Precise Modeling of Proton Exchange Membrane Fuel Cell Using the Modified Bald Eagle Optimization Algorithm
Abstract
:1. Introduction
2. Model of PEMFC
3. Modified Bald Eagle Optimization
- Select stage: the new generated positions are generated as follows:
- b.
- Search stage: the newly generated positions in this phase are provided as follows:
- c.
- Search stage: the positions in this phase are updated as follows:
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strielkowski, W.; Civín, L.; Tarkhanova, E.; Tvaronavičienė, M.; Petrenko, Y. Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review. Energies 2021, 14, 8240. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). World Energy Transitions Outlook 2022; IRENA: Masdar City, United Arab Emirates, 2022. [Google Scholar]
- IRENA. World Energy Transitions Outlook; 1.5 pathway; IRENA: Abu Dhabi, United Arab Emirates, 2022. [Google Scholar]
- Wu, Z.; Zhu, P.; Yao, J.; Tan, P.; Xu, H.; Chen, B.; Yang, F.; Zhang, Z.; Ni, M. Thermo-economic modeling and analysis of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for stationary electricity power generation. Energy 2020, 192, 116613. [Google Scholar] [CrossRef]
- Olabi, A.G.; Wilberforce, T.; Abdelkareem, M.A. Fuel cell application in the automotive industry and future perspective. Energy 2021, 214, 118955. [Google Scholar] [CrossRef]
- Rezk, H.; Sayed, E.T.; Al-Dhaifallah, M.; Obaid, M.; El-Sayed, A.H.M.; Abdelkareem, M.A.; Olabi, A.G. Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system. Energy 2019, 175, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Pourrahmani, H.; Siavashi, M.; Moghimi, M. Design optimization and thermal management of the PEMFC using artificial neural networks. Energy 2019, 182, 443–459. [Google Scholar] [CrossRef]
- Sammes, N.; Bove, R.; Stahl, K. Phosphoric acid fuel cells: Fundamentals and applications. Curr. Opin. Solid State Mater. Sci. 2004, 8, 372–378. [Google Scholar] [CrossRef]
- Sayed, E.T.; Abdelkareem, M.A.; Alawadhi, H.; Elsaid, K.; Wilberforce, T.; Olabi, A.G. Graphitic carbon nitride/carbon brush composite as a novel anode for yeast-based microbial fuel cells. Energy 2021, 221, 119849. [Google Scholar] [CrossRef]
- Sayed, E.T.; Abdelkareem, M.A.; Obaideen, K.; Elsaid, K.; Wilberforce, T.; Maghrabie, H.M.; Olabi, A.G. Progress in plant-based bioelectrochemical systems and their connection with sustainable development goals. Carbon Resour. Convers. 2021, 4, 169–183. [Google Scholar] [CrossRef]
- Tanveer, W.H.; Abdelkareem, M.A.; Kolosz, B.W.; Rezk, H.; Andresen, J.; Cha, S.W.; Sayed, E.T. The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production. Renew. Sustain. Energy Rev. 2021, 142, 110803. [Google Scholar] [CrossRef]
- Rezk, H.; Olabi, A.G.; Ferahtia, S.; Sayed, E.T. Accurate parameter estimation methodology applied to model proton exchange membrane fuel cell. Energy 2022, 255, 124454. [Google Scholar] [CrossRef]
