef]
- Lucchi, E. Thermal transmittance of historical brick masonries: A comparison among standard data, analytical calculation procedures, and in situ heat flow meter measurements. Energy Build. 2017, 134, 171–184. [Google Scholar] [CrossRef]
- Nardi, I.; de Rubeis, T.; Perilli, S. Ageing Effects on the Thermal Performance of Two Different Well-insulated Buildings. Energy Procedia 2016, 101, 1050–1057. [Google Scholar] [CrossRef]
- Antonyová, A.; Korjenic, A.; Antony, P.; Korjenic, S.; Pavlušová, E.; Pavluš, M.; Bednar, T. Hygrothermal properties of building envelopes: Reliability of the effectiveness of energy saving. Energy Build. 2013, 57, 187–192. [Google Scholar] [CrossRef]
- Staszczuk, A.; Kuczyński, T. The impact of wall and roof material on the summer thermal performance of building in a temperate climate. Energy 2021, 228, 120482. [Google Scholar] [CrossRef]
- De Luxan Garcia de Diego, M.; Munoz, G.G.; Lopez, E.R. Towards new energy accounting in residential building. Inf. Constr. 2015, 67, 1–10. [Google Scholar]
- Bienvenido-Huertas, D.; Moyano, J.; Marín, D.; Fresco-Contreras, R. Review of in situ methods for assessing the thermal transmittance of walls. Renew. Sustain. Energy Rev. 2018, 102, 356–371. [Google Scholar] [CrossRef]
- Teni, M.; Krstić, H.; Kosiński, P. Review and comparison of current experimental approaches for in-situ measurements of building walls thermal transmittance. Energy Build. 2019, 203, 109417. [Google Scholar] [CrossRef]
- Andújar Márquez, J.M.; Martínez Bohórquez, M.Á.; Gómez Melgar, S. A New Metre for Cheap, Quick, Reliable and Simple Thermal Transmittance (U-Value) Measurements in Buildings. Sensors 2017, 17, 2017. [Google Scholar] [CrossRef]
- Evangelisti, L.; Guattari, C.; Gori, P.; Vollaro, R.D.L.; Asdrubali, F. Experimental investigation of the influence of convective and radiative heat transfers on thermal transmittance measurements. Int. Commun. Heat Mass Transf. 2016, 78, 214–223. [Google Scholar] [CrossRef]
- Ficco, G.; Iannetta, F.; Ianniello, E.; Alfano, F.R.D.; Dell’Isola, M. U-value in situ measurement for energy diagnosis of existing buildings. Energy Build. 2015, 104, 108–121. [Google Scholar] [CrossRef]
- Jelle, B.P. Accelerated climate ageing of building materials, components and structures in the laboratory. J. Mater. Sci. 2012, 47, 6475–6496. [Google Scholar] [CrossRef]
- ISO 9869-1. Thermal Insulation—Building Elements—In-Situ Measurement of Thermal Resistance and Thermal Transmittance Heat Flow Meter Method; ISO: Geneva, Switzerland, 2014. [Google Scholar]
- Evangelisti, L.; Guattari, C.; Asdrubali, F. Comparison between heat-flow meter and Air-Surface Temperature Ratio techniques for assembled panels thermal characterization. Energy Build. 2019, 203, 109441. [Google Scholar] [CrossRef]
- Hoffmann, C.; Geissler, A. The prebound-effect in detail: Real indoor temperatures in basements and measured versus calculated U-values. Energy Procedia 2017, 122, 32–37. [Google Scholar] [CrossRef]
- Baker, P. Technical Paper 10: U-Values and Traditional Buildings—In Situ Measurements and Their Comparisons to Calculated Values; SEMANTIC SCHOLAR: Seattle, WA, USA, 2011. [Google Scholar]
- Peng, C.; Wu, Z. In situ measuring and evaluating the thermal resistance of building construction. Energy Build. 2008, 40, 2076–2082. [Google Scholar] [CrossRef]
- Gaspar, K.; Casals, M.; Gangolells, M. In situ measurement of façades with a low U-value: Avoiding deviations. Energy Build. 2018, 170, 61–73. [Google Scholar] [CrossRef]
- Albatici, R.; Tonelli, A.M.; Chiogna, M. A comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance. Appl. Energy 2015, 141, 218–228. [Google Scholar] [CrossRef]
- Zalewski, L.; Lassue, S.; Rousse, D.; Boukhalfa, K. Experimental and numerical characterization of thermal bridges in prefabricated building walls. Energy Convers. Manag. 2010, 51, 2869–2877. [Google Scholar] [CrossRef]
- Guattari, C.; Evangelisti, L.; Gori, P.; Asdrubali, F. Influence of internal heat sources on thermal resistance evaluation through the heat flow meter method. Energy Build. 2017, 135, 187–200. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Rodríguez-Álvaro, R.; Moyano, J.J.; Rico, F.; Marín, D. Determining the U-Value of Façades Using the Thermometric Method: Potentials and Limitations. Energies 2018, 11, 360. [Google Scholar] [CrossRef]
