Adaptability of Koenigia mollis to an Acid Tin Mine Wasteland in Lianghe County in Yunnan Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Research Area
2.2. Research Method
2.2.1. Collection of Plant and Soil Samples
2.2.2. Sample Determination and Analysis Method
2.3. Data Processing
3. Results and Analysis
3.1. Rhizosphere Soil Fertility of Koenigia mollis in Acid Tin Mine Wasteland
3.2. Morphological Characteristics of Koenigia mollis in Acid Tin Mine Wasteland
3.3. Acid Tolerance of Koenigia mollis in Acid Tin Min Wasteland
3.4. Distribution Characteristics and Single Factor Pollution Index of Heavy Metals in Different Parts and Rhizosphere Soils of Koenigia mollis
3.5. Enrichment, Transport Factors, and Retention Rate of Major Metals in Koenigia mollis
4. Discussion
5. Conclusions
- (1)
- The results from the research showed that the rhizosphere soil of Koenigia mollis in the tailings wasteland was strongly acidic, and the plant height had no significant positive correlation with the pH value of rhizosphere soil, which indicated that Koenigia mollis had strong acid resistance.
- (2)
- The contents of organic matter, total nitrogen, and available K and P contents in the rhizosphere soil of Koenigia mollis were at a low level, and there was a compound pollution risk of Cu, Cd, and Pb. Koenigia mollis could grow under these conditions of poor soil fertility and heavy metal pollution, indicating that the plant has strong adaptability to the soil conditions of mining wasteland.
- (3)
- Koenigia mollis in different areas of tailings wasteland could grow normally, and the Cu, Cd, and Pb concentrations in different parts of plants for different areas were different, indicating a certain degree of enrichment ability.
- (4)
- There is no heavy metal pollution in the control group; Cu and Pb were light pollution in the research area, and Cd was in light to moderate pollution in the research area.
- (5)
- Koenigia mollis had strong acid resistance, could adapt to the barren tailings environment, and showed a certain degree of tolerance to heavy metals. Koenigia mollis, therefore, has great potential as a pioneer plant in acid tin mine wastelands and a remediated plant for agricultural land around metal mining areas.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siyar, R.; Ardejani, F.D.; Farahbakhsh, M.; Norouzi, P.; Yavarzadeh, M.; Maghsoudy, S. Potential of Vetiver grass for the phytoremediation of a real multi-contaminated soil, assisted by electrokinetic. Chemosphere 2020, 246, 125802. [Google Scholar] [CrossRef] [PubMed]
- Briki, M.; Ji, H.B.; Li, C.; Ding, H.J.; Gao, Y. Characterization, distribution, and risk assessment of heavy metals in agricultural soil and products around mining and smelting areas of Hezhang, China. Environ. Monit. Assess. 2015, 187, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Li, M.S. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice. Sci. Total Environ. 2006, 357, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Hammond, C.M.; Root, R.A.; Maier, R.M.; Chorover, J. Arsenic and iron speciation and mobilization during phytostabilization of pyritic mine tailings. Geochim. Cosmochim. Acta 2020, 286, 306–323. [Google Scholar] [CrossRef]
- Ma, Z.W.; Tao, R.H.; Hu, J.Y.; Cao, Y.; Hu, Z.Y.; Chen, Y.; Hu, H.X.; Ma, Y.H. Effects of Formula Fertilizer and Biochar on Cadmium and Plumbum Absorption in Maize (Zea mays L.). Sustainability 2023, 15, 4696. [Google Scholar] [CrossRef]