- Hossain, M.K.; Yamamoto, T.; Hashizume, K. Isotopic effect of proton conductivity in barium zirconates for various hydrogen-containing atmospheres. J. Alloys Compd. 2022, 903, 163957. [Google Scholar] [CrossRef]
- Hossain, M.K.; Chanda, R.; El-Denglawey, A.; Emrose, T.; Rahman, M.T.; Biswas, M.C.; Hashizume, K. Recent progress in barium zirconate proton conductors for electrochemical hydrogen device applications: A review. Ceram. Int. 2021, 47, 23725–23748. [Google Scholar] [CrossRef]
- Hossain, M.K.; Hasan, S.M.K.; Hossain, M.I.; Das, R.C.; Bencherif, H.; Rubel, M.H.K.; Rahman, M.F.; Emrose, T.; Hashizume, K. A Review of Applications, Prospects, and Challenges of Proton-Conducting Zirconates in Electrochemical Hydrogen Devices. Nanomaterials 2022, 12, 3581. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wang, N.; Bi, Y.; Srinivasan, D. Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm. Energy 2015, 90, 1334–1341. [Google Scholar] [CrossRef]
- Ali, M.; El-Hameed, M.A.; Farahat, M.A. Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer. Renew. Energy 2017, 111, 455–462. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, N. Application of coRNA-GA based RBF-NN to model proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2018, 43, 329–340. [Google Scholar] [CrossRef]
- Fathy, A.; Rezk, H. Multi-verse optimizer for identifying the optimal parameters of PEMFC model. Energy 2018, 143, 634–644. [Google Scholar] [CrossRef]
- El-Fergany, A.A. Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer. Renew. Energy 2018, 119, 641–648. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Q.; Zhang, L.; Dai, J.; Razmjooy, N. Model parameter estimation of the PEMFCs using improved Barnacles Mating Optimization algorithm. Energy 2020, 212, 118738. [Google Scholar] [CrossRef]
- Cao, Y.; Li, Y.; Zhang, G.; Jermsittiparsert, K.; Nasseri, M. An efficient terminal voltage control for PEMFC based on an improved version of whale optimization algorithm. Energy Rep. 2020, 6, 530–542. [Google Scholar] [CrossRef]
- Selem, S.I.; Hasanien, H.M.; El-Fergany, A.A. Parameters extraction of PEMFC’s model using manta rays foraging optimizer. Int. J. Energy Res. 2020, 44, 4629–4640. [Google Scholar] [CrossRef]
- Qin, F.; Liu, P.; Niu, H.; Song, H.; Yousefi, N. Parameter estimation of PEMFC based on Improved Fluid Search Optimization Algorithm. Energy Rep. 2020, 6, 1224–1232. [Google Scholar] [CrossRef]
- Menesy, A.S.; Sultan, H.M.; Korashy, A.; Banakhr, F.A.; Ashmawy, M.G.; Kamel, S. Effective Parameter Extraction of Different Polymer Electrolyte Membrane Fuel Cell Stack Models Using a Modified Artificial Ecosystem Optimization Algorithm. IEEE Access 2020, 8, 31892–31909. [Google Scholar] [CrossRef]
- Diab, A.A.Z.; Tolba, M.A.; El-Magd, A.G.A.; Zaky, M.M.; El-Rifaie, A.M. Fuel Cell Parameters Estimation via Marine Predators and Political Optimizers. IEEE Access 2020, 8, 166998–167018. [Google Scholar] [CrossRef]