- Bros-Williamson, J.; Garnier, C.; I Currie, J. A longitudinal building fabric and energy performance analysis of two homes built to different energy principles. Energy Build. 2016, 130, 578–591. [Google Scholar] [CrossRef]
- Evangelisti, L.; Guattari, C.; de Rubeis, T. Preliminary analysis of the influence of environmental boundary conditions on convective heat transfer coefficients. J. Phys. Conf. Ser. 2021, 1868, 012024. [Google Scholar] [CrossRef]
- Evangelisti, L.; Guattari, C.; Fontana, L.; Vollaro, R.D.L.; Asdrubali, F. On the ageing and weathering effects in assembled modular facades: On-site experimental measurements in an Italian building of the 1960s. J. Build. Eng. 2021, 45, 103519. [Google Scholar] [CrossRef]
- Cesaratto, P.G.; De Carli, M.; Marinetti, S. Effect of different parameters on the in situ thermal conductance evaluation. Energy Build. 2011, 43, 1792–1801. [Google Scholar] [CrossRef]
- Trethowen, H. Measurement errors with surface-mounted heat flux sensors. Build. Environ. 1986, 21, 41–56. [Google Scholar] [CrossRef]
- Cucumo, M.; De Rosa, A.; Ferraro, V.; Kaliakatsos, D.; Marinelli, V. A method for the experimental evaluation in situ of the wall conductance. Energy Build. 2006, 38, 238–244. [Google Scholar] [CrossRef]
- Meng, X.; Yan, B.; Gao, Y.; Wang, J.; Zhang, W.; Long, E. Factors affecting the in situ measurement accuracy of the wall heat transfer coefficient using the heat flow meter method. Energy Build. 2015, 86, 754–765. [Google Scholar] [CrossRef]
- Cucumo, M.; Ferraro, V.; Kaliakatsos, D.; Mele, M. On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings. Energy Build. 2018, 158, 677–683. [Google Scholar] [CrossRef]
- Gaspar, K.; Casals, M.; Gangolells, M. Influence of HFM Thermal Contact on the Accuracy of In Situ Measurements of Façades’ U-Value in Operational Stage. Appl. Sci. 2021, 11, 979. [Google Scholar] [CrossRef]
- Ahmad, A.; Maslehuddin, M.; Al-Hadhrami, L.M. In situ measurement of thermal transmittance and thermal resistance of hollow reinforced precast concrete walls. Energy Build. 2014, 84, 132–141. [Google Scholar] [CrossRef]
- Wang, F.; Wang, D.; Wang, X.; Yao, J. A data analysis method for detecting wall thermal resistance considering wind velocity in situ. Energy Build. 2010, 42, 1647–1653. [Google Scholar] [CrossRef]
- Litti, G.; Khoshdel, S.; Audenaert, A.; Braet, J. Hygrothermal performance evaluation of traditional brick masonry in historic buildings. Energy Build. 2015, 105, 393–411. [Google Scholar] [CrossRef]
- Evangelisti, L.; Guattari, C.; Asdrubali, F. Influence of heating systems on thermal transmittance evaluations: Simulations, experimental measurements and data post-processing. Energy Build. 2018, 168, 180–190. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D. Assessing the Environmental Impact of Thermal Transmittance Tests Performed in Façades of Existing Buildings: The Case of Spain. Sustainability 2020, 12, 6247. [Google Scholar] [CrossRef]
- Albatici, R.; Tonelli, A.M. Infrared thermovision technique for the assessment of thermal transmittance value of opaque building elements on site. Energy Build. 2010, 42, 2177–2183. [Google Scholar] [CrossRef]
- Gori, V.; Elwell, C. Estimation of thermophysical properties from in-situ measurements in all seasons: Quantifying and reducing errors using dynamic grey-box methods. Energy Build. 2018, 167, 290–300. [Google Scholar] [CrossRef]
- Genova, E.; Fatta, G. The thermal performances of historic masonry: In-situ measurements of thermal conductance on calcarenite stone walls in Palermo. Energy Build. 2018, 168, 363–373. [Google Scholar] [CrossRef]
- Aittomäki, A. Determination of the overall heat transfer coefficient of multilayer structures under non-steady-state conditions. In CIB Session Working Paper; CIB: Hongkong, China, 1972. [Google Scholar]
- Juhl, R.; Kristensen, N.R.; Bacher, P.; Kloppenborg, J.; He, M. CTSM-R User Guide. 2013. Available online: http://ctsm.info/pdfs/userguide.pdf (accessed on 6 January 2022).