- Lv, J.S.; Xia, Q.; Yan, T.; Zhang, M.L.; Wang, Z.; Zhu, L.Y. Identifying the sources, spatial distributions, and pollution status of heavy metals in soils from the southern coast of Laizhou Bay, eastern China. Hum. Ecol. Risk Assess. 2019, 25, 1953–1967. [Google Scholar] [CrossRef]
- Guan, Y.J.; Wang, J.; Zhou, W.; Bai, Z.K.; Cao, Y.G. Identification of land reclamation stages based on succession characteristics of rehabilitated vegetation in the Pingshuo opencast coal mine. J. Environ. Manag. 2022, 305, 114352. [Google Scholar] [CrossRef]
- Yang, C.R.; Tan, Q.Y.; Zeng, X.L.; Zhang, Y.P.; Wang, Z.S.; Li, J.H. Measuring the sustainability of tin in China. Sci. Total Environ. 2018, 635, 1351–1359. [Google Scholar] [CrossRef]
- Huang, J.H.; Fu, J.L.; Yan, X.R.; Yin, F.; Tian, S.L.; Ning, P.; Li, Y.J. Acid mine wasteland reclamation by Juncus ochraceus buchen as a potential pioneer plant. Environ. Sci. 2020, 41, 3829–3835. [Google Scholar]
- Wan, X.M.; Lei, M.; Yang, J.X. Two potential multi-metal hyperaccumulators found in four mining sites in Hunan Province, China. Catena 2017, 148, 67–73. [Google Scholar] [CrossRef]
- Bian, F.Y.; Zhong, Z.K.; Zhang, X.P.; Yang, C.B.; Gai, X. Bamboo—An untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere 2020, 246, 125750. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.Y.; Jiang, M.Y.; Liao, J.R.; Yang, Y.X.; Li, N.F.; Cheng, Q.B.; Li, X.; Song, H.X.; Luo, Z.H.; Liu, S.L. Biomass allocation strategies and Pb-enrichment characteristics of six dwarf bamboos under soil Pb stress. Ecotoxicol. Environ. Saf. 2021, 207, 111500. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.R.; Cai, X.Y.; Yang, Y.X.; Chen, Q.B.; Gao, S.P.; Liu, G.L.; Sun, L.X.; Luo, Z.H.; Lei, T.; Jiang, M.Y. Dynamic study of the lead (Pb) tolerance and accumulation characteristics of new dwarf bamboo in Pb-contaminated soil. Chemosphere 2021, 282, 131089. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.N.; Zhong, X.; Liu, W.S.; Wang, G.B.; Chao, Y.Q.; Huot, H.; Qiu, R.L.; Watteau, F.; Sere, G.; Tang, Y.T.; et al. Biogeochemical dynamics of nutrients and rare earth elements (REEs) during natural succession from biocrusts to pioneer plants in REE mine tailings in southern China. Sci. Total Environ. 2022, 828, 154361. [Google Scholar] [CrossRef]
- Boldt-Burisch, K.; Schneider, B.U.; Naeth, M.A.; Huttl, R.F. Root Exudation of Organic Acids of Herbaceous Pioneer Plants and Their Growth in Sterile and Non-Sterile Nutrient-Poor, Sandy Soils from Post-Mining Sites. Pedosphere 2019, 29, 34–44. [Google Scholar] [CrossRef]
- Lu, R.K. Analytical Methods of Soil Agricultural Chemistry; China Agricultural Science and Technology Press: Beijing, China, 2020. [Google Scholar]
- Zhang, J.; Yang, N.N.; Geng, Y.N.; Zhou, J.H.; Lei, J. Effects of the combined pollution of cadmium, lead and zinc on the phytoextraction efficiency of ryegrass (Lolium perenne L.). Rsc Adv. 2019, 9, 20603–20611. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.X.; Fang, L.C.; Guo, X.B.; Han, F.; Ju, W.L.; Ye, L.P.; Wang, X.; Tan, W.F.; Zhang, X.C. Natural grassland as the optimal pattern of vegetation restoration in arid and semi-arid regions: Evidence from nutrient limitation of soil microbes. Sci. Total Environ. 2019, 648, 388–397. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.G.; Zeng, G.M.; Chai, L.Y.; Xiao, X.; Song, X.C.; Min, Z.Y. Pedological characteristics of Mn mine tailings and metal accumulation by native plants. Chemosphere 2008, 72, 1260–1266. [Google Scholar] [CrossRef]
