Fishmeal Replacement by Full-Fat and Defatted Hermetia illucens Prepupae Meal in the Diet of Gilthead Seabream (Sparus aurata)
Abstract
:1. Introduction
2. Materials and Methods
2.1. H. illucens Meal
2.2. Experimental Diets
2.3. Feeding Trials I and II
2.4. Sampling
2.5. Proximate Composition
2.6. Calculation of Growth and Nutritional Indices
2.7. Statistical Analysis
3. Results
3.1. Fish Growth and Feed Efficiency
3.2. Proximate Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gasco, L.; Gai, F.; Maricchiolo, G.; Genovese, L.; Ragonese, S.; Bottari, T.; Caruso, G. Fish meal alternative protein sources for aquaculture feeds. In Feeds for the Aquaculture Sector–Current Situation and Alternative Sources; Gasco, L., Gai, F., Maricchiolo, G., Genovese, L., Ragonese, S., Bottari, T., Caruso, G., Eds.; Springer Briefs in Molecular Science, Lightning Source UK Ltd.: Cham, Switzerland, 2018; pp. 1–28. [Google Scholar] [CrossRef]
- Gasco, L.; Biancarosa, I.; Liland, N.S. From waste to feed: A review of recent knowledge on insects as producers of protein and fat for animal feeds. Curr. Opin. Green Sustain. Chem. 2020, 23, 67–79. [Google Scholar] [CrossRef]
- Tran, H.Q.; Nguyen, T.T.; Prokešová, M.; Gebauer, T.; Doan, H.V.; Stejskal, V. Systematic review and meta-analysis of production performance of aquaculture species fed dietary insect meals. Rev. Aquac. 2022, 14, 1637–1655. [Google Scholar] [CrossRef]
- van Huis, A. Insects as food and feed, a new emerging agricultural sector: A review. J. Insects Food Feed. 2020, 6, 27–44. [Google Scholar] [CrossRef] [Green Version]
- Gasco, L.; Lock, E.-J.; Ji, H. Introducing the special issue “Application of insect ingredients in sustainable aquaculture”. J. Insects Food Feed. 2022, 8, 1169–1172. [Google Scholar] [CrossRef]
- Van Huis, A.; Oonincx, D.G.A.B. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef] [Green Version]
- Tran, H.Q.; Doan, H.V.; Stejskal, V. Environmental consequences of using insect meal as an ingredient in aquafeeds: A systematic view. Rev. Aquac. 2022, 14, 237–251. [Google Scholar] [CrossRef]
- Salomone, R.; Saija, G.; Mondello, G.; Giannetto, A.; Fasulo, S.; Savastano, D. Environmental impact of food waste bioconversion by insects: Application of life cycle assessment to process using Hermetia illucens. J. Clean Prod. 2017, 140, 890–905. [Google Scholar] [CrossRef]
- Maiolo, S.; Cristiano, S.; Gonella, F.; Pastres, R. Ecological sustainability of aquafeed: An emergy assessment of novel or underexploited ingredients. J. Clean Prod. 2021, 294, 126266. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed. Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed. Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Nogales-Mérida, S.; Gobbi, P.; Józefiak, D.; Mazurkiewicz, J.; Dudek, K.; Rawski, M.; Kierończyk, B.; Józefiak, A. Insect meals in fish nutrition. Rev. Aquac. 2018, 11, 1080–1103. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Muros, M.-J.; Barroso, F.G.; Manzano-Agugliaro, F. Insect meal as renewable source of food for animal feeding: A review. J. Clean. Prod. 2014, 65, 16–27. [Google Scholar] [CrossRef]
- Müller, A.; Wolf, D.; Gutzeit, H.O. The black soldier fly, Hermetia illucens—A promising source for sustainable production of proteins, lipids and bioactive substances. Z. Nat. C. 2017, 72, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Finke, M.D. Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth. Zoo Biol. 2015, 34, 554–564. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; Finke, M.D. Nutritional value of insects and ways to manipulate their composition. J. Insects Food Feed. 2021, 7, 639–659. [Google Scholar] [CrossRef]
- Borgogno, M.; Dinnella, C.; Iaconisi, V.; Fusi, R.; Scarpaleggia, C.; Schiavone, A.; Monteleone, E.; Gasco, L.; Parisi, G. Inclusion of Hermetia illucens larvae meal on rainbow trout (Oncorhynchus mykiss) feed: Effect on sensory profile according to static and dynamic evaluations. J. Sci. Food Agric. 2017, 97, 3402–3411. [Google Scholar] [CrossRef]
- St-Hilaire, S.; Cranfill, K.; McGuire, M.A.; Mosley, E.E.; Tomberlin, J.K.; Newton, L.; Sealey, W.; Sheppard, C.; Irving, S. Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. J. World Aquacult. Soc. 2007, 38, 309–313. [Google Scholar] [CrossRef]
- Liland, N.S.; Biancarosa, I.; Araujo, P.; Biemans, D.; Bruckner, C.G.; Waagbø, R.; Torstensen, B.E.; Lock, E.J. Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLoS ONE 2017, 12, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, D.P.; Ameixa, O.M.C.C.; Vázquez, J.A.; Calado, R. Improving the lipid profile of black soldier fly (Hermetia illucens) Larvae for Marine Aquafeeds: Current state of knowledge. Sustainability 2022, 14, 6472. [Google Scholar] [CrossRef]
- Gasco, L.; Józefiak, A.; Henry, M. Beyond the protein concept: Health aspects of using edible insects on animals. J. Insects Food Feed. 2021, 7, 715–741. [Google Scholar] [CrossRef]