- Gutschker, O. LORD-modelling and identification software for thermal systems. In User Manual; BTU Cottbus: Cottbus, Germany, 2004. [Google Scholar]
- Van Dijk, D.; der Linden, V.G.I. For S.E. and Informatics, E.S.A.S.C. of the E. Communities, MRQT User Guide; Manual for MRQT and the Package MRQT/PASTA; Commission of the European Communities: Luxembourg, 1994. [Google Scholar]
- Gaspar, K.; Casals, M.; Gangolells, M. A comparison of standardized calculation methods for in situ measurements of façades U-value. Energy Build. 2016, 130, 592–599. [Google Scholar] [CrossRef]
- Atsonios, I.A.; Mandilaras, I.D.; Kontogeorgos, D.A.; Founti, M.A. A comparative assessment of the standardized methods for the in–situ measurement of the thermal resistance of building walls. Energy Build. 2017, 154, 198–206. [Google Scholar] [CrossRef]
- Gaspar, K.; Casals, M.; Gangolells, M. Review of criteria for determining HFM minimum test duration. Energy Build. 2018, 176, 360–370. [Google Scholar] [CrossRef]
- Cesaratto, P.G.; De Carli, M. A measuring campaign of thermal conductance in situ and possible impacts on net energy demand in buildings. Energy Build. 2013, 59, 29–36. [Google Scholar] [CrossRef]
- Tejedor, B.; Casals, M.; Gangolells, M.; Roca-Ramon, X. Quantitative internal infrared thermography for determining in-situ thermal behaviour of façades. Energy Build. 2017, 151, 187–197. [Google Scholar] [CrossRef]
- Blanco, I.; Convertino, F.; Schettini, E.; Vox, G. Energy analysis of a green façade in Summer: An experimental test in Mediterranean climate conditions. Energy Build. 2021, 245, 111076. [Google Scholar] [CrossRef]
- Evangelisti, L.; Guattari, C.; Vollaro, R.D.L.; Asdrubali, F. A methodological approach for heat-flow meter data post-processing under different climatic conditions and wall orientations. Energy Build. 2020, 223, 110216. [Google Scholar] [CrossRef]
- Doran, S. Safety and Health Business Plan, Field Investigations of the Thermal Performance of Construction Elements as Built. Available online: https://www.researchgate.net/publication/277854674_Field_Investigations_of_the_thermal_performance_of_construction_elements_as_built. (accessed on 6 January 2022).
- Rye, C.; Scott, C. The SPAB Research Report 1. U-Value Report; SPAB: London, UK, 2010. [Google Scholar]
- Rhee-Duverne, S.; Baker, P. Research into the Thermal Performance of Traditional Brick Walls, English Heritage Report; Historic England: London, UK, 2013.