- Zhu, G.X.; Xiao, H.Y.; Guo, Q.J.; Zhang, Z.Y.; Yang, X.; Jing, K. Subcellular distribution and chemical forms of heavy metals in three types of compositae plants from lead-zinc tailings area. Environ. Sci. 2017, 38, 3054–3060. [Google Scholar]
- Li, N.Y.; Guo, B.; Li, H.; Fu, Q.L.; Feng, R.W.; Ding, Y.Z. Effects of double harvesting on heavy metal uptake by six forage species and the potential for phytoextraction in field. Pedosphere 2016, 26, 717–724. [Google Scholar] [CrossRef]
- Zurayk, R.; Sukkariyah, B.; Baalbaki, R. Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution. Water Air Soil Pollut. 2001, 127, 373–388. [Google Scholar] [CrossRef]
- Li, S.; Wu, J.L.; Huo, Y.L.; Zhao, X.; Xue, L.G. Profiling multiple heavy metal contamination and bacterial communities surrounding an iron tailing pond in Northwest China. Sci. Total Environ. 2021, 752, 141827. [Google Scholar] [CrossRef] [PubMed]
- Rousk, J.; Baath, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Xu, H.P.; Song, F.M.; Ge, H.G.; Yue, S.Y. Effects of heavy metals on microorganisms and enzymes in soils of lead-zinc tailing ponds. Environ. Res. 2022, 207, 112174. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.C.; Liu, X.J.; Hao, T.X.; Zeng, M.F.; Shen, J.B.; Zhang, F.S.; Devries, W. Cropland acidification increases risk of yield losses and food insecurity in China. Environ. Pollut. 2020, 256, 113145. [Google Scholar] [CrossRef]
- Zhao, W.; Gai, Z.C.; Xu, Z.H. Does ammonium-based N addition influence nitrification and acidification in humid subtropical soils of China. Plant Soil 2007, 297, 213–221. [Google Scholar] [CrossRef]
- Editorial Committee of Flora of China; Chinese Academy of Sciences. Flora of China; Science Press: Beijing, China, 1998; Volume 25, p. 82. [Google Scholar]
- Guo, H.P.; Hong, C.T.; Chen, X.M.; Xu, Y.X.; Liu, Y.; Jiang, D.A.; Zheng, B.S. Different Growth and Physiological Responses to Cadmium of the Three Miscanthus Species. PLoS ONE 2016, 11, 153475. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xiong, M.B.; Wang, Q.X.; Sun, B.W.; Rao, Y.C.; Zhang, C.; Xu, X.X.; Yang, Z.B.; Xian, J.R.; Zhu, X.M.; et al. Remediation potential of taraxacum kok-saghyz rodin on lead and cadmium contaminated farmland soil. Environ. Sci. 2022, 43, 4253–4261. [Google Scholar]
Fertility Project | Number of Samples Collected in Different Sampling Areas | |||
---|---|---|---|---|
CK(5) | Upstream (5) | Midstream (15) | Downstream (10) | |
Organic matter (g·kg−1) | 13.973 ± 1.428 a | 6.478 ± 0.885 b | 5.568 ± 1.284 b | 6.258 ± 1.459 b |
Total nitrogen (g·kg−1) | 1.152 ± 0.371 a | 0.465 ± 0.112 b | 0.729 ± 0.290 b | 0.722 ± 0.418 b |
Total phosphorus (g·kg−1) | 0.996 ± 0.270 a | 0.808 ± 0.143 ab | 0.676 ± 0.244 b | 0.824 ± 0.392 ab |
Total potassium (g·kg−1) | 17.713 ± 3.971 a | 16.860 ± 3.634 a | 11.331 ± 4.605 b | 16.612 ± 2.931 a |
Available Nitrogen (g·kg−1) | 140.93 ± 93.92 a | 42.93 ± 12.37 b | 106.71 ± 65.94 a | 52.50 ± 21.10 b |
Available Phosphorus (g·kg−1) | 5.30 ± 2.49 a | 4.63 ± 1.51 a | 5.09 ± 0.80 a | 4.34 ± 0.88 a |
Available Potassium (g·kg−1) | 59.95 ± 3.52 ab | 69.29 ± 5.60 a | 55.67 ± 14.35 b | 69.93 ± 12.84 a |