- Henry, M.A.; Golomazou, E.; Asimaki, A.; Psofakis, P.; Fountoulaki, E.; Mente, E.; Rumbos, C.I.; Athanassiou, C.G.; Karapanagiotidis, I.T. Partial dietary fishmeal replacement with full-fat or defatted superworm (Zophobas morio) larvae meals modulates the innate immune system of gilthead seabream, Sparus aurata. Aquac. Rep. 2022, 27, 101347. [Google Scholar] [CrossRef]
- Veldkamp, T.; Dong, L.; Paul, A.; Govers, C. Bioactive properties of insect products for monogastric animals—A review. J. Insects Food Feed. 2022, 8, 1027–1040. [Google Scholar] [CrossRef]
- Smetana, S.; Schmitt, E.; Mathys, A. Sustainable use of Hermetia illucens insect biomass for feed and food: Attributional and consequential life cycle assessment. Resour. Conserv. Recycl. 2019, 144, 285–296. [Google Scholar] [CrossRef]
- Mohan, K.; Karthick Rajan, D.; Muralisankar, T.; Ganesan, A.R.; Sathishkumar, P.; Revathi, N. Use of black soldier fly (Hermetia illucens L.) larvae meal in aquafeeds for a sustainable aquaculture industry: A review of past and future needs. Aquaculture 2022, 553, 738095. [Google Scholar] [CrossRef]
- Gasco, L.; Caimi, C.; Trocino, A.; Lussiana, C.; Bellezza Oddon, S.; Malfatto, V.; Anedda, R.; Serra, G.; Biasato, I.; Schiavone, A.; et al. Digestibility of defatted insect meals for rainbow trout aquafeeds. J. Insects Food Feed. 2022, 11, 1385–1399. [Google Scholar] [CrossRef]
- Mastoraki, M.; Panteli, N.; Kotzamanis, Y.P.; Gasco, L.; Antonopoulou, E.; Chatzifotis, S. Nutrient digestibility of diets containing five different insect meals in gilthead sea bream (Sparus aurata) and European sea bass (Dicentrarchus labrax). Anim. Feed. Sci. Technol. 2022, 292, 115425. [Google Scholar] [CrossRef]
- Lock, E.R.; Arsiwalla, T.; Waagbø, R. Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquac. Nutr. 2016, 22, 1202–1213. [Google Scholar] [CrossRef]
- Belghit, I.; Liland, N.S.; Gjesdal, P.; Biancarosa, I.; Menchetti, E.; Li, Y.; Waagbø, R.; Krogdahl, Å.; Lock, E.J. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture 2019, 503, 609–619. [Google Scholar] [CrossRef]
- Agbohessou, P.S.; Mandiki, S.N.M.; Gougbédji, A.; Megido, R.C.; Hossain, M.S.; De Jaeger, P.; Larondelle, Y.; Francis, F.; Lalèyè, P.A.; Kestemont, P. Total replacement of fish meal by enriched-fatty acid Hermetia illucens meal did not substantially affect growth parameters or innate immune status and improved whole body biochemical quality of Nile tilapia juveniles. Aquac. Nutr. 2021, 27, 880–896. [Google Scholar] [CrossRef]
- Tippayadara, N.; Dawood, M.A.O.; Krutmuang, P.; Hoseinifar, S.H.; Van Doan, H.; Paolucci, M. Replacement of fish meal by Black soldier fly (Hermetia illucens) larvae meal: Effects on growth, haematology, and skin mucus immunity of Nile Tilapia, Oreochromis niloticus. Animals 2021, 11, 193. [Google Scholar] [CrossRef]
- Zhou, J.S.; Liu, S.S.; Ji, H.; Yu, H.B. Effect of replacing dietary fish meal with black soldier fly larvae meal on growth and fatty acid composition of Jian carp (Cyprinus carpio var. Jian). Aquac. Nutr. 2017, 24, 424–433. [Google Scholar] [CrossRef]
- Xu, X.; Ji, H.; Yu, H.; Zhou, J. Influence of dietary black soldier fly (Hermetia illucens Linnaeus) pulp on growth performance, antioxidant capacity and intestinal health of juvenile mirror carp (Cyprinus carpio var. specularis). Aquac. Nutr. 2019, 26, 432–443. [Google Scholar] [CrossRef]
- Lanes, C.F.C.; Pedron, F.A.; Bergamin, G.T.; Bitencourt, A.L.; Dorneles, B.E.R.; Villanova, J.C.V.; Savastano, D. Black Soldier Fly (Hermetia illucens) larvae and prepupae defatted meals in diets for zebrafish (Danio rerio). Animals 2021, 11, 720. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ji, H.; Zhang, B.; Zhou, J.; Yu, H. Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile Jian carp (Cyprinus carpio var. Jian): Growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas histological structure. Aquaculture 2017, 477, 62–70. [Google Scholar] [CrossRef]
- St-Hilaire, S.; Sheppard, C.; Tomberlin, J.K.; Irving, S.; Newton, L.; McGuire, M.A.; Sealey, W. Fly prepupae as a feedstuff for rainbow trout, Oncorhynchus mykiss. J. World Aquacult. Soc. 2007, 38, 59–67. [Google Scholar] [CrossRef]
- Sealey, W.M.; Gaylord, T.G.; Barrows, F.T.; Tomberlin, J.K.; McGuire, M.A.; Ross, C.; St-Hilaire, S. Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. J. World Aquacult. Soc. 2011, 42, 34–45. [Google Scholar] [CrossRef]
- Dumas, A.; Raggi, T.; Barkhouse, J.; Lewis, E.; Weltzien, E. The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture 2018, 492, 24–34. [Google Scholar] [CrossRef]
- Cui, X. Baltic Blue Mussel (Mytilus edulis L.) and Black Soldier fly (Hermetia illucens) Combined with Pea Protein Concentrate as Protein Sources in Feed for Rainbow Trout (Oncorhynchus mykiss). Master’s Thesis, Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2019. Available online: https://stud.epsilon.slu.se/14581/7/__ad.slu.se_common_bibul_slub_Arkiv_AVD_Vet_Kom_Publicering_epsilon_examensarbeten_examensarbeten19_Cui_X_190521.pdf (accessed on 16 November 2022).
