Submodule Fault-Tolerant Strategy for Modular Multilevel Converter with Scalable Control Structure
Abstract
:1. Introduction
2. MMC Structure and Operational Principle
3. Proposed Control Method for MMC Systems
3.1. System-Level Control
3.2. Local Controller
3.3. RSM Controller
4. Validation Results
4.1. Study System
4.2. Performance Validation under Normal Conditions
4.3. Performance Validation under Power Reversal
4.4. Performance Validation under SM(s) Failure in One Set
4.5. Performance Validation under SM Failures in Multiple Sets
4.6. Reliability Evaluation of MMC System
- The switching devices (e.g., semiconductor devices) are only considered because they have higher failure potential than any other components in the SM, such as the capacitor.
- In the case of any switch failure in an SM, the whole SM will be removed from the MMC system and replaced with an RSM.
- The entire MMC system will shut down when the number of faulty SMs per arm exceeds the number of RSMs.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
MMC | Modular Multilevel Converter |
SM | Sub-Module |
Arm inductor | |
Upper arm current of a phase | |
Differential current of the MMC | |
Reference voltage for upper arm | |
Reference AC side voltage | |
Number of RSM | |
n | Number of sets per MMC arm |
AC grid-side current | |
RSM | Redundant SM |
Circulating current | |
Lower arm current of a phase | |
Induced Differential Voltage | |
Reference voltage for lower arm | |
DC bus voltage | |
N | Number of SMs per set |
CVB | Capacitor voltage balancing |
References
- Debnath, S.; Qin, J.; Bahrani, B.; Saeedifard, M.; Barbosa, P. Operation, Control, and Applications of the Modular Multilevel Converter: A Review. IEEE Trans. Power Electron. 2015, 30, 37–53. [Google Scholar] [CrossRef]
- Kish, G.J.; Ranjram, M.; Lehn, P.W. A Modular Multilevel DC/DC Converter with Fault Blocking Capability for HVDC Interconnects. IEEE Trans. Power Electron. 2015, 30, 148–162. [Google Scholar] [CrossRef]
- Cui, S.; Jung, J.J.; Lee, Y.; Sul, S.K. A Novel Control Strategy of a Modular Multilevel Converter (MMC) Based VSC-HVDC Transmission System. In Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015; pp. 972–979. [Google Scholar]
- Hu, P.; Jiang, D.; Zhou, Y.; Liang, Y.; Guo, J.; Lin, Z. Energy-Balancing Control Strategy for Modular Multilevel Converters Under Submodule Fault Conditions. IEEE Trans. Power Electron. 2014, 29, 5021–5030. [Google Scholar] [CrossRef]
- Wang, J.; Ma, H.; Bai, Z. A Submodule Fault Ride-Through Strategy for Modular Multilevel Converters With Nearest Level Modulation. IEEE Trans. Power Electron. 2018, 33, 1597–1608. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.; Yang, R.; Xu, R.; Xu, D.; Wang, W. Seamless Transition Control for Modular Multilevel Converters When Inserting a Cold-Reserve Redundant Submodule. IEEE Trans. Power Electron. 2015, 30, 4052–4057. [Google Scholar] [CrossRef]
- Deng, F.; Tian, Y.; Zhu, R.; Chen, Z. Fault-Tolerant Approach for Modular Multilevel Converters Under Submodule Faults. IEEE Trans. Ind. Electron. 2016, 63, 7253–7263. [Google Scholar] [CrossRef]
- Li, K.; Yuan, L.; Zhao, Z.; Lu, S.; Zhang, Y. Fault-Tolerant Control of MMC With Hot Reserved Submodules Based on Carrier Phase Shift Modulation. IEEE Trans. Power Electron. 2017, 32, 6778–6791. [Google Scholar] [CrossRef]