- Asdrubali, F.; D’Alessandro, F.; Baldinelli, G.; Bianchi, F. Evaluating in situ thermal transmittance of green buildings masonries—A case study. Case Stud. Constr. Mater. 2014, 1, 53–59. [Google Scholar] [CrossRef]
- Walker, R.; Pavía, S. Thermal performance of a selection of insulation materials suitable for historic buildings. Build. Environ. 2015, 94, 155–165. [Google Scholar] [CrossRef]
- Lucchi, E. Thermal transmittance of historical stone masonries: A comparison among standard, calculated and measured data. Energy Build. 2017, 151, 393–405. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, J.-H.; Jeong, H.-G.; Song, K.-D. Reliability Field Test of the Air–Surface Temperature Ratio Method for In Situ Measurement of U-Values. Energies 2018, 11, 803. [Google Scholar] [CrossRef]
- Çengel, Y.A. Heat Transfer: A Practical Approach; McGraw-Hill: New York, NY, USA, 2004. [Google Scholar]
- Walikewitz, N.; Jänicke, B.; Langner, M.; Meier, F.; Endlicher, W. The difference between the mean radiant temperature and the air temperature within indoor environments: A case study during summer conditions. Build. Environ. 2015, 84, 151–161. [Google Scholar] [CrossRef]
- Alamdari, F.; Hammond, G.P. Improved data correlations for buoyancy-driven convection in rooms. Build. Serv. Eng. Res. Technol. 1983, 4, 106–112. [Google Scholar] [CrossRef]
- Khalifa, A.J.; Marshall, R. Validation of heat transfer coefficients on interior building surfaces using a real-sized indoor test cell. Int. J. Heat Mass Transf. 1990, 33, 2219–2236. [Google Scholar] [CrossRef]
- Churchill, S.W.; Chu, H.H. Correlating equations for laminar and turbulent free convection from a vertical plate. Int. J. Heat Mass Transf. 1975, 18, 1323–1329. [Google Scholar] [CrossRef]
- Fohanno, S.; Polidori, G. Modelling of natural convective heat transfer at an internal surface. Energy Build. 2006, 38, 548–553. [Google Scholar] [CrossRef]
- Camci, M.; Karakoyun, Y.; Acikgoz, O.; Dalkilic, A.S. A comparative study on convective heat transfer in indoor applications. Energy Build. 2021, 242, 110985. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Moyano, J.; Jiménez, C.E.R.; Marín, D. Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method. Appl. Energy 2019, 233-234, 1–14. [Google Scholar] [CrossRef]
- Cuerda, E.; Guerra-Santin, O.; Neila, F.J.; Romero, N. Evaluation and comparison of building performance in use through on-site monitoring and simulation modelling. In Proceedings of the 3rd IBPSA-England Conference BSO 2016, Great North Museum, Newcastle, UK, 12–14 September 2016. [Google Scholar]
- Buzatu, G.-C.; Stan-Ivan, F.-E.; Mircea, P.-M.; Manescu, L.-G. Thermal transmittance determination for different components of buildings. In Proceedings of the 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), Brasov, Romania, 25–27 May 2017; pp. 227–232. [Google Scholar]
- Bienvenido-Huertas, D.; Rubio-Bellido, C.; Pérez-Ordóñez, J.L.; Moyano, J. Optimizing the evaluation of thermal transmittance with the thermometric method using multilayer perceptrons. Energy Build. 2019, 198, 395–411. [Google Scholar] [CrossRef]
- Kim, S.-H.; Lee, J.-H.; Kim, J.-H.; Yoo, S.-H.; Jeong, H.-G. The Feasibility of Improving the Accuracy of In Situ Measurements in the Air-Surface Temperature Ratio Method. Energies 2018, 11, 1885. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Rubio-Bellido, C.; Solís-Guzmán, J.; Oliveira, M.J. Experimental characterisation of the periodic themal properties of walls using artificial intelligence. Energy 2020, 203, 117871. [Google Scholar] [CrossRef]
Method | Measuring Instruments and Sensors (Number) | Example of Sensor Costs 1 [€] |
---|---|---|
Heat flow meter method (HFM) | Heat flow plate (1) Temperature probe (2) Datalogger (1) | 700.00 320.00 900.00 |
Thermometric method (THM) | Temperature probe (2) Surface temperature probe (1) Datalogger (1) | 320.00 115.00 900.00 |
Simple hot box HFM method (SHB-HFM) | Heat flow plate (3) Temperature probe (1) Surface temperature probe (9) Datalogger (1) Simple hot box (1) | 2100.00 160.00 1035.00 900.00 - |
Quantitative infrared thermography method (QIRT) | Infrared camera (1) Anemometer (1) Temperature probe (2) Surface temperature probe (1) | up to about 30,000.00 600.00 320.00 115.00 |
Cause | Experimental Notes | Uncertainty Range |
---|---|---|
Heat flux and temperature non-uniformity | (1) Preliminary infrared thermography survey for avoiding sensors installation near thermal bridges (2) Repeat measurements in different positions | 1–5% |
Heat flux and temperature instability | (1) Sampling intervals long enough (at least 72 h) (2) Low thermal variations during measurements (3) Control of indoor environmental conditions (4) C-value measurement instead of U-value | 5–10% |
Heat flow meter resistance | (1) Correction based on the thermal resistance value declared by the manufacturer and the actual heat flux with no HFM sensor (2) Measurement compensation by installing temperature sensors under the plate | 2–3% |
Contact resistance | (1) Use of thermal conductive pastes or adhesive tapes | 2–5% |
Cause | Experimental Notes | Uncertainty Range |
---|---|---|
Temperature sensors | (1) High indoor-outdoor temperature difference (10 °C) (2) Frequent sensors calibration | 0.1–0.2 °C |
Heat flow meter | (1) High heat fluxes density (2) Frequent heat flow sensor calibration | 1–2% |
Data acquisition system | (1) Datalogger calibration (2) Control of transmitted data | 1–2% |
Cause | Experimental Notes | Uncertainty Range |
---|---|---|
Temperature | (1) Placing of HFM datalogger in controlled environment | 1–2% |
Solar radiation or other thermal sources | (1) Shading sensors by solar radiation or further thermal energy sources | - |
Moisture content | (1) Proper selection of external surfaces | - |
Convection | Correlation | Feasibility Condition |
---|---|---|
Natural | ||
Mixed | ||
Forced | ||
Authors | Building Construction Period | Methodological Approach | Average Percentage Difference between the Obtained Values 1 |
---|---|---|---|
Cuerda et al. [76] | Constructed in 1972 and retrofitted in 2011 | -THM vs. calculation based on Spanish regulation and databases | 31% |
Buzatu et al. [77] | n.a. | -THM vs. theoretical calculation based on MC001/2009 | 42% |
Bienvenido-Huertas et al. [75] | from 1950 to 2018 | THM vs. theoretical calculation (using the MLP approach) | <20% |
Bienvenido-Huertas et al. [78] | from 1950 to 2018 | THM vs. HFM (using the MLP approach) | −4% to 7.5% |
Andújar Márquez et al. [19] | n.a | THM vs. HFM | 2% |
Bienvenido-Huertas et al. [32] | 1966, 1981, and 2004 | THM vs. HFM (using 7.69 W/m2 K, as indicated by ISO 6946) | 4% to 37% (winter) 7% to 62% (summer) 19% to 83% (autumn) |
Kim et al. [67] | 1978, 1979, 1989, and 1991 | THM vs. HFM | 0.3% to 5% |
Kim et al. [79] | 1982, 1983, 1988, and 1994 | THM vs. HFM | 6% to 17% |
Evangelisti et al. [15] | 1950, 1960 and 2000 | THM vs. HFM (in functions of different existing correlations for the convective coefficient) | 31% to 32% |
Evangelisti et al. [24] | 2013 | THM vs. HFM (using 7.69 W/m2 K, as indicated by ISO 6946) | 37% to 143% |
Evangelisti et al. [35] | 1960 | THM vs. HFM (using both the dimensionless groups approach and 7.69 W/m2 K, as indicated by ISO 6946) | 13% to 45% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evangelisti, L.; Scorza, A.; De Lieto Vollaro, R.; Sciuto, S.A. Comparison between Heat Flow Meter (HFM) and Thermometric (THM) Method for Building Wall Thermal Characterization: Latest Advances and Critical Review. Sustainability 2022, 14, 693. https://doi.org/10.3390/su14020693
Evangelisti L, Scorza A, De Lieto Vollaro R, Sciuto SA. Comparison between Heat Flow Meter (HFM) and Thermometric (THM) Method for Building Wall Thermal Characterization: Latest Advances and Critical Review. Sustainability. 2022; 14(2):693. https://doi.org/10.3390/su14020693
Chicago/Turabian StyleEvangelisti, Luca, Andrea Scorza, Roberto De Lieto Vollaro, and Salvatore Andrea Sciuto. 2022. "Comparison between Heat Flow Meter (HFM) and Thermometric (THM) Method for Building Wall Thermal Characterization: Latest Advances and Critical Review" Sustainability 14, no. 2: 693. https://doi.org/10.3390/su14020693
APA StyleEvangelisti, L., Scorza, A., De Lieto Vollaro, R., & Sciuto, S. A. (2022). Comparison between Heat Flow Meter (HFM) and Thermometric (THM) Method for Building Wall Thermal Characterization: Latest Advances and Critical Review. Sustainability, 14(2), 693. https://doi.org/10.3390/su14020693