- Weththasinghe, P.; Hansen, J.Ø.; Nøkland, D.; Lagos, L.; Rawski, M.; Øverland, M. Full-fat black soldier fly (Hermetia illucens) meal and paste in extruded diets for Atlantic salmon (Salmo salar): Effect on physical pellet quality, nutrient digestibility, nutrient utilization and growth performances. Aquaculture 2021, 530, 735785. [Google Scholar] [CrossRef]
- Adeoye, A.A.; Akegbejo-Samsons, Y.; Fawole, F.J.; Davies, S.J. Preliminary assessment of black soldier fly (Hermetia illucens) larval meal in the diet of African catfish (Clarias gariepinus): Impact on growth, body index, and hematological parameters. J. World Aquacult. Soc. 2020, 51, 1024–1033. [Google Scholar] [CrossRef]
- Hu, J.; Wang, G.; Huang, Y.; Sun, Y.; He, F.; Zhao, H.; Li, N. Effects of substitution of fish meal with black soldier fly (Hermetia illucens) larvae meal, in yellow catfish (Pelteobagrus fulvidraco) diets. Isr. J. Aquacult. Bamidgeh 2017, 69, 1–9. [Google Scholar] [CrossRef]
- Xiao, X.; Jin, P.; Zheng, L.; Cai, M.; Yu, Z.; Yu, J.; Zhang, J. Effects of black soldier fly (Hermetia illucens) larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish (Pelteobagrus fulvidraco). Aquac. Res. 2018, 49, 1569–1577. [Google Scholar] [CrossRef]
- Katya, K.; Borsra, M.Z.S.; Ganesan, D.; Kuppusamy, G.; Herriman, M.; Salter, A.; Ali, S.A. Efficacy of insect larval meal to replace fish meal in juvenile barramundi, Lates calcarifer reared in freshwater. Int. Aquat. Res. 2017, 9, 303–312. [Google Scholar] [CrossRef]
- Caimi, C.; Renna, M.; Lussiana, C.; Bonaldo, A.; Gariglio, M.; Meneguz, M.; Elia, A.C. First insights on Black Soldier Fly (Hermetia illucens L.) larvae meal dietary administration in Siberian sturgeon (Acipenser baerii Brandt) juveniles. Aquaculture 2020, 515, 734539. [Google Scholar] [CrossRef]
- Kroeckel, S.; Harjes, A.G.E.; Roth, I.; Katz, H.; Wuertz, S.; Susenbeth, A.; Schulz, C. When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute—Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture 2012, 364–365, 345–352. [Google Scholar] [CrossRef]
- Cummins, V.C.; Rawles, S.D.; Thompson, K.R.; Velasquez, A.; Kobayashi, Y.; Hager, J.; Webster, C.D. Evaluation of black soldier fly (Hermetia illucens) larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture 2017, 473, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Peng, K.; Hu, J.; Mo, W.; Wei, Z.; Huang, Y. Evaluation of defatted Hermetia illucens larvae meal for Litopenaeus vannamei: Effects on growth performance, nutrition retention, antioxidant and immune response, digestive enzyme activity and hepatic morphology. Aquac. Nutr. 2021, 27, 986–997. [Google Scholar] [CrossRef]
- Sudha, C.; Ahilan, B.; Felix, N.; Uma, A.; Prabu, E. Effects of dietary protein substitution of fishmeal with black soldier fly larval meal on growth and physiological responses of juvenile striped catfish, Pangasianodon hypophthalmus. Aquac. Res. 2022, 53, 2204–2217. [Google Scholar] [CrossRef]
- Takakuwa, F.; Tanabe, R.; Nomura, S.; Inui, T.; Yamada, S.; Biswas, A.; Tanaka, H. Availability of black soldier fly meal as an alternative protein source to fish meal in red sea bream (Pagrus major, Temminck & Schlegel) fingerling diets. Aquac. Res. 2022, 53, 36–49. [Google Scholar] [CrossRef]
- Li, X.; Qin, C.; Fang, Z.; Sun, X.; Shi, H.; Wang, Q.; Zhao, H. Replacing dietary fish meal with defatted black soldier fly (Hermetia illucens) larvae meal affected growth, digestive physiology and muscle quality of tongue sole (Cynoglossus semilaevis). Front. Physiol. 2022, 13, 1–13. [Google Scholar] [CrossRef]
- FAO (Food and Agricultural Organization). Fishery and Aquaculture Statistics. Global Aquaculture Production 1950–2020 (FishStatJ). In: FAO Fisheries and Aquaculture Division [online]. Rome. Available online: www.fao.org/fishery/statistics/software/fishstatj/en (accessed on 16 November 2022).
- Fabrikov, D.; Vargas-García, M.C.; Barroso, F.G.; Sánchez-Muros, M.J.; Cacua Ortíz, S.M.; Morales, A.E.; Cardenete, G.; Tomás-Almenar, C.; Melenchón, F. Effect on intermediary metabolism and digestive parameters of the high substitution of fishmeal with insect meal in Sparus aurata feed. Insects 2021, 12, 965. [Google Scholar] [CrossRef]
- Fabrikov, D.; Barroso, F.G.; Sánchez-Muros, M.J.; Carmen Hidalgo, M.; Cardenete, G.; Tomás-Almenar, C.; Melenchón, F.; Guil-Guerrero, J.L. Effect of feeding with insect meal diet on the fatty acid compositions of sea bream (Sparus aurata), tench (Tinca tinca) and rainbow trout (Oncorhynchus mykiss) fillets. Aquaculture 2021, 545, 737170. [Google Scholar] [CrossRef]
- Fabrikov, D.; Sánchez-Muros, M.J.; Barroso, F.G.; Tomás-Almenar, C.; Melenchón, F.; Carmen Hidalgo, M.; Morales, A.E.; Rodriguez-Rodriguez, M.; Juan Montes-Lopez, M. Comparative study of growth performance and amino acid catabolism in Oncorhynchus mykiss, Tinca tinca and Sparus aurata and the catabolic changes in response to insect meal inclusion in the diet. Aquaculture 2020, 529, 735731. [Google Scholar] [CrossRef]
- Karapanagiotidis, I.T.; Daskalopoulou, E.; Vogiatzis, I.; Rumbos, C.; Mente, E.; Athanassiou, C.G. Substitution of fishmeal by fly Hermetia illucens prepupae meal in the diet of gilthead seabream (Sparus aurata). In Proceedings of the HydroMedit, Volos, Greece, 13–15 November 2014; pp. 110–114. Available online: http://hydromedit2014.apae.uth.gr/images/hydro-14-pro.pdf (accessed on 16 November 2022).
- Moutinho, S.; Oliva-Teles, A.; Martínez-Llorens, S.; Monroig, Ó.; Peres, H. Total fishmeal replacement by defatted Hermetia illucens larvae meal in diets for gilthead seabream (Sparus aurata) juveniles. J. Insects Food Feed 2022, 8, 1455–1468. [Google Scholar] [CrossRef]
- Mastoraki, M.; Katsika, L.; Enes, P.; Guerreiro, Y.; Kotzamanis, Y.P.; Gasco, L.; Chatzifotis, S.; Antonopoulou, E. Insect meals in feeds for juvenile gilthead seabream (Sparus aurata): Effects on growth, blood chemistry, hepatic metabolic enzymes, body composition and nutrient utilization. Aquaculture 2022, 561, 738674. [Google Scholar] [CrossRef]
- Pulido, L.; Secci, G.; Maricchiolo, G.; Gasco, L.; Gai, F.; Serra, A.; Conte, G.; Parisi, G. Effect of dietary black soldier fly larvae meal on fatty acid composition of lipids and sn-2 position of triglycerides of marketable size gilthead sea bream fillets. Aquaculture 2022, 546, 737351. [Google Scholar] [CrossRef]
- Randazzo, B.; Zarantoniello, M.; Cardinaletti, G.; Cerri, R.; Giorgini, E.; Belloni, A.; Contò, M.; Tibaldi, E.; Olivotto, I. Hermetia illucens and poultry by-product meals as alternatives to plant protein sources in gilthead seabream (Sparus aurata) diet: A multidisciplinary study on fish gut status. Animals 2021, 11, 677. [Google Scholar] [CrossRef]
- Pulido-Rodriguez, L.F.; Cardinaletti, G.; Secci, G.; Randazzo, B.; Bruni, L.; Cerri, R.; Olivotto, I.; Tibaldi, E.; Parisi, G. Appetite regulation, growth performances and fish quality are modulated by alternative dietary protein ingredients in gilthead sea bream (Sparus aurata) culture. Animals 2021, 11, 1919. [Google Scholar] [CrossRef]
- Janssen, R.H.; Vincken, J.P.; van den Broek, L.A.M.; Fogliano, V.; Lakemond, C.M.M. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef]
- Boisen, S.; Bech-Andersen, S.; Eggum, B.O. A critical view on the conversion factor 6.25 from total nitrogen to protein. Acta Agric. Scand. 1987, 37, 299–304. [Google Scholar] [CrossRef]
- Kaushik, S.J. Whole body amino acid composition of European seabass (Dicentrarchus labrax), gilthead seabream (Sparus aurata) and turbot (Psetta maxima) with an estimation of their IAA requirement profiles. Aquat. Living Resour. 1998, 11, 355–358. [Google Scholar] [CrossRef] [Green Version]