- Farias, J.V.M.; Cupertino, A.F.; Pereira, H.A.; Junior, S.I.S.; Teodorescu, R. On the Redundancy Strategies of Modular Multilevel Converters. IEEE Trans. Power Deliv. 2018, 33, 851–860. [Google Scholar] [CrossRef]
- Farzamkia, S.; Iman-Eini, H.; Noushak, M.; Hadizadeh, A. Improved Fault-Tolerant Method for Modular Multilevel Converters by Combined DC and Neutral-Shift Strategy. IEEE Trans. Ind. Electron. 2019, 66, 2454–2462. [Google Scholar] [CrossRef]
- Tu, P.; Yang, S.; Wang, P. Reliability and Cost Based Redundancy Design for Modular Multilevel Converter. IEEE Trans. Ind. Electron. 2018, 66, 2333–2342. [Google Scholar] [CrossRef]
- Li, B.; Xu, Z.; Ding, J.; Xu, D. Fault-Tolerant Control of Medium-Voltage Modular Multilevel Converters With Minimum Performance Degradation Under Submodule Failures. IEEE Access 2018, 6, 11772–11781. [Google Scholar] [CrossRef]
- Wang, J.; Tang, Y. A Fault-Tolerant Operation Method for Medium Voltage Modular Multilevel Converters with Phase-Shifted Carrier Modulation. IEEE Trans. Power Electron. 2019, 34, 9459–9470. [Google Scholar] [CrossRef]
- Son, G.T.; Lee, H.-J.; Nam, T.S.; Chung, Y.-H.; Lee, U.-H.; Baek, S.-T.; Hur, K.; Park, J.-W. Design and Control of a Modular Multilevel HVDC Converter With Redundant Power Modules for Noninterruptible Energy Transfer. IEEE Trans. Power Deliv. 2012, 27, 1611–1619. [Google Scholar] [CrossRef]
- Li, W.; Gregoire, L.-A.; Belanger, J. A Modular Multilevel Converter Pulse Generation and Capacitor Voltage Balance Method Optimized for FPGA Implementation. IEEE Trans. Ind. Electron. 2015, 62, 2859–2867. [Google Scholar] [CrossRef]
- Qin, J.; Saeedifard, M. Reduced Switching-Frequency Voltage-Balancing Strategies for Modular Multilevel HVDC Converters. IEEE Trans. Power Deliv. 2013, 28, 2403–2410. [Google Scholar] [CrossRef]
- Gutierrez, B.; Kwak, S.-S. Modular Multilevel Converters (MMCs) Controlled by Model Predictive Control With Reduced Calculation Burden. IEEE Trans. Power Electron. 2018, 33, 9176–9187. [Google Scholar] [CrossRef]
- Huang, J.; Yang, B.; Guo, F.; Wang, Z.; Tong, X.; Zhang, A.; Xiao, J. Priority Sorting Approach for Modular Multilevel Converter Based on Simplified Model Predictive Control. IEEE Trans. Ind. Electron. 2018, 65, 4819–4830. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, Y.; Teo, K.H.; Saeedifard, M.; Harley, R.G. Optimized Control of the Modular Multilevel Converter Based on Space Vector Modulation. IEEE Trans. Power Electron. 2018, 33, 5697–5711. [Google Scholar] [CrossRef]
- Mathe, L.; Burlacu, P.D.; Teodorescu, R. Control of a Modular Multilevel Converter With Reduced Internal Data Exchange. IEEE Trans. Ind. Inform. 2017, 13, 248–257. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Y.; Cong, W.; Lei, W. Grouping-Sorting-Optimized Model Predictive Control for Modular Multilevel Converter With Reduced Computational Load Model Predictive Control for Modular Multilevel Converter With Reduced Computational Load. IEEE Trans. Power Electron. 2016, 31, 1896–1907. [Google Scholar] [CrossRef]
- Wang, H.; Yang, S.; Chen, H.; Feng, X.; Blaabjerg, F. Synchronization for an MMC Distributed Control System Considering Disturbances Introduced by Sub-Module Asynchrony. IEEE Trans. Power Electron. 2020, 35, 12834–12845. [Google Scholar] [CrossRef]
- Yang, S.; Tang, Y.; Wang, P. Distributed Control for a Modular Multilevel Converter. IEEE Trans. Power Electron. 2018, 33, 5578–5591. [Google Scholar] [CrossRef]