- Houssein, E.H.; Hashim, F.A.; Ferahtia, S.; Rezk, H. An efficient modified artificial electric field algorithm for solving optimization problems and parameter estimation of fuel cell. Int. J. Energy Res. 2021, 45, 20199–20218. [Google Scholar] [CrossRef]
- Syah, R.; Isola, L.A.; Guerrero, J.W.G.; Suksatan, W.; Sunarsi, D.; Elveny, M.; Alkaim, A.F.; Thangavelu, L.; Aravindhan, S. Optimal parameters estimation of the PEMFC using a balanced version of Water Strider Algorithm. Energy Rep. 2021, 7, 6876–6886. [Google Scholar] [CrossRef]
- Fathy, A.; Abdel Aleem, S.H.E.; Rezk, H. A novel approach for PEM fuel cell parameter estimation using LSHADE-EpSin optimization algorithm. Int. J. Energy Res. 2021, 45, 6922–6942. [Google Scholar] [CrossRef]
- Zhu, Y.; Yousefi, N. Optimal parameter identification of PEMFC stacks using Adaptive Sparrow Search Algorithm. Int. J. Hydrogen Energy 2021, 46, 9541–9552. [Google Scholar] [CrossRef]
- Mossa, M.A.; Kamel, O.M.; Sultan, H.M.; Diab, A.A.Z. Parameter estimation of PEMFC model based on Harris Hawks’ optimization and atom search optimization algorithms. Neural Comput. Appl. 2021, 33, 5555–5570. [Google Scholar] [CrossRef]
- Abaza, A.; El-Sehiemy, R.A.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Optimal estimation of proton exchange membrane fuel cells parameter based on coyote optimization algorithm. Appl. Sci. 2021, 11, 2052. [Google Scholar] [CrossRef]
- Gouda, E.A.; Kotb, M.F.; El-Fergany, A.A. Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: Steady-state performance and analysis. Energy 2021, 221, 119836. [Google Scholar] [CrossRef]
- Rezk, H.; Ferahtia, S.; Djeroui, A.; Chouder, A.; Houari, A.; Machmoum, M.; Abdelkareem, M.A. Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer. Energy 2022, 239, 122096. [Google Scholar] [CrossRef]
- Zhang, J.; Khayatnezhad, M.; Ghadimi, N. Optimal model evaluation of the proton-exchange membrane fuel cells based on deep learning and modified African Vulture Optimization Algorithm. Energy Sources Part A Recover. Util. Environ. Eff. 2022, 44, 287–305. [Google Scholar] [CrossRef]
- Chen, Y.; Pi, D.; Wang, B.; Chen, J.; Xu, Y. Bi-subgroup optimization algorithm for parameter estimation of a PEMFC model. Expert Syst. Appl. 2022, 196, 116646. [Google Scholar] [CrossRef]
- Han, E.; Ghadimi, N. Model identification of proton-exchange membrane fuel cells based on a hybrid convolutional neural network and extreme learning machine optimized by improved honey badger algorithm. Sustain. Energy Technol. Assess. 2022, 52, 102005. [Google Scholar] [CrossRef]
- Alsaidan, I.; Shaheen, M.A.M.; Hasanien, H.M.; Alaraj, M.; Alnafisah, A.S. A PEMFC model optimization using the enhanced bald eagle algorithm. Ain Shams Eng. J. 2022, 13, 101749. [Google Scholar] [CrossRef]
- Riad, A.J.; Hasanien, H.M.; Turky, R.A.; Yakout, A.H. Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Algorithm. Sustainability 2023, 15, 4625. [Google Scholar] [CrossRef]