- Mariotti, F.; Tomé, D.; Patureau-Mirand, P. Converting nitrogen into protein—Beyond 6.25 and Jones’ factors. Crit. Rev. Food Sci. Nutr. 2008, 48, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Finke, M.D. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. 2002, 21, 269–285. [Google Scholar] [CrossRef]
- Rao, P.U. Chemical composition and nutritional evaluation of spent silk worm pupae. J. Agric. Food Chem. 1994, 42, 2201–2203. [Google Scholar] [CrossRef]
- Oteri, M.; Di Rosa, A.R.; Lo Presti, V.; Giarratana, F.; Toscano, G.; Chiofalo, B. Black soldier fly larvae meal as alternative to fish meal for aquaculture feed. Sustainability 2021, 13, 5447. [Google Scholar] [CrossRef]
- Fasakin, E.A.; Balogun, A.M.; Ajayi, O.O. Evaluation of full-fat and defatted maggot meals in the feeding of clariid catfish Clarias gariepinus fingerlings. Aquac. Res. 2003, 34, 733–738. [Google Scholar] [CrossRef]
- Devic, E.; Leschen, W.; Murray, F.; Little, D.C. Growth performance, feed utilization and body composition of advanced nursing Nile tilapia (Oreochromis niloticus) fed diets containing Black Soldier Fly (Hermetia illucens) larvae meal. Aquac. Nutr. 2018, 24, 416–423. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, R.; Sánchez-López, A.; Leal, R.S.; Martínez-Llorens, S.; Oliva-Teles, A.; Peres, H. Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture 2017, 476, 79–85. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Khalil, R.H.; Metwally, A.A.; Shakweer, M.S.; Khallaf, M.A.; Abdel- Latif, H.M.R. Effects of black soldier fly (Hermetia illucens L.) larvae meal on growth performance, organs-somatic indices, body composition, and hemato-biochemical variables of European sea bass, Dicentrarchus labrax. Aquaculture 2020, 522, 735136. [Google Scholar] [CrossRef]
- Fisher, H.J.; Collins, S.A.; Hanson, C.; Mason, B.; Colombo, S.M.; Anderson, D.M. Black soldier fly larvae meal as a protein source in low fish meal diets for Atlantic salmon (Salmo salar). Aquaculture 2020, 521, 734978. [Google Scholar] [CrossRef]
- Panteli, N.; Mastoraki, M.; Lazarina, M.; Chatzifotis, S.; Mente, E.; Kormas, K.A.; Antonopoulou, E. Configuration of gut microbiota structure and potential functionality in two teleosts under the influence of dietary insect meals. Microorganisms 2021, 9, 699. [Google Scholar] [CrossRef]
- Wang, Y.S.; Shelomi, M. Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods 2017, 6, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danieli, P.P.; Lussiana, C.; Gasco, L.; Amici, A.; Ronchi, B. The effects of diet formulation on the yield, proximate composition, and fatty acid profile of the black soldier fly (Hermetia illucens L.) prepupae intended for animal feed. Animals 2019, 9, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melenchón, F.; Larrán, A.M.; de Mercado, E.; Hidalgo, M.C.; Cardenete, G.; Barroso, F.G.; Tomás-Almenar, C. Potential use of black soldier fly (Hermetia illucens) and mealworm (Tenebrio molitor) insectmeals in diets for rainbow trout (Oncorhynchus mykiss). Aquac. Nutr. 2021, 27, 491–505. [Google Scholar] [CrossRef]
- Renna, M.; Schiavone, A.; Gai, F.; Dabbou, S.; Lussiana, C.; Malfatto, V.; Prearo, M.; Capucchio, M.T.; Biasato, I.; Biasibetti, E.; et al. Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J. Anim. Sci. Biotechnol. 2017, 8, 1–13. [Google Scholar] [CrossRef]
- Stadtlander, T.; Stamer, A.; Buser, A.; Wohlfahrt, J.; Leiber, F.; Sandrock, C. Hermetia illucens meal as fish meal replacement for rainbow trout on farm. J. Insects Food Feed. 2017, 3, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Shearer, K.D. Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture 1994, 119, 63–88. [Google Scholar] [CrossRef]
- Karapanagiotidis, I.T. Nutrient Profiles of Tilapia. In Tilapia in Intensive Co-culture; Perschbacher, P.W., Stickney, R.R., Eds.; World Aquaculture Society Book series; John Wiley & Sons: Chichester, UK, 2017; pp. 261–305. [Google Scholar] [CrossRef]
- Ahmed, I.; Jan, K.; Fatma, S.; Dawood, M.A.O. Muscle proximate composition of various food fish species and their nutritional significance: A review. J. Anim. Physiol. Anim. Nutr. 2022, 106, 690–719. [Google Scholar] [CrossRef] [PubMed]
- Bruni, L.; Randazzo, B.; Cardinaletti, G.; Zarantoniello, M.; Mina, F.; Secci, G.; Parisi, G. Dietary inclusion of full-fat Hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss): Lipid metabolism and fillet quality investigations. Aquaculture 2020, 529, 735678. [Google Scholar] [CrossRef]
- Mancini, S.; Medina, I.; Iaconisi, V.; Gai, F.; Basto, A.; Parisi, G. Impact of black soldier fly larvae meal on the chemical and nutritional characteristics of rainbow trout fillets. Animal 2018, 12, 1672–1681. [Google Scholar] [CrossRef]
- Zarantoniello, M.; Zimbelli, A.; Randazzo, B.; Compagni, M.D.; Truzzi, C.; Antonucci, M.; Milanović, V. Black Soldier Fly (Hermetia illucens) reared on roasted coffee by-product and Schizochytrium sp. as a sustainable terrestrial ingredient for aquafeeds production. Aquaculture 2020, 518, 734659. [Google Scholar] [CrossRef]
- Wang, G.; Peng, K.; Hu, J.; Yi, C.; Chen, X.; Wu, H.; Huang, Y. Evaluation of defatted black soldier fly (Hermetia illucens L.) larvae meal as an alternative protein ingredient for juvenile Japanese seabass (Lateolabrax japonicus) diets. Aquaculture 2019, 507, 144–154. [Google Scholar] [CrossRef]
- Fawole, F.J.; Adeoye, A.A.; Tiamiyu, L.O.; Ajala, K.I.; Obadara, S.O.; Ganiyu, I.O. Substituting fishmeal with Hermetia illucens in the diets of African catfish (Clarias gariepinus): Effects on growth, nutrient utilization, haemato-physiological response, and oxidative stress biomarker. Aquaculture 2020, 518, 734849. [Google Scholar] [CrossRef]
- Li, S.; Ji, H.; Zhang, B.; Tian, J.; Zhou, J.; Yu, H. Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture 2016, 465, 43–52. [Google Scholar] [CrossRef]
- Kumar, V.; Fawole, F.J.; Romano, N.; Hossain, M.S.; Labh, S.N.; Overturf, K.; Small, B.C. Insect (black soldier fly, Hermetia illucens) meal supplementation prevents the soybean meal-induced intestinal enteritis in rainbow trout and health benefits of using insect oil. Fish Shell. Immunol. 2021, 109, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Abu Bakar, N.H.; Abdul Razak, S.; Mohd Taufek, N.; Alias, Z. Evaluation of black soldier fly (Hermetia illucens) prepupae oil as meal supplementation in diets for red hybrid tilapia (Oreochromis sp.). Int. J. Trop. Insect Sci. 2021, 41, 2093–2102. [Google Scholar] [CrossRef]
- Shiau, S.-Y.; Yu, Y.-P. Dietary supplementation of chitin and chitosan depresses growth in tilapia, Oreochromis niloticus X O. aureus. Aquaculture 1999, 179, 439–446. [Google Scholar] [CrossRef]
H. illucens Prepupae | H. illucens Full-Fat Meal | H. illucens Defatted Meal | Fishmeal (65%) | Fishmeal (70%) | |
---|---|---|---|---|---|
Moisture (%) | 59.6 | 12.2 | 1.7 | 7.3 | 6.0 |
Crude protein (%) | 15.8 (Kp 6.25) 11.8 (Kp 4.67) | 31.6 (Kp 6.25) 23.6 (Kp 4.67) | 50.6 (Kp 6.25) 37.8 (Kp 4.67) | 65.8 (Kp 6.25) 59.7 (Kp 5.67) | 70.6 (Kp 6.25) 64.0 (Kp 5.67) |
Crude lipid (%) | 9.9 | 27.2 | 3.0 | 8.2 | 7.2 |
Ash (%) | 11.3 | 15.4 | 19.7 | 16.1 | 16.4 |
Gross energy (kJ/g) | 10.0 | 20.9 | 16.2 | 19.8 | 19.1 |