- Isik, S.; Alharbi, M.; Bhattacharya, S. Comprehensive Analysis of the Control Structures for MMC Applications. In Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 10–14 October 2021; pp. 2459–2466. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, D.; Hu, P.; Guo, J.; Liang, Y.; Lin, Z. A Prototype of Modular Multilevel Converters. IEEE Trans. Power Electron. 2014, 29, 3267–3278. [Google Scholar] [CrossRef]
- Joshi, S.D.; Ghat, M.B.; Shukla, A.; Chandorkar, M.C. Improved Balancing and Sensing of Submodule Capacitor Voltages in Modular Multilevel Converter. IEEE Trans. Ind. Appl. 2021, 57, 537–548. [Google Scholar] [CrossRef]
- Alharbi, M.; Bhattacharya, S. Scale-up Methodology of a Modular Multilevel Converter for HVDC Applications. IEEE Trans. Ind. Appl. 2019, 55, 4974–4983. [Google Scholar] [CrossRef]
- Alharbi, M.; Isik, S.; Bhattacharya, S. A Novel Submodule Level Fault-Tolerant Approach for MMC With Integrated Scale-Up Architecture. IEEE J. Emerg. Sel. Top. Ind. Electron. 2021, 2, 343–352. [Google Scholar] [CrossRef]
- Tu, Q.; Xu, Z.; Xu, L. Reduced Switching-Frequency Modulation and Circulating Current Suppression for Modular Multilevel Converters. IEEE Trans. Power Deliv. 2011, 26, 2009–2017. [Google Scholar] [CrossRef]
- Song, Y.; Wang, B. Analysis and Experimental Verification of a Fault-Tolerant HEV Powertrain. IEEE Trans. Power Electron. 2013, 28, 5854–5864. [Google Scholar] [CrossRef]
Control Structure | Central | Distributed | ||
---|---|---|---|---|
[15,16,17,18,19,20,21] | [22,23,24,25,26,27] | [28] | Proposed Method | |
Scalability and flexibility | Low | Medium | High | High |
Communication burden | High | Low | Low | Low |
Computational burden | High | Low | Low | Low |
Reliability | High | Low | Medium | High |
Parameter | Value |
---|---|
Rated Power | 100 MVA |
Rated DC voltage | 100 kV |
AC grid voltage | 55 kV |
Fundamental frequency | 60 Hz |
Number of SMs per arm (N × n) | 16 × 3 = 48 |
Number of RSMs per arm (NR) | 6 |
Capacitance of SM | 6.8 mF |
Capacitor rated voltage | 2.08 kV |
Arm inductance | 10 mH |
Cases | Number of Faulty SMs | ||
---|---|---|---|
Set 1 | Set 2 | Set 3 | |
Normal Conditions (Section 4.2) | None | None | None |
Power Reversal (Section 4.3) | None | None | None |
SM(s) Failure in a Single Set (Section 4.4) | 2 SMs at t = 0.2 s and t = 0.4 s | None | None |
SM Failures in Multiple Sets (Section 4.5) | 2 SMs at t = 0.05 s | 2 SMs at t = 0.05 s | 2 SMs at t = 0.05 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, M.; Isik, S.; Bhattacharya, S. Submodule Fault-Tolerant Strategy for Modular Multilevel Converter with Scalable Control Structure. Sustainability 2022, 14, 16445. https://doi.org/10.3390/su142416445
Alharbi M, Isik S, Bhattacharya S. Submodule Fault-Tolerant Strategy for Modular Multilevel Converter with Scalable Control Structure. Sustainability. 2022; 14(24):16445. https://doi.org/10.3390/su142416445
Chicago/Turabian StyleAlharbi, Mohammed, Semih Isik, and Subhashish Bhattacharya. 2022. "Submodule Fault-Tolerant Strategy for Modular Multilevel Converter with Scalable Control Structure" Sustainability 14, no. 24: 16445. https://doi.org/10.3390/su142416445
APA StyleAlharbi, M., Isik, S., & Bhattacharya, S. (2022). Submodule Fault-Tolerant Strategy for Modular Multilevel Converter with Scalable Control Structure. Sustainability, 14(24), 16445. https://doi.org/10.3390/su142416445