- Hou, M.; Li, Y.; Peng, F.; Daneshvar Rouyendegh, B. A new optimum technique for parameter identification of the proton exchange membrane fuel cells based on improved remora optimizer. Energy Sources Part A Recover. Util. Environ. Eff. 2023, 45, 3019–3040. [Google Scholar] [CrossRef]
- Sultan, H.M.; Menesy, A.S.; Hassan, M.S.; Jurado, F.; Kamel, S. Standard and Quasi Oppositional bonobo optimizers for parameter extraction of PEM fuel cell stacks. Fuel 2023, 340, 127586. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1995, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Ferahtia, S.; Rezk, H.; Djerioui, A.; Houari, A.; Motahhir, S.; Zeghlache, S. Modified bald eagle search algorithm for lithium-ion battery model parameters extraction. ISA Trans. 2023, 134, 357–379. [Google Scholar] [CrossRef] [PubMed]
Ref. | Author | Year | Used MOA | Used PEMFC Type |
---|---|---|---|---|
[16] | Sun et al. | 2015 | hybrid adaptive differential evolution (HADE) | R1, R2 |
[17] | Ali et al. | 2017 | grey wolf optimizer (GWO) | BCS 500 W-PEM SR-500 W 250 W-stack |
[18] | Zhang and Wang | 2018 | co-evolution RNA with the genetic algorithm (coRNA-GA) | NA |
[19] | Fathi et Hegazy | 2018 | multi-verse optimizer (MVO) | R1, R2 |
[20] | El-Fergany | 2018 | salp swarm algorithm (SSA) | NedStack PS6 BCS stack 500 W |
[21] | Yang et al. | 2020 | improved barnacles mating optimizer (IBMO) | Horizon 500 W NedSstack PS6 |
[22] | Cao et al. | 2020 | improved whale optimization algorithm (IWOA) | NA |
[23] | Salma et al. | 2020 | manta rays foraging optimizer (MRFO) | Ballard Mark V NedStack PS6 Horizon H-12 |
[24] | Qin et al. | 2020 | improved fluid search optimization (IFSO) | Horizon H-12 NedStack PS6 Ballard Mark V |
[25] | Menesy et al. | 2020 | modified artificial ecosystem optimization (MAEO) | BCS 500 W SR-12 500 W 250 W-stack Temasek 1 kW |
[26] | Diab et al. | 2020 | political optimizers (PO) | BCS 500 W SR-12PEM 500 W 250 W-stack |
[27] | Hussein et al. | 2021 | modified artificial electric field algorithm (mAEFA) | NedStack PS6 SR-12 500 W |
[28] | Syah et al. | 2021 | balanced water strider algorithm (bWSA) | NA |
[29] | Fathy et al. | 2021 | LSHADE-EpSin optimization algorithm | 250 W-stack NedStack PS6 BCS 500 W SR-12 500 W |
[30] | Zhu et Yousefi | 2021 | adaptive sparrow search algorithm (ASSA) | Ballard Mark V Horizon H-12 NedStack PS6 |
[31] | Mossa et al. | 2021 | Harris Hawk’s and atom search optimization algorithms (HHO and SOA) | BCS 500-W SR-12 500 W 250 W-stack |
[32] | Abaza et al. | 2021 | coyote optimization algorithm (COA) | 250 W-stack Ned Stack PS6 |
[33] | Gouda et al. | 2021 | jellyfish search algorithm (JSA) | BCS 500 W 250 W-stack NedStack PS6 |
[34] | Hegazy et al. | 2022 | gradient-based optimizer (GBO) | 250 W-stack BCS 500 W SR-12 500 W |
[35] | Zhang et al. | 2022 | modified African vulture optimization algorithm (mAVOA) | SR-12 500 W BCS 500 W Temasek 1 kW |
[36] | Chen et al. | 2022 | bi-subgroup algorithm (BSOA) | SR-12 500 W BCS 500 W Ballard Mark V |
[37] | Han and Ghadimi | 2022 | improved honey badger algorithm (IHBA) | NA |
[12] | Hegazy et al. | 2022 | bald eagle search algorithm (BES) | BCS 500 W NedStack PS6 |
[38] | Alsaidan et al. | 2022 | enhanced bald eagle search algorithm (eBES) | BCS 500 W 250 W-stack Horizon H12 |
[39] | Andrew et al. | 2023 | artificial rabbits optimization algorithm (ARO) | NedStack PS6 BCS stack 500 W Ballard Mark V |
[40] | Hou et al. | 2023 | improved remora optimizer (IRO) | NedSstack PS6 Horizon 500 W |
[41] | Sultan et al. | 2023 | standard and quasi oppositional bonobo optimizers | 250 W-stack BCS 500 W SR-12 500 W Temasek 1 kW |
Avista SR-12 500 W | 500 W BCS | |
---|---|---|
No of cells | 48 | 32 |
Area | 62.5 cm2 | 64 cm2 |
1.476 bar | 1 bar | |
0.2095 bar | 1 bar | |
Temperature | 323 K | 333 K |
RHa (%) | 100 | |
RHa (%) | 100 |
Parameter | |||||||
---|---|---|---|---|---|---|---|
Max. | −1.19969 | 0.001 | 3.6 × 10−5 | −2.6 × 10−4 | 10 | 0.0136 | 1 × 10−4 |
Min. | 0.8532 | 0.005 | 9.8 × 10−5 | −9.54 × 10−5 | 24 | 0.5 | 8 × 10−4 |
AEO | BES | LHHO | ROA | SCA | SSA | mBES | |
---|---|---|---|---|---|---|---|
500 W BCS PEM fuel cell | |||||||
−1.1628849 | −0.8532 | −1.03402 | −0.88767 | −1.19422 | −1.19945 | −0.8628 | |
0.0033088 | 0.002163 | 0.002901 | 0.002488 | 0.003269 | 0.003652 | 0.002193 | |
5.06 × 10−5 | 3.60 × 10−5 | 4.95 × 10−5 | 5.11 × 10−5 | 4.22 × 10−5 | 6.66 × 10−5 | 3.61 × 10−5 | |
−0.0001936 | −0.00019 | −0.00019 | −0.00019 | −0.00019 | −0.00019 | −0.00019 | |
22.032114 | 22.00802 | 17.94862 | 22.06159 | 18.12214 | 22.99359 | 22.00799 | |
0.0001 | 0.0001 | 0.000103 | 0.000213 | 0.000117 | 0.000293 | 0.0001 | |
0.0174447 | 0.017434 | 0.014742 | 0.016856 | 0.014458 | 0.017099 | 0.017434 | |
Avista SR-12 500 W PEM fuel cell | |||||||
−1.0934124 | −0.854333 | −0.8532 | −0.86028 | −0.8532 | −0.86422 | −0.8532 | |
0.0033993 | 0.0023694 | 0.002892 | 0.002318 | 0.002234 | 0.002425 | 0.002278 | |
6.26 × 10−5 | 4.38 × 10−5 | 7.78 × 10−5 | 3.93 × 10−5 | 3.50 × 10−5 | 4.54 × 10−5 | 3.81 × 10−5 | |
−0.0001022 | −0.000102 | −0.0001 | −0.0001 | −0.00011 | −0.0001 | −0.0001 | |
23 | 23 | 19.72667 | 23 | 14.07028 | 22.80896 | 23 | |
0.1470375 | 0.1470379 | 0.146961 | 0.146045 | 0.145591 | 0.147495 | 0.147078 | |
0.0005703 | 0.0005703 | 0.000518 | 0.00064 | 0.000145 | 0.000537 | 0.000582 |
AEO | BES | LHHO | ROA | SCA | SSA | mBES | |
---|---|---|---|---|---|---|---|
500 W BCS PEMFC | |||||||
Best | 0.011364 | 0.011364 | 0.026542 | 0.012081 | 0.049496 | 0.012964 | 0.011364 |
worst | 0.021357 | 0.027315 | 5.486003 | 0.338949 | 1.17559 | 0.520671 | 0.011375 |
Mean | 0.011859 | 0.011961 | 1.23466 | 0.040992 | 0.415628 | 0.113427 | 0.011364 |
StD | 0.001938 | 0.002862 | 1.69796 | 0.058075 | 0.275373 | 0.123744 | 1.99 × 10−6 |
Median | 3.756 × 10−6 | 8.19 × 10−6 | 2.88307 | 0.003373 | 0.07583 | 0.015313 | 3.96 × 10−12 |
Variance | 0.011377 | 0.011364 | 0.448936 | 0.024738 | 0.343643 | 0.066428 | 0.011364 |
Avista SR-12 500 W PEMFC | |||||||
Best | 0.035199 | 0.035199 | 0.035654 | 0.036048 | 0.2593 | 0.03539 | 0.035099 |
worst | 0.03521 | 0.03584 | 6.375827 | 0.062539 | 3.2553 | 0.130003 | 0.035099 |
Mean | 0.0352 | 0.035221 | 0.428004 | 0.0478 | 1.363295 | 0.049698 | 0.035099 |
StD | 2.6759 × 10−6 | 0.000115 | 1.313477 | 0.006892 | 0.86374 | 0.020633 | 0.009039392 |
Median | 8.2179 × 10−5 | 8.2173 × 10−5 | 3.035408738 | 0.000185808 | 0.864106877 | 0.000771983 | 8.17106 × 10−5 |
Variance | 0.035199 | 0.035199 | 0.054157 | 0.047752 | 1.047143 | 0.041905 | 0.035099 |
Current | AEO | BES | LHHO | ROA | SCA | SSA | mBES | |
---|---|---|---|---|---|---|---|---|
1 | 0.6 | 0.000449 | 0.01856 | 0.176832 | 0.29631 | 0.203719 | 0.153741 | 0.000684 |
2 | 2.1 | 0.005712 | 0.008385 | 0.000077 | 0.00394 | 0.207919 | 0.004179 | 0.006087 |
3 | 3.58 | 0.00085 | 0.003324 | 0.064753 | 0.100468 | 0.195486 | 0.060034 | 0.00045 |
4 | 5.08 | 0.001855 | 0.006595 | 0.091348 | 0.146669 | 0.187165 | 0.080579 | 0.001556 |
5 | 7.17 | 0.003301 | 0.009023 | 0.103009 | 0.169884 | 0.174051 | 0.086683 | 0.003193 |
6 | 9.55 | 0.013715 | 0.019009 | 0.105914 | 0.173786 | 0.148555 | 0.086146 | 0.013812 |
7 | 11.35 | 0.011475 | 0.015847 | 0.089904 | 0.153137 | 0.138088 | 0.069226 | 0.01169 |
8 | 12.54 | 0.009307 | 0.012895 | 0.075989 | 0.134267 | 0.131172 | 0.055449 | 0.009576 |
9 | 13.73 | 0.012773 | 0.015483 | 0.066092 | 0.118161 | 0.118012 | 0.04626 | 0.013075 |
10 | 15.73 | 0.09977 | 0.098667 | 0.071659 | 0.032446 | 0.21266 | 0.089031 | 0.099462 |
11 | 17.02 | 0.017474 | 0.017504 | 0.028032 | 0.057538 | 0.0826 | 0.01309 | 0.017752 |
12 | 19.11 | 0.014316 | 0.012639 | 0.004663 | 0.00704 | 0.062269 | 0.014248 | 0.014489 |
13 | 21.2 | 0.013877 | 0.010674 | 0.034407 | 0.04283 | 0.034634 | 0.036834 | 0.013886 |
14 | 23 | 0.007684 | 0.003482 | 0.063637 | 0.0911 | 0.011174 | 0.058405 | 0.00752 |
15 | 25.08 | 0.005033 | 0.000398 | 0.086036 | 0.137323 | 0.030954 | 0.070134 | 0.00468 |
16 | 27.17 | 0.001937 | 0.005267 | 0.093596 | 0.170614 | 0.092163 | 0.064829 | 0.002329 |
17 | 28.06 | 0.005083 | 0.006611 | 0.082232 | 0.170661 | 0.134076 | 0.04723 | 0.005334 |
18 | 29.26 | 0.000361 | 0.004968 | 0.011746 | 0.115701 | 0.24725 | 0.032702 | 0.000846 |
SSE | 0.011388 | 0.011993 | 0.118099 | 0.338949 | 0.406351 | 0.084183 | 0.011364 | |
RMSE | 0.025153 | 0.025812 | 0.081 | 0.137224 | 0.15025 | 0.068387 | 0.025126 | |
MAE | 0.012498 | 0.014963 | 0.06944 | 0.117882 | 0.133997 | 0.059378 | 0.012579 |
Current Density | AEO | BES | LHHO | ROA | SCA | SSA | mBES | |
---|---|---|---|---|---|---|---|---|
1 | 0.00615 | 0.04489 | 0.04487 | 0.14126 | 0.04761 | 0.11211 | 0.02351 | 0.00615 |
2 | 0.02665 | 0.00093 | 0.00094 | 0.04807 | 0.00633 | 0.11058 | 0.00841 | 0.02665 |
3 | 0.041 | 0.05729 | 0.0573 | 0.06861 | 0.04979 | 0.06272 | 0.03075 | 0.041 |
4 | 0.05371 | 0.09392 | 0.09393 | 0.08509 | 0.08679 | 0.02951 | 0.05911 | 0.05371 |
5 | 0.10086 | 0.04271 | 0.04271 | 0.08744 | 0.04642 | 0.1658 | 0.08516 | 0.10086 |
6 | 0.11398 | 0.02035 | 0.02035 | 0.06945 | 0.0228 | 0.1417 | 0.06168 | 0.11398 |
7 | 0.16031 | 0.00188 | 0.00187 | 0.05279 | 0.00445 | 0.11142 | 0.03018 | 0.16031 |
8 | 0.20787 | 0.00398 | 0.00398 | 0.04642 | 0.01216 | 0.10073 | 0.0138 | 0.20787 |
9 | 0.23411 | 0.03839 | 0.03839 | 0.08371 | 0.02711 | 0.13915 | 0.04732 | 0.23411 |
10 | 0.2829 | 0.0267 | 0.0267 | 0.05918 | 0.01 | 0.12311 | 0.01873 | 0.2829 |
11 | 0.30873 | 0.01714 | 0.01714 | 0.04159 | 0.00205 | 0.11351 | 0.0005 | 0.30873 |
12 | 0.32922 | 0.0474 | 0.04741 | 0.0651 | 0.02656 | 0.14523 | 0.02428 | 0.32922 |
13 | 0.36243 | 0.0034 | 0.00339 | 0.003 | 0.02612 | 0.10029 | 0.03588 | 0.36243 |
14 | 0.40344 | 0.02032 | 0.02033 | 0.01299 | 0.00265 | 0.13914 | 0.02065 | 0.40344 |
15 | 0.43623 | 0.00368 | 0.00367 | 0.02086 | 0.02435 | 0.13586 | 0.04768 | 0.43623 |
16 | 0.47108 | 0.04307 | 0.04306 | 0.0683 | 0.05758 | 0.13035 | 0.08473 | 0.47108 |
17 | 0.50511 | 0.0806 | 0.0806 | 0.10934 | 0.08345 | 0.14282 | 0.11166 | 0.50511 |
18 | 0.53832 | 0.02342 | 0.02341 | 0.04834 | 0.00632 | 0.2732 | 0.03167 | 0.53832 |
19 | 0.56498 | 0.01339 | 0.0134 | 0.02637 | 0.02965 | 0.36926 | 0.01091 | 0.56498 |
20 | 0.59122 | 0.06766 | 0.06766 | 0.08004 | 0.15094 | 0.57429 | 0.14489 | 0.59122 |
SSE | 0.0352 | 0.0352 | 0.09477 | 0.05197 | 0.79429 | 0.06615 | 0.0351 | |
RMSE | 0.04195 | 0.04195 | 0.06884 | 0.05097 | 0.19928 | 0.05751 | 0.04195 | |
MAE | 0.03256 | 0.03256 | 0.0609 | 0.03616 | 0.16104 | 0.04458 | 0.03256 |
Source | df | SS | MS | F | Prob | |
---|---|---|---|---|---|---|
SR | Columns | 6 | 131.244 | 21.874 | 26.07 | 6.768 × 10−23 |
BCS | 6 | 54.63 | 9.105 | 13.63 | 5.503 × 10−13 | |
SR | Error | 203 | 170.329 | 0.839 | ||
BCS | 203 | 135.61 | 0.668 | |||
SR | Total | 209 | 301.572 | |||
BCS | 209 | 190.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaky, A.A.; Ghoniem, R.M.; Selim, F. Precise Modeling of Proton Exchange Membrane Fuel Cell Using the Modified Bald Eagle Optimization Algorithm. Sustainability 2023, 15, 10590. https://doi.org/10.3390/su151310590
Zaky AA, Ghoniem RM, Selim F. Precise Modeling of Proton Exchange Membrane Fuel Cell Using the Modified Bald Eagle Optimization Algorithm. Sustainability. 2023; 15(13):10590. https://doi.org/10.3390/su151310590
Chicago/Turabian StyleZaky, Alaa A., Rania M. Ghoniem, and F. Selim. 2023. "Precise Modeling of Proton Exchange Membrane Fuel Cell Using the Modified Bald Eagle Optimization Algorithm" Sustainability 15, no. 13: 10590. https://doi.org/10.3390/su151310590
APA StyleZaky, A. A., Ghoniem, R. M., & Selim, F. (2023). Precise Modeling of Proton Exchange Membrane Fuel Cell Using the Modified Bald Eagle Optimization Algorithm. Sustainability, 15(13), 10590. https://doi.org/10.3390/su151310590