Diets | Feeding Trial I | Feeding Trial II | ||||||
---|---|---|---|---|---|---|---|---|
FF-0 | FF-95 | FF-194 | FF-276 | DF-0 | DF-58 | DF-116 | DF-174 | |
Ingredients (g/kg diet) | ||||||||
Fishmeal (65%) 1 | 450 | 410 | 372 | 340 | - | - | - | - |
Fishmeal (70%) 2 | - | - | - | - | 415 | 374 | 332 | 290 |
H. illuscens meal, full fat | 0 | 95 | 194 | 276 | - | - | - | - |
H. illuscens meal, defatted | - | - | - | - | 0 | 58 | 116 | 174 |
Corn gluten | 260 | 260 | 260 | 260 | 260 | 266 | 271 | 276 |
Wheat meal | 150 | 100 | 45 | 0 | 178 | 147 | 118 | 89 |
Fish oil 3 | 120 | 115 | 109 | 104 | 133 | 141 | 149 | 157 |
Vitamins & minerals, premix 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
MCP | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Choline | 3 | 3 | 3 | 3 | - | - | - | - |
Methionine | 2 | 2 | 2 | 2 | - | - | - | - |
Lysine | 1 | 1 | 1 | 1 | - | - | - | - |
Vitamin Ε | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Vitamin C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Anti-moulting agent | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Proximate composition (% as fed) | ||||||||
Dry matter | 88.8 | 88.7 | 88.6 | 88.5 | 91.4 | 91.2 | 91.1 | 91.3 |
Total dietary nitrogen (N) 5 | 7.52 | 7.52 | 7.57 | 7.60 | 7.43 | 7.55 | 7.61 | 7.62 |
Crude protein (N × 6.25) | 47.0 | 47.0 | 47.3 | 47.5 | 46.4 | 47.2 | 47.6 | 47.6 |
Crude protein (estimated) 6 | 42.1 | 41.4 | 40.9 | 40.5 | 41.8 | 42.0 | 41.8 | 41.4 |
Crude lipid | 15.2 | 17.2 | 19.2 | 21.5 | 20.7 | 19.4 | 18.9 | 18.5 |
Crude carbohydrate 7 | 19.6 | 16.2 | 12.5 | 8.9 | 16.3 | 14.1 | 14.0 | 13.9 |
Ash | 7.0 | 8.3 | 9.6 | 10.7 | 7.9 | 10.5 | 10.6 | 11.3 |
Gross energy (MJ/kg) | 21.3 | 21.5 | 21.6 | 21.8 | 21.9 | 21.6 | 21.6 | 21.8 |
FF-0 | FF-95 | FF-194 | FF-276 | |
---|---|---|---|---|
Survival (%) | 95.6 ± 7.7 | 90.0 ± 14.1 | 84.4 ± 13.9 | 86.7 ± 7.1 |
VFI (% BW/day) | 2.69 ± 0.08 | 2.55 ± 0.01 | 2.66 ± 0.04 | 2.65 ± 0.02 |
FC (g/fish) | 17.92 ± 1.51 a | 12.40 ± 0.75 b | 12.36 ± 1.30 b | 11.59 ± 1.25 b |
IBW (g) | 1.47 ± 0.00 | 1.47 ± 0.02 | 1.47 ± 0.00 | 1.48 ± 0.01 |
FBW (g) | 17.59 ± 1.96 a | 12.41 ± 0.15 b | 11.91 ± 1.20 b | 11.01 ± 1.38 b |
TL (cm) | 11.12 ± 0.34 a | 9.58 ± 0.16 b | 9.40 ± 0.23 b | 9.24 ± 0.42 b |
WG (g/fish) | 16.12 ± 1.96 a | 10.94 ± 0.15 b | 10.44 ± 1.19 b | 9.53 ± 1.39 b |
SGR (%/day) | 3.54 ± 0.16 a | 3.05 ± 0.20 b | 2.99 ± 0.14 b | 2.86 ± 0.18 b |
FCR | 1.12 ± 0.05 | 1.13 ± 0.01 | 1.18 ± 0.01 | 1.22 ± 0.04 |
PER 1 | 2.13 ± 0.10 | 2.13 ± 0.02 | 2.06 ± 0.02 | 2.03 ± 0.07 |
Protein retention (%) 1 | 34.43 ± 1.48 a | 33.70 ± 0.26 ab | 32.59 ± 0.20 ab | 30.80 ± 1.01 b |
Lipid retention (%) | 45.46 ± 1.83 a | 38.81 ± 0.87 b | 33.83 ± 0.85 c | 26.79 ± 0.72 d |
HSI (%) | 1.67 ± 0.07 a | 2.46 ± 0.14 b | 2.17 ± 0.15 b | 2.22 ± 0.14 b |
VSI (%) | 6.00 ± 0.29 a | 8.77 ± 0.75 ab | 8.39 ± 1.24 ab | 9.72 ± 0.90 b |
CF | 1.27 ± 0.02 | 1.29 ± 0.01 | 1.28 ± 0.00 | 1.30 ± 0.01 |
DF-0 | DF-58 | DF-116 | DF-174 | |
---|---|---|---|---|
Survival (%) | 96.7 ± 5.8 | 90.0 ± 17.3 | 93.3 ± 7.6 | 70.0 ± 13.2 |
VFI (% BW/day) | 2.11 ± 0.09 ab | 2.09 ± 0.03 ab | 2.22 ± 0.11 a | 1.77 ± 0.19 b |
FC (g/fish) | 9.25 ± 0.53 a | 9.70 ± 0.13 ab | 10.19 ± 0.16 a | 5.03 ± 0.36 b |
IBW (g) | 2.40 ± 0.02 | 2.40 ±0.01 | 2.41 ±0.01 | 2.40 ±0.01 |
FBW (g) | 10.12 ± 0.20 a | 10.83 ± 0.26 a | 10.72 ± 0.44 a | 5.76 ± 0.23 b |
TL (cm) | 8.85 ± 0.09 a | 9.03 ± 0.34 a | 9.08 ± 0.29 a | 7.51 ± 0.12 b |
WG (g/fish) | 7.73 ± 0.18 a | 8.42 ± 0.26 a | 8.31 ± 0.44 a | 3.35 ± 0.24 b |
SGR (%/day) | 2.06 ± 0.02 a | 2.15 ± 0.04 a | 2.14 ± 0.06 a | 1.23 ± 0.07 b |
FCR | 1.20 ± 0.04 a | 1.15 ± 0.03 a | 1.23 ± 0.09 a | 1.60 ± 0.30 b |
PER 1 | 2.00 ± 0.07 a | 2.07 ± 0.05 a | 2.00 ± 0.05 a | 1.59 ± 0.22 b |
Protein retention (%) 1 | 33.83 ± 1.28 a | 37.28 ± 0.82 a | 35.27 ± 2.30 a | 31.01 ± 2.94 b |
Lipid retention (%) | 43.62 ± 1.74 a | 48.30 ± 0.88 a | 48.18 ± 2.82 a | 14.01 ± 1.87 b |
HSI (%) | 2.05 ± 0.17 a | 2.17 ± 0.22 a | 2.15 ± 0.21 a | 1.28 ± 0.32 b |
CF | 1.46 ± 0.05 a | 1.47 ± 0.05 a | 1.48 ± 0.05 a | 1.35 ± 0.01 b |
FF-0 | FF-95 | FF-194 | FF-276 | |
---|---|---|---|---|
Whole body | ||||
Moisture (% of wet weight) | 72.57 ± 2.69 | 73.60 ± 2.68 | 73.36 ± 0.97 | 74.07 ± 1.85 |
Crude protein (%) | 58.04 ± 3.84 | 58.58 ± 3.95 | 57.63 ± 3.39 | 57.13 ± 2.84 |
Crude lipid (%) | 25.90 ± 2.88 | 26.55 ± 3.77 | 26.86 ± 1.87 | 25.11 ± 2.74 |
Ash (%) | 14.06 ± 1.08 | 14.22 ± 1.16 | 14.02 ± 1.67 | 14.61 ± 1.34 |
Gross energy (kJ/g) | 23.52 ± 0.98 | 24.15 ± 1.14 | 24.05 ± 0.76 | 23.25 ± 0.98 |
Muscle tissue | ||||
Moisture (% of wet weight) | 76.59 ± 0.36 | 76.90 ± 0.74 | 76.89 ± 0.61 | 76.26 ± 0.78 |
Crude protein (%) | 79.47 ± 2.67 | 79.49 ± 1.14 | 79.73 ± 1.63 | 77.64 ± 0.76 |
Crude lipid (%) | 8.88 ± 1.31 a | 10.93 ± 1.2 ab | 10.26 ± 1.59 ab | 11.67 ± 0.54 b |
Ash (%) | 8.95 ± 0.34 | 8.08 ± 0.43 | 8.21 ± 0.31 | 8.69 ± 0.28 |
Gross energy (kJ/g) | 22.66 ± 0.12 a | 23.26 ± 0.10 b | 23.11 ± 0.11 b | 23.20 ± 0.11 b |
DF-0 | DF-58 | DF-116 | DF-174 | |
---|---|---|---|---|
Whole body | ||||
Moisture (% of wet weight) | 67.95 ± 0.27 a | 67.42 ± 0.35 a | 68.43 ± 0.20 a | 72.01 ± 1.61 b |
Crude protein (%) | 51.42 ± 0.71 a | 53.36 ± 0.96 a | 53.88 ± 2.04 a | 63.08 ± 2.95 b |
Crude lipid (%) | 27.90 ± 0.90 a | 27.79 ± 0.28 a | 29.52 ± 1.09 a | 12.62 ± 0.98 b |
Ash (%) | 15.23 ± 0.23 a | 15.28 ± 0.37 a | 14.39 ± 0.45 a | 22.57 ± 0.13 b |
Gross energy (kJ/g) | 24.06 ± 0.42 a | 23.24 ± 0.28 a | 24.04 ± 0.44 a | 18.47 ± 0.35 b |
Muscle tissue | ||||
Moisture (% of wet weight) | 74.72 ± 0.27 | 74.95 ± 0.75 | 74.57 ± 0.76 | 75.69 ± 0.28 |
Crude protein (%) | 71.70 ± 1.00 a | 74.14 ± 2.61 ab | 74.57 ± 1.48 ab | 76.96 ± 0.88 b |
Crude lipid (%) | 21.62 ± 0.58 a | 18.95 ± 1.97 b | 18.88 ± 0.64 b | 15.67 ± 0.23 b |
Ash (%) | 6.55 ± 0.13 a | 6.61 ± 0.14 a | 6.46 ± 0.05 a | 7.28 ± 0.06 c |
Gross energy (kJ/g) | 25.13 ± 0.06 a | 24.98 ± 0.05 b | 24.88 ± 0.04 b | 23.90 ± 0.04 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karapanagiotidis, I.T.; Neofytou, M.C.; Asimaki, A.; Daskalopoulou, E.; Psofakis, P.; Mente, E.; Rumbos, C.I.; Athanassiou, C.G. Fishmeal Replacement by Full-Fat and Defatted Hermetia illucens Prepupae Meal in the Diet of Gilthead Seabream (Sparus aurata). Sustainability 2023, 15, 786. https://doi.org/10.3390/su15010786
Karapanagiotidis IT, Neofytou MC, Asimaki A, Daskalopoulou E, Psofakis P, Mente E, Rumbos CI, Athanassiou CG. Fishmeal Replacement by Full-Fat and Defatted Hermetia illucens Prepupae Meal in the Diet of Gilthead Seabream (Sparus aurata). Sustainability. 2023; 15(1):786. https://doi.org/10.3390/su15010786
Chicago/Turabian StyleKarapanagiotidis, Ioannis T., Marina C. Neofytou, Adamantia Asimaki, Evanthia Daskalopoulou, Pier Psofakis, Eleni Mente, Christos I. Rumbos, and Christos G. Athanassiou. 2023. "Fishmeal Replacement by Full-Fat and Defatted Hermetia illucens Prepupae Meal in the Diet of Gilthead Seabream (Sparus aurata)" Sustainability 15, no. 1: 786. https://doi.org/10.3390/su15010786
APA StyleKarapanagiotidis, I. T., Neofytou, M. C., Asimaki, A., Daskalopoulou, E., Psofakis, P., Mente, E., Rumbos, C. I., & Athanassiou, C. G. (2023). Fishmeal Replacement by Full-Fat and Defatted Hermetia illucens Prepupae Meal in the Diet of Gilthead Seabream (Sparus aurata). Sustainability, 15(1), 786. https://doi.org/10.3390/su15010786