Towards Sustainable Energy Grids: A Machine Learning-Based Ensemble Methods Approach for Outages Estimation in Extreme Weather Events
Abstract
:1. Introduction
2. Related Work
2.1. Grid Resilience and Disaster Management
2.2. Resilience Index and Multi-Infrastructure Systems
2.3. Machine Learning Applications in Energy Grids
2.4. Exploring Diverse Original Classification Methods for Predicting Energy Grid Vulnerabilities
3. Problem Statement
4. Proposed Ensemble Method for Outage Prediction
4.1. Insights into Training Data Scenarios
4.2. Support Vector Machines (SVM)
4.3. Logistic Regression (LOR)
4.4. Decision Trees (DT)
- Start with the root node of the tree ‘R’. This node includes the entire dataset.
- Determine the best attribute of the options in the dataset with the help of some attribute selection measure (ASM).
- Splitting the root node ‘R’ into subsets ‘S’, which contain all the possible values for the best attributes.
- The node, i.e., decision tree node which has the best attribute, is generated.
- By utilizing the subsets of the entire dataset as constructed in step no. 3, generate new decision trees recursively.
- Continue with this procedure until further splitting of the node is not possible and the current node will be the final node, i.e., the leaf node.
4.5. Artificial Neural Network (ANN)
4.6. Naive Bayes
4.7. Bagging
Algorithm 1 Bagging classifier |
|
4.8. Features of Component
4.9. Evaluation Metrics
4.10. Ensemble Classifier
4.10.1. Mean Ensemble Voting
4.10.2. Weighted Ensemble Voting
4.10.3. Accuracy in Weighted Ensemble Voting
4.10.4. Proposed Ensemble Voting
Algorithm 2 Ensemble Voting Algorithm |
Require: X: A data stream of sentences inserted from a file. |
Require: Y: A label of the sentences |
Require: : Number of algorithms used [ANN, SVM, Naive Bayes, Decision Tree, Bagging Classifier]. |
Ensure: W: An array of weights assigned for each |
Ensure: : Represents the proposed ensemble voting model. |
|
|
|
|
5. Discussion
5.1. Experiment Details
5.2. Results
6. Conclusions
7. Limitations
8. Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Branscomb, L.M. Sustainable Cities: Safety and Security. Technol. Soc. 2006, 28, 225–234. [Google Scholar] [CrossRef]
- Hossain, E.; Roy, S.; Mohammad, N.; Nawar, N.; Dipta, D.R. Metrics and Enhancement Strategies for Grid Resilience and Reliability during Natural Disasters. Appl. Energy 2021, 290, 116709. [Google Scholar] [CrossRef]
- Judge, M.A.; Khan, A.; Manzoor, A.; Khattak, H.A. Overview of Smart Grid Implementation: Frameworks, Impact, Performance and Challenges. J. Energy Storage 2022, 49, 104056. [Google Scholar] [CrossRef]
- Wang, C.; Ju, P.; Wu, F.; Pan, X.; Wang, Z. A Systematic Review on Power System Resilience from the Perspective of Generation, Network, and Load. Renew. Sustain. Energy Rev. 2022, 167, 112567. [Google Scholar] [CrossRef]
- Umunnakwe, A.; Huang, H.; Oikonomou, K.; Davis, K.R. Quantitative Analysis of Power Systems Resilience: Standardization, Categorizations, and Challenges. Renew. Sustain. Energy Rev. 2021, 149, 111252. [Google Scholar] [CrossRef]
- Panteli, M.; Mancarella, P. Influence of Extreme Weather and Climate Change on the Resilience of Power Systems: Impacts and Possible Mitigation Strategies. Electr. Power Syst. Res. 2015, 127, 259–270. [Google Scholar] [CrossRef]
- Wang, Z.; Ding, T.; Jia, W.; Huang, C.; Mu, C.; Qu, M.; Shahidehpour, M.; Yang, Y.; Blaabjerg, F.; Li, L.; et al. Multi-Stage Stochastic Programming for Resilient Integrated Electricity and Natural Gas Distribution Systems against Typhoon Natural Disaster Attacks. Renew. Sustain. Energy Rev. 2022, 159, 111784. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Ju, P.; Li, H. A Sequentially Preventive Model Enhancing Power System Resilience against Extreme-Weather-Triggered Failures. Renew. Sustain. Energy Rev. 2022, 156, 111945. [Google Scholar] [CrossRef]
- Arab, A.; Khodaei, A.; Han, Z.; Khator, S.K. Proactive Recovery of Electric Power Assets for Resiliency Enhancement. IEEE Access 2015, 3, 99–109. [Google Scholar] [CrossRef]
- Arab, A.; Khodaei, A.; Khator, S.K.; Han, Z. Electric Power Grid Restoration Considering Disaster Economics. IEEE Access 2016, 4, 639–649. [Google Scholar] [CrossRef]
- Arab, A.; Khodaei, A.; Khator, S.K.; Ding, K.; Emesih, V.A.; Han, Z. Stochastic Pre-Hurricane Restoration Planning for Electric Power Systems Infrastructure. IEEE Trans. Smart Grid 2015, 6, 1046–1054. [Google Scholar] [CrossRef]
- Arab, A.; Khodaei, A.; Khator, S.K.; Han, Z. Transmission Network Restoration Considering AC Power Flow Constraints. In Proceedings of the 2015 IEEE International Conference on Smart Grid Communications (SmartGridComm), Miami, FL, USA, 1–5 November 2015; IEEE: Miami, FL, USA, 2015; pp. 816–821. [Google Scholar]
- Ball, B. Rebuilding Electrical Infrastructure along the Gulf Coast: A Case Study. Ridge-Wash.-Natl. Acad. Eng. 2006, 36, 21. [Google Scholar]
- Brown, R. Quanta Technology Cost-Benefit Analysis of the Deployment of Utility Infrastructure Upgrades and Storm Hardening Programs; Satellite Communications: Raleigh, NC, USA, 2009. [Google Scholar]
- Executive Office of the President, Economic Benefits of Increasing Electric Grid Resilience to Weather Outages. Clim. Energy Environ. Issues Anal. Dev. 2014, 2, 28.
- Eskandarpour, R.; Khodaei, A.; Arab, A. Improving Power Grid Resilience through Predictive Outage Estimation. In Proceedings of the 2017 North American Power Symposium (NAPS), Morgantown, WV, USA, 16 September 2017; pp. 1–5. [Google Scholar]
- Davidson, R.A.; Liu, H.; Sarpong, I.K.; Sparks, P.; Rosowsky, D.V. Electric Power Distribution System Performance in Carolina Hurricanes. Nat. Hazards Rev. 2003, 4, 36–45. [Google Scholar] [CrossRef]
- Perrier, N.; Agard, B.; Baptiste, P.; Frayret, J.-M.; Langevin, A.; Pellerin, R.; Riopel, D.; Trépanier, M. A Survey of Models and Algorithms for Emergency Response Logistics in Electric Distribution Systems. Part II: Contingency Planning Level. Comput. Oper. Res. 2013, 40, 1907–1922. [Google Scholar] [CrossRef]
- Molyneaux, L.; Wagner, L.; Froome, C.; Foster, J. Resilience and Electricity Systems: A Comparative Analysis. Energy Policy 2012, 47, 188–201. [Google Scholar] [CrossRef]
- Reed, D.A.; Kapur, K.C.; Christie, R.D. Methodology for Assessing the Resilience of Networked Infrastructure. IEEE Syst. J. 2009, 3, 174–180. [Google Scholar] [CrossRef]
- Nateghi, R.; Guikema, S.D.; Quiring, S.M. Forecasting Hurricane-Induced Power Outage Durations. Nat. Hazards 2014, 74, 1795–1811. [Google Scholar] [CrossRef]
- Eskandarpour, R.; Khodaei, A. Component Outage Estimation Based on Support Vector Machine. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 13 July 2017; pp. 1–5. [Google Scholar]
- Nateghi, R.; Guikema, S.D.; Quiring, S.M. Comparison and Validation of Statistical Methods for Predicting Power Outage Durations in the Event of Hurricanes: Comparison and Validation of Statistical Methods. Risk Anal. 2011, 31, 1897–1906. [Google Scholar] [CrossRef]
- Kadir, S.U.; Majumder, S.; Srivastava, A.; Chhokra, A.; Neema, H.; Dubey, A.; Laszka, A. Reinforcement Learning Based Proactive Control for Enabling Power Grid Resilience to Wildfire. IEEE Trans. Ind. Inf. 2023, 18, 1–11. [Google Scholar] [CrossRef]
- Eskandarpour, R.; Khodaei, A. Machine Learning Based Power Grid Outage Prediction in Response to Extreme Events. IEEE Trans. Power Syst. 2017, 32, 3315–3316. [Google Scholar] [CrossRef]
- Nie, H.; Chen, Y.; Xia, Y.; Huang, S.; Liu, B. Optimizing the Post-Disaster Control of Islanded Microgrid: A Multi-Agent Deep Reinforcement Learning Approach. IEEE Access 2020, 8, 153455–153469. [Google Scholar] [CrossRef]
- Zhou, Z.; Wu, Z.; Jin, T. Deep Reinforcement Learning Framework for Resilience Enhancement of Distribution Systems under Extreme Weather Events. Int. J. Electr. Power Energy Syst. 2021, 128, 106676. [Google Scholar] [CrossRef]
- Almasoudi, F.M. Enhancing Power Grid Resilience through Real-Time Fault Detection and Remediation Using Advanced Hybrid Machine Learning Models. Sustainability 2023, 15, 8348. [Google Scholar] [CrossRef]
- Kezunovic, M.; Pinson, P.; Obradovic, Z.; Grijalva, S.; Hong, T.; Bessa, R. Big Data Analytics for Future Electricity Grids. Electr. Power Syst. Res. 2020, 189, 106788. [Google Scholar] [CrossRef]
- Montoya-Rincon, J.P.; Mejia-Manrique, S.A.; Azad, S.; Ghandehari, M.; Harmsen, E.W.; Khanbilvardi, R.; Gonzalez-Cruz, J.E. A Socio-Technical Approach for the Assessment of Critical Infrastructure System Vulnerability in Extreme Weather Events. Nat. Energy 2023, 8, 11. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Ma, C.; Kou, L. A Survey on the Development Status and Application Prospects of Knowledge Graph in Smart Grids. IET Gener. Trans Dis. 2021, 15, 383–407. [Google Scholar] [CrossRef]
- Baldick, R.; Chowdhury, B.; Dobson, I.; Dong, Z.; Gou, B.; Hawkins, D.; Huang, Z.; Joung, M.; Kim, J.; Kirschen, D.; et al. Vulnerability Assessment for Cascading Failures in Electric Power Systems. In Proceedings of the 2009 IEEE/PES Power Systems Conference and Exposition, Seattle, WA, USA, 6 March 2009; pp. 1–9. [Google Scholar]
- Sahoo, B.; Bhaskaran, P.K. Multi-Hazard Risk Assessment of Coastal Vulnerability from Tropical Cyclones—A GIS Based Approach for the Odisha Coast. J. Environ. Manag. 2018, 206, 1166–1178. [Google Scholar] [CrossRef]
- Marshall, R.A.; Smith, E.A.; Francis, M.J.; Waters, C.L.; Sciffer, M.D. A Preliminary Risk Assessment of the Australian Region Power Network to Space Weather: RISK ASSESSMENT AUSTRALIAN POWER NETWORK. Space Weather 2011, 9, 18. [Google Scholar] [CrossRef]
- Raza, M.Q.; Khosravi, A. A Review on Artificial Intelligence Based Load Demand Forecasting Techniques for Smart Grid and Buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352–1372. [Google Scholar] [CrossRef]
- Eskandarpour, R.; Khodaei, A.; Lin, J. Event-Driven Security-Constrained Unit Commitment with Component Outage Estimation Based on Machine Learning Method. In Proceedings of the 2016 North American Power Symposium (NAPS), Denver, CO, USA, 21 September 2016; pp. 1–6. [Google Scholar]
- Chauhan, V.K.; Dahiya, K.; Sharma, A. Problem Formulations and Solvers in Linear SVM: A Review. Artif. Intell. Rev. 2019, 52, 803–855. [Google Scholar] [CrossRef]
- Xie, J.; Alvarez-Fernandez, I.; Sun, W. A Review of Machine Learning Applications in Power System Resilience. In Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 4 August 2020; pp. 1–5. [Google Scholar]
- Martišauskas, L.; Augutis, J.; Krikštolaitis, R.; Urbonas, R.; Šarūnienė, I.; Kopustinskas, V. A Framework to Assess the Resilience of Energy Systems Based on Quantitative Indicators. Energies 2022, 15, 4040. [Google Scholar] [CrossRef]
- Zou, J.; Han, Y.; So, S.-S. Overview of Artificial Neural Networks. In Artificial Neural Networks; Livingstone, D.J., Ed.; Methods in Molecular BiologyTM; Humana Press: Totowa, NJ, USA, 2008; Volume 458, pp. 14–22. ISBN 978-1-58829-718-1. [Google Scholar]
- Nasrabadi, N.M. Pattern Recognition and Machine Learning. J. Electron. Imaging 2007, 16, 049901. [Google Scholar] [CrossRef]
- Maharjan, L.; Ditsworth, M.; Niraula, M.; Caicedo Narvaez, C.; Fahimi, B. Machine Learning Based Energy Management System for Grid Disaster Mitigation. IET Smart Grid 2019, 2, 172–182. [Google Scholar] [CrossRef]
- Dubey, A.K.; Jain, V. Comparative Study of Convolution Neural Network’s Relu and Leaky-Relu Activation Functions. In Applications of Computing, Automation and Wireless Systems in Electrical Engineering; Mishra, S., Sood, Y.R., Tomar, A., Eds.; Lecture Notes in Electrical Engineering; Springer: Singapore, 2019; Volume 553, pp. 873–880. ISBN 9789811367717. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980. [Google Scholar]
- Yang, N.; Dong, Z.; Wu, L.; Zhang, L.; Shen, X.; Chen, D.; Zhu, B.; Liu, Y. A Comprehensive Review of Security-Constrained Unit Commitment. J. Mod. Power Syst. Clean Energy 2022, 10, 562–576. [Google Scholar] [CrossRef]
- Saha, A.; Simic, V.; Senapati, T.; Dabic-Miletic, S.; Ala, A. A Dual Hesitant Fuzzy Sets-Based Methodology for Advantage Prioritization of Zero-Emission Last-Mile Delivery Solutions for Sustