Grey Multivariable Prediction Model of Energy Consumption with Different Fractional Orders
Abstract
:1. Introduction
- (1)
- In order to obtain the objective factors affecting energy consumption and establish a reasonable grey multivariable model, six factors affecting energy consumption are selected for grey relation analysis, from which the impact index with the largest correlation degree is selected;
- (2)
- On the basis of combining the different-order accumulation method and the grey multivariable convolution model, the grey multivariable convolution model based on different fractional-order accumulation is established. Different fractional orders are used to accumulate the target sequence and the influencing factor sequence, which can make full use of the information of different data sequences and reflect the influence of influencing factors on the change trend of the target sequence. Additionally, a particle swarm optimization algorithm is used to optimize fractional orders and . The model is used to fit, test and forecast the energy consumption of some provinces (cities) in China, which verifies the effectiveness of the model.
2. Related Methods
2.1. Grey Relation Analysis
2.2. Particle Swarm Optimization
3. FGMC (1,N,2r) Model
3.1. Establishment of the Model
3.2. Parameter Optimization
3.3. Model Evaluation Index
4. Model Application
4.1. Experimental Data Collections
4.2. Model Comparison and Analysis
4.2.1. Energy Consumption in Shanghai
4.2.2. Energy Consumption in Guizhou
4.2.3. Energy Consumption in Shandong
- (1)
- Compared with other grey models, the FGMC (1,N,2r) model developed in this paper is more accurate in its predictions;
- (2)
- The new model has better prediction performance after parameter optimization;
- (3)
- The new model can make up for the shortcomings of other models in predicting energy consumption.
4.3. Further Discussion
5. Conclusions and the Future Work
- (1)
- The novel model is used to forecast the energy consumption of Shanghai, Guizhou and Shandong provinces. Compared with the simulation results of different grey models, the proposed grey multivariable convolution prediction model based on different fractional-order accumulation has higher prediction accuracy than the other grey multivariable prediction models, including the GM (1,N) model, GMC (1,N) model, AGMC (1,N) model and FGMC (1,N) model. From the two measurements of MAPE and RMSPE, the new model has the lowest MAPE and RMSPE values, making it superior to the other models;
- (2)
- Different fractional orders are used to accumulate the target sequence and the influencing factor sequence, which makes full use of the information of the data sequence with different characteristics. Furthermore, the optimized fractional-order and also greatly improve the prediction accuracy of the model;
- (3)
- The new model is a successful optimization of the grey multivariable convolution prediction model. It has a good performance in predicting energy consumption and it also provides a certain reference for other energy prediction problems.
- (1)
- Grey relation analysis is applied to find out the most influential factors on energy consumption, and only one influencing factor is used to establish a grey multivariable model. In the future, more influencing factors can be considered to establish the model, which may lead to more accurate prediction results;
- (2)
- In this paper, a particle swarm optimization algorithm is used to optimize the parameters of the model. In the future, other optimization algorithms can be considered for optimization, and other parameters of the model can also be considered for optimization, so as to improve the prediction accuracy of the model;
- (3)
- The energy consumption data of 2020 is used and the impact of COVID-19 on energy consumption is temporarily ignored. This may be an important research direction in the future.
Author Contributions
Funding
Conflicts of Interest
References
- Chaturvedi, S.; Rajasekar, E.; Natarajan, S.; McCullen, N. A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India. Energy Policy 2022, 168, 113097. [Google Scholar] [CrossRef]
- Peng, L.; Wang, L.; Xia, D.; Gao, Q. Effective energy consumption forecasting using empirical wavelet transform and long short-term memory. Energy 2022, 238, 121756. [Google Scholar] [CrossRef]
- Rick, R.; Berton, R. Energy forecasting model based on CNN-LSTM-AE for many time series with unequal lengths. Eng. Appl. Artif. Intell. 2022, 113, 104998. [Google Scholar] [CrossRef]
- Jin, N.; Yang, F.; Mo, Y.; Zeng, Y.; Zhou, X.; Yan, K.; Ma, X. Highly accurate energy consumption forecasting model based on parallel LSTM neural networks. Adv. Eng. Inform. 2022, 51, 101442. [Google Scholar] [CrossRef]
- Somu, N.; Raman, G.M.R.; Ramamritham, K. A hybrid model for building energy consumption forecasting using long short term memory networks. Appl. Energy 2020, 261, 114131. [Google Scholar] [CrossRef]
- Kazemzadeh, M.R.; Amjadian, A.; Amraee, T. A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting. Energy 2020, 204, 117948. [Google Scholar] [CrossRef]
- Adedeji, P.A.; Akinlabi, S.; Ajayi, O.; Madushele, N. Non-linear autoregressive neural network (NARNET) with SSA filtering for a university energy consumption forecast. Procedia Manuf. 2019, 33, 176–183. [Google Scholar] [CrossRef]
- Zeng, S.; Su, B.; Zhang, M.; Gao, Y.; Liu, J.; Luo, S.; Tao, Q. Analysis and forecast of China’s energy consumption structure. Energy Policy 2021, 159, 112630. [Google Scholar] [CrossRef]
- Hu, H.; Wang, L.; Lv, S. Forecasting energy consumption and wind power generation using deep echo state network. Renew. Energy 2020, 154, 598–613. [Google Scholar] [CrossRef]
- Bedi, J.; Toshniwal, D. Energy load time-series forecast using decomposition and autoencoder integrated memory network. Appl. Soft Comput. 2020, 93, 106390. [Google Scholar] [CrossRef]
- Deng, J.L. Control problem of grey system. Syst. Control. Lett. 1982, 1, 288–294. [Google Scholar]
- Xiong, P.; Li, K.; Shu, H.; Wang, J. Forecast of natural gas consumption in the Asia-Pacific region using a fractional-order incomplete gamma grey model. Energy 2021, 237, 121533. [Google Scholar] [CrossRef]
- Tong, M.; Dong, J.; Luo, X.; Yin, D.; Duan, H. Coal consumption forecasting using an optimized grey model: The case of the world’s top three coal consumers. Energy 2022, 242, 122786. [Google Scholar] [CrossRef]
- Ding, S.; Tao, Z.; Zhang, H.; Li, Y. Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model. Energy 2022, 239, 121928. [Google Scholar] [CrossRef]
- Ma, X.; Mei, X.; Wu, W.; Ma, X.; Wu, W.; Nie, R.; Chi, P.; Zhang, Y. A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China. Energy 2019, 178, 487–507. [Google Scholar] [CrossRef]
- Wu, L.; Gao, X.; Xiao, Y.; Yang, Y.; Chen, X. Using a novel multi-variable grey model to forecast the electricity consumption of Shandong Province in China. Energy 2018, 157, 327–335. [Google Scholar] [CrossRef]
- Liu, C.; Lao, T.; Wu, W.; Xie, W.; Zhu, H. An optimized nonlinear grey Bernoulli prediction model and its application in natural gas production. Expert Syst. Appl. 2022, 194, 116448. [Google Scholar] [CrossRef]
- Wang, M.; Wang, W.; Wu, L. Application of a new grey multivariate forecasting model in the forecasting of energy consumption in 7 regions of China. Energy 2022, 243, 123024. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Luo, X.; Duan, H. A novel nonlinear multivariable Verhulst grey prediction model: A case study of oil consumption forecasting in China. Energy Rep. 2022, 8, 3424–3436. [Google Scholar] [CrossRef]
- Duan, H.; Luo, X. A novel multivariable grey prediction model and its application in forecasting coal consumption. ISA Trans. 2022, 120, 110–127. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L. Forecasting the non-renewable energy consumption by an adjacent accumulation grey model. J. Clean. Prod. 2020, 275, 124113. [Google Scholar] [CrossRef]
- Chen, H.; Yang, Z.; Peng, C.; Qi, K. Regional energy forecasting and risk assessment for energy security: New evidence from the Yangtze River Delta region in China. J. Clean. Prod. 2022, 361, 132235. [Google Scholar] [CrossRef]
- Zhou, W.; Pan, J.; Tao, H.; Ding, S.; Chen, L.; Zhao, X. A novel grey seasonal model based on cycle accumulation generation for forecasting energy consumption in China. Comput. Ind. Eng. 2022, 163, 107725. [Google Scholar] [CrossRef]
- Zhou, W.; Tao, H.; Jiang, H. Application of a Novel Optimized Fractional Grey Holt-Winters Model in Energy Forecasting. Sustainability 2022, 14, 3118. [Google Scholar] [CrossRef]
- Cheng, M.; Li, J.; Liu, Y.; Liu, Y. Forecasting Clean Energy Consumption in China by 2025: Using Improved Grey Model GM (1, N). Sustainability 2020, 12, 698. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Ma, X.; She, K. Forecasting Japan’s Solar Energy Consumption Using a Novel Incomplete Gamma Grey Model. Sustainability 2019, 11, 5921. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Ma, X.; Zeng, B.; Wang, Y.; Cai, W. Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model. Renew. Energy 2019, 140, 70–87. [Google Scholar] [CrossRef]
- Wang, Y.; He, X.; Zhang, L.; Ma, X.; Wu, W.; Nie, R.; Chi, P.; Zhang, Y. A novel fractional time-delayed grey Bernoulli forecasting model and its application for the energy production and consumption prediction. Eng. Appl. Artif. Intell. 2022, 110, 104683. [Google Scholar] [CrossRef]
- Liu, C.; Wu, W.; Xie, W.; Chen, X.; Xie, H.; Wang, J. Forecasting natural gas consumption of China by using a novel fractional grey model with time power term. Energy Rep. 2021, 7, 788–797. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Nie, R.; Chi, P.; He, X.; Zhang, L. A novel fractional grey forecasting model with variable weighted buffer operator and its application in forecasting China’s crude oil consumption. Petroleum 2022, 8, 139–157. [Google Scholar] [CrossRef]
- Tien, T. The indirect measurement of tensile strength of material by the grey prediction model GMC (1, n). Measurement Science & Technology 2005, 16, 1322. [Google Scholar]
- Yin, F.; Zeng, B. A novel multivariable grey prediction model with different accumulation orders and performance comparison. Appl. Math. Model. 2022, 109, 117–133. [Google Scholar] [CrossRef]
- Zeng, B.; Luo, C.; Liu, S.; Li, C. A novel multi-variable grey forecasting model and its application in forecasting the amount of motor vehicles in Beijing. Comput. Ind. Eng. 2016, 101, 479–489. [Google Scholar] [CrossRef]
- Du, B.; Huang, S.; Guo, J.; Tang, H.; Wang, L.; Zhou, S. Interval forecasting for urban water demand using PSO optimized KDE distribution and LSTM neural networks. Appl. Soft Comput. 2022, 122, 108875. [Google Scholar] [CrossRef]
- Statistics Bureau of the People’s Republic of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2021. [Google Scholar]
MAPE | Model Accuracy |
---|---|
<10% | Superior |
10–20% | Good |
20–50% | General |
>50% | Poor |
Region | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|
Shanghai | 10,489.09 | 10,573 | 10,890.39 | 10,639.86 | 10,930.53 | 11,241.73 | 11,381.85 | 11,453.73 | 11,696.46 | 11,099.59 |
Guizhou | 7295.11 | 7873.57 | 8715.48 | 9015.18 | 9319.6 | 8831.27 | 9379.5 | 9656.73 | 10,074.14 | 10,111.12 |
Shandong | 31,211.8 | 32,686.7 | 34,234.9 | 35,362.6 | 39,331.6 | 40,137.9 | 40,097.7 | 40,580.5 | 41,390.0 | 41,826.8 |
Value | 0.8610 | 0.9141 | 0.5796 | 0.9705 | 0.6340 | 0.6178 |
Year | Actual Values | GM (1,N) | GMC (1,N) | AGMC (1,N) | FGMC (1,N) | FGMC (1,N,2r) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Predicted Values | APE (%) | Predicted Values | APE (%) | Predicted Values | APE (%) | Predicted Values | APE (%) | Predicted Values | APE (%) | ||
Modeling | |||||||||||
2011 | 10,489.09 | 10,489.09 | 0.00 | 10,489.09 | 0.00 | 10,489.09 | 0.00 | 10,489.09 | 0.00 | 10,489.09 | 0.00 |
2012 | 10,573.00 | 9054.31 | 14.36 | 10,574.23 | 0.01 | 10,585.16 | 0.12 | 10,597.23 | 0.23 | 10,619.53 | 0.44 |
2013 | 10,890.39 | 12,264.74 | 12.62 | 10,697.67 | 1.77 | 10,830.79 | 0.55 | 10,564.99 | 2.99 | 10,795.91 | 0.87 |
2014 | 10,639.86 | 11,599.35 | 9.02 | 10,819.35 | 1.69 | 10,950.17 | 2.92 | 10,727.33 | 0.82 | 10,715.44 | 0.71 |
2015 | 10,930.53 | 11,204.85 | 2.51 | 10,954.86 | 0.22 | 11,073.86 | 1.31 | 10,926.54 | 0.04 | 10,927.18 | 0.03 |
2016 | 11,241.73 | 11,149.55 | 0.82 | 11,108.43 | 1.19 | 11,222.53 | 0.17 | 11,120.72 | 1.08 | 11,197.82 | 0.39 |
2017 | 11,381.85 | 11,120.92 | 2.29 | 11,280.23 | 0.89 | 11,381.85 | 0.00 | 11,301.99 | 0.70 | 11,363.76 | 0.16 |
2018 | 11,453.73 | 11,156.75 | 2.59 | 11,472.87 | 0.17 | 11,555.6 | 0.89 | 11,465.27 | 0.10 | 11,474.78 | 0.18 |
MAPE (%) | 6.32 | 0.85 | 0.85 | 0.85 | 0.40 | ||||||
RMSPE (%) | 8.16 | 1.09 | 1.27 | 1.27 | 0.49 | ||||||
Testing | |||||||||||
2019 | 11,696.46 | 11,182.47 | 4.39 | 11,687.28 | 0.08 | 11,730.34 | 0.29 | 11,613.86 | 0.71 | 11,468.48 | 1.95 |
2020 | 11,099.59 | 11,213.88 | 1.03 | 11,926.91 | 7.45 | 11,911.16 | 7.31 | 11,746.81 | 5.83 | 11,416.89 | 2.86 |
MAPE (%) | 2.71 | 3.77 | 3.80 | 3.27 | 2.40 | ||||||
RMSPE (%) | 3.19 | 5.27 | 5.17 | 4.15 | 2.45 |
Year | 2021 | 2022 | 2023 | 2024 | 2025 |
---|---|---|---|---|---|
Energy consumption | 11,371.29 | 11,346.45 | 11,297.99 | 11,238.54 | 11,170.68 |
Value | 0.5815 | 0.6764 | 0.6356 | 0.8641 | 0.7927 | 0.6905 |
Year | Actual Values | GM (1,N) | GMC (1,N) | AGMC (1,N) | FGMC (1,N) | FGMC (1,N,2r) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Predicted Values | APE (%) | Predicted Values | APE (%) | Predicted Values | APE (%) | Predicted Values | APE (%) | Predicted Values | APE (%) | ||
Modeling | |||||||||||
2011 | 7295.11 | 7295.11 | 0.00 | 7295.11 | 0.00 | 7295.11 | 0.00 | 7295.11 | 0.00 | 7295.11 | 0.00 |
2012 | 7873.57 | 7317.12 | 7.07 | 6866.30 | 12.79 | 7744.02 | 1.65 | 7917.72 | 0.56 | 7901.35 | 0.35 |
2013 | 8715.48 | 10,323.84 | 18.45 | 7983.64 | 8.40 | 8714.07 | 0.02 | 8445.98 | 3.09 | 8715.48 | 0.00 |
2014 | 9015.18 | 9988.09 | 10.79 | 8429.42 | 6.50 | 9014.49 | 0.01 | 8819.33 | 2.17 | 8954.76 | 0.67 |
2015 | 9319.6 | 9564.68 | 2.63 | 8638.82 | 7.30 | 9319.58 | 0.00 | 9074.15 | 2.63 | 9096.53 | 2.39 |
2016 | 8831.27 | 9435.93 | 6.85 | 8772.81 | 0.66 | 9399.85 | 6.44 | 9250.54 | 4.75 | 9229.19 | 4.51 |
2017 | 9379.5 | 9443.28 | 0.68 | 8892.52 | 5.19 | 9402.42 | 0.24 | 9379.56 | 0.00 | 9379.50 | 0.00 |
2018 | 9656.73 | 9451.28 | 2.13 | 8983.05 | 6.98 | 9329.59 | 3.39 | 9470.20 | 1.93 | 9478.10 | 1.85 |
MAPE (%) | 6.94 | 6.83 | 1.68 | 2.16 | 1.40 | ||||||
RMSPE (%) | 8.99 | 7.61 | 2.82 | 2.61 | 2.07 | ||||||
Testing | |||||||||||
2019 | 10,074.14 | 9501.60 | 5.68 | 9048.83 | 10.18 | 9240.04 | 8.28 | 9531.69 | 5.38 | 9549.95 | 5.20 |
2020 | 10,111.12 | 9521.53 | 5.83 | 9099.23 | 10.01 | 9136.70 | 9.64 | 9572.68 | 5.33 | 9612.06 | 4.94 |
MAPE (%) | 5.76 | 10.09 | 8.96 | 5.35 | 5.07 | ||||||
RMSPE (%) | 5.76 | 10.09 | 8.98 | 5.35 | 5.07 |
Year | 2021 | 2022 | 2023 | 2024 | 2025 |
---|---|---|---|---|---|
Energy consumption | 9666.28 | 9732.07 | 9790.98 | 9846.45 | 9899.17 |
Value | 0.9420 | 0.9320 | 0.5882 | 0.7832 | 0.6953 | 0.6491 |
Year | Actual Values | GM (1,N) | GMC (1,N) | AGMC(1,N) | FGMC (1,N) | FGMC (1,N,2r) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Predicted Values | APE (%) | Predicted Values | APE (%) | Predicted Values | APE (%) | Predicted Values | APE (%) | Predicted Values | APE (%) | ||
Modeling | |||||||||||
2011 | 31,211.8 | 31,211.8 | 0.00 | 31,211.8 | 0.00 | 31,211.8 | 0.00 | 31,211.8 | 0.00 | 31,211.8 | 0.00 |
2012 | 32,686.7 | 26,709.0 | 18.29 | 30,446.7 | 6.85 | 31,945.8 | 2.27 | 31,987.3 | 2.14 | 32,686.7 | 0.00 |
2013 | 34,234.9 | 39,516.4 | 15.43 | 32,808.3 | 4.17 | 34,234.7 | 0.00 | 34,469.0 | 0.68 | 33,725.3 | 1.49 |
2014 | 35,362.6 | 39,158.2 | 10.73 | 35,260.6 | 0.29 | 36,226.6 | 2.44 | 36,615.4 | 3.54 | 36,357.7 | 2.81 |
2015 | 39,331.6 | 40,074.2 | 1.89 | 37,403.1 | 4.90 | 37,919.5 | 3.59 | 38,266.6 | 2.71 | 38,621.0 | 1.81 |
2016 | 40,137.9 | 39,195.8 | 2.35 | 38,799.3 | 3.34 | 39,130.7 | 2.51 | 39,410.2 | 1.81 | 39,955.7 | 0.45 |
2017 | 40,097.7 | 39,145.6 | 2.37 | 39,329.4 | 1.92 | 39,797.9 | 0.75 | 40,082.3 | 0.04 | 40,283.7 | 0.46 |
2018 | 40,580.5 | 40,084.2 | 1.22 | 39,841.9 | 1.82 | 40,332.5 | 0.61 | 40,483.7 | 0.24 | 40,580.5 | 0.00 |
MAPE (%) | 7.47 | 3.33 | 1.74 | 1.59 | 1.00 | ||||||
RMSPE (%) | 10.03 | 3.90 | 2.11 | 2.01 | 1.41 | ||||||
Testing | |||||||||||
2019 | 41,390.0 | 41,428.8 | 0.09 | 40,693.2 | 1.68 | 40,958.3 | 1.04 | 40,758.1 | 1.53 | 41,103.2 | 0.69 |
2020 | 41,826.8 | 43,426.1 | 3.82 | 41,982.4 | 0.37 | 41,775.5 | 0.12 | 41,000.5 | 1.98 | 41,927.3 | 0.24 |
MAPE (%) | 1.96 | 1.03 | 0.58 | 1.75 | 0.47 | ||||||
RMSPE (%) | 2.70 | 1.22 | 0.74 | 1.77 | 0.52 |
Year | 2021 | 2022 | 2023 | 2024 | 2025 |
---|---|---|---|---|---|
Energy consumption | 42,118.82 | 41,567.81 | 41,059.83 | 40,449.85 | 39,744.12 |
Region | Zhejiang | Hebei | Chongqing | Jiangxi | Shanxi | Jiangsu |
---|---|---|---|---|---|---|
1.02843 | 0.00120 | 0.78577 | 0.09814 | 1.02681 | 1.35040 | |
0.00005 | 0.40885 | 0.00381 | 0.23074 | 0.61342 | 0.84192 |
Year | Zhejiang | Hebei | Chongqing | ||||||
---|---|---|---|---|---|---|---|---|---|
Actual Values | Predicted Values | APE (%) | Actual Values | Predicted Values | APE (%) | Actual Values | Predicted Values | APE (%) | |
2011 | 17,827 | 17,827.00 | 0.00 | 28,075.03 | 28,075.03 | 0.00 | 5516.15 | 5516.15 | 0.00 |
2012 | 18,076 | 18,080.34 | 0.02 | 28,762.47 | 28,459.26 | 1.05 | 5834.84 | 5824.19 | 0.18 |
2013 | 18,820 | 18,582.54 | 1.26 | 29,664.38 | 29,433.66 | 0.78 | 6225.92 | 6264.25 | 0.62 |
2014 | 18,826 | 19,103.41 | 1.47 | 29,320.21 | 30,192.21 | 2.97 | 6603.61 | 6589.01 | 0.22 |
2015 | 19,610 | 19,609.22 | 0.00 | 31,036.73 | 30,844.90 | 0.62 | 6924.77 | 6883.65 | 0.59 |
2016 | 20,276 | 20,284.58 | 0.04 | 31,458.05 | 31,397.55 | 0.19 | 7099.71 | 7103.78 | 0.06 |
2017 | 21,030 | 20,992.06 | 0.18 | 32,082.56 | 31,841.15 | 0.75 | 7251.59 | 7251.58 | 0.00 |
2018 | 21,675 | 21,642.27 | 0.15 | 32,185.24 | 32,232.10 | 0.15 | 7452.72 | 7452.72 | 0.00 |
MAPE (%) | 0.45 | 0.93 | 0.24 | ||||||
2019 | 22,393 | 22,399.59 | 0.03 | 32,545.43 | 32,573.61 | 0.09 | 7687.25 | 7688.52 | 0.02 |
2020 | 24,660 | 23,227.84 | 5.81 | 32,782.76 | 32,863.65 | 0.25 | 7621.87 | 7921.13 | 3.93 |
MAPE (%) | 2.92 | 0.17 | 1.97 |
Year | Jiangxi | Shanxi | Jiangsu | ||||||
---|---|---|---|---|---|---|---|---|---|
Actual Values | Predicted Values | APE (%) | Actual Values | Predicted Values | APE (%) | Actual Values | Predicted Values | APE (%) | |
2011 | 6847.1 | 6847.10 | 0.00 | 9107.48 | 9107.48 | 0.00 | 27,588.97 | 27,588.97 | 0.00 |
2012 | 7148.3 | 7148.31 | 0.00 | 9914.53 | 9907.32 | 0.07 | 28,849.84 | 28,849.84 | 0.00 |
2013 | 7582.9 | 7580.86 | 0.03 | 10,610.48 | 10,610.48 | 0.00 | 29,205.38 | 29,116.50 | 0.30 |
2014 | 8055.4 | 8004.84 | 0.63 | 11,222.46 | 11,230.59 | 0.07 | 29,863.03 | 29,863.03 | 0.00 |
2015 | 8423.4 | 8392.66 | 0.36 | 11,745.93 | 11,724.41 | 0.18 | 30,374.14 | 30,536.53 | 0.53 |
2016 | 8730.1 | 8728.31 | 0.02 | 12,146.47 | 12,149.15 | 0.02 | 31,209.71 | 31,068.76 | 0.45 |
2017 | 8971.9 | 9021.68 | 0.55 | 12,548.52 | 12,540.25 | 0.07 | 31,602.09 | 31,476.99 | 0.40 |
2018 | 9285.7 | 9285.79 | 0.00 | 12,900.38 | 12,900.38 | 0.00 | 31,635.20 | 31,742.77 | 0.34 |
MAPE (%) | 0.23 | 0.06 | 0.29 | ||||||
2019 | 9665.2 | 9428.89 | 2.44 | 13,748.06 | 13,334.61 | 1.06 | 32,525.97 | 31,886.42 | 1.97 |
2020 | 9808.6 | 9313.77 | 5.04 | 13,512.26 | 13,958.43 | 3.30 | 32,672.49 | 31,924.92 | 2.29 |
MAPE (%) | 3.74 | 2.18 | 2.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zhang, F. Grey Multivariable Prediction Model of Energy Consumption with Different Fractional Orders. Sustainability 2022, 14, 16426. https://doi.org/10.3390/su142416426
Sun Y, Zhang F. Grey Multivariable Prediction Model of Energy Consumption with Different Fractional Orders. Sustainability. 2022; 14(24):16426. https://doi.org/10.3390/su142416426
Chicago/Turabian StyleSun, Yijue, and Fenglin Zhang. 2022. "Grey Multivariable Prediction Model of Energy Consumption with Different Fractional Orders" Sustainability 14, no. 24: 16426. https://doi.org/10.3390/su142416426
APA StyleSun, Y., & Zhang, F. (2022). Grey Multivariable Prediction Model of Energy Consumption with Different Fractional Orders. Sustainability, 14(24), 16426. https://doi.org/10.3390/su142416426