Sampling Area (Numbers of Sample) | pH |
---|---|
CK (5) | 3.85 ± 0.28 b |
Upstream (5) | 4.30 ± 0.23 a |
Midstream (15) | 3.74 ± 0.27 b |
Downstream (10) | 3.88 ± 0.34 b |
Soil background value | 5.10 |
Heavy Metal | Sampling Area | Heavy Metal Contents in Rhizosphere Soil | Heavy Metal Concentrations in Koenigia mollis | ||
---|---|---|---|---|---|
Total Content mg·kg−1 | Available Content mg·kg−1 | Shoot mg·kg−1 | Root mg·kg−1 | ||
Cu | CK | 21.24 c | 1.19 c | 16.43 c | 19.16 c |
Upstream | 55.71 b | 1.40 c | 27.79 b | 35.38 b | |
Midstream | 76.17 a | 8.04 a | 32.41 a | 46.62 a | |
Downstream | 57.39 b | 2.74 b | 26.36 b | 35.11 b | |
Cd | CK | 0.28 d | 0.007 ab | 0.15 c | 0.31 c |
Upstream | 0.50 c | 0.013 ab | 0.22 c | 0.49 b | |
Midstream | 0.68 b | 0.004 b | 0.32 b | 0.55 b | |
Downstream | 1.00 a | 0.023 a | 0.49 a | 0.70 a | |
Pb | CK | 44.55 c | 18.16 c | 9.19 c | 5.58 c |
Upstream | 81.83 b | 32.49 b | 10.50 b c | 6.43 c | |
Midstream | 108.66 a | 46.91 a | 16.76 a | 10.01 a | |
Downstream | 92.86 b | 38.33 b | 11.92 b | 8.15 b |
Sampling Area | Cu | Cd | Pb | |
---|---|---|---|---|
Element content (mg·kg−1) | CK | 21.24 ± 0.86 | 0.28 ± 0.01 | 44.55 ± 1.62 |
Upstream | 55.71 ± 1.70 | 0.50 ± 0.03 | 81.83 ± 2.45 | |
Midstream | 76.17 ± 2.63 | 0.68 ± 0.04 | 108.66 ± 4.14 | |
Downstream | 57.39 ± 2.76 | 1.00 ± 0.04 | 92.86 ± 3.01 | |
Pollution risk screening value of GB 15618-2018 (mg·kg−1) | 50 | 0.3 | 70 | |
Single-factor pollution index | CK | 0.42 ± 0.02 | 0.93 ± 0.04 | 0.64 ± 0.02 |
Upstream | 1.11 ± 0.03 | 1.67 ± 0.09 | 1.17 ± 0.03 | |
Midstream | 1.52 ± 0.05 | 2.27 ± 0.13 | 1.55 ± 0.06 | |
Downstream | 1.15 ± 0.06 | 3.34 ± 0.13 | 1.33 ± 0.04 |
Project | Sampling Area | Cu | Cd | Pb |
---|---|---|---|---|
Enrichment coefficient | CK | 1.69 a | 1.64 a b | 0.34 a |
Upstream | 1.14 b | 1.45 b | 0.21 c | |
Midstream | 1.04 b | 1.29 b | 0.26 b | |
Downstream | 1.10 b | 1.71 a | 0.22 c | |
Translocation factors | CK | 0.87 a | 0.49 b | 1.64 a b |
Upstream | 0.78 b | 0.44 b | 1.63 a b | |
Midstream | 0.70 c | 0.61 a | 1.69 a | |
Downstream | 0.76 b | 0.68 a | 1.46 b | |
Retention rate | CK | 13.30% c | 51.40% a | −63.95% a b |
Upstream | 21.89% b | 55.72% a | −63.40% a b | |
Midstream | 30.11% a | 39.18% b | −69.19% a | |
Downstream | 23.78% b | 32.44% b | −45.92% b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Q.; Wu, H.; Xia, Y.; Wang, B.; Zhang, N.; Che, L.; Xia, Y.; Yue, X. Adaptability of Koenigia mollis to an Acid Tin Mine Wasteland in Lianghe County in Yunnan Province. Sustainability 2023, 15, 9179. https://doi.org/10.3390/su15129179
Deng Q, Wu H, Xia Y, Wang B, Zhang N, Che L, Xia Y, Yue X. Adaptability of Koenigia mollis to an Acid Tin Mine Wasteland in Lianghe County in Yunnan Province. Sustainability. 2023; 15(12):9179. https://doi.org/10.3390/su15129179
Chicago/Turabian StyleDeng, Qi, Hui Wu, Yunni Xia, Bao Wang, Naiming Zhang, Lin Che, Yunsheng Xia, and Xianrong Yue. 2023. "Adaptability of Koenigia mollis to an Acid Tin Mine Wasteland in Lianghe County in Yunnan Province" Sustainability 15, no. 12: 9179. https://doi.org/10.3390/su15129179
APA StyleDeng, Q., Wu, H., Xia, Y., Wang, B., Zhang, N., Che, L., Xia, Y., & Yue, X. (2023). Adaptability of Koenigia mollis to an Acid Tin Mine Wasteland in Lianghe County in Yunnan Province. Sustainability, 15(12), 9179. https://doi.org/10.3390/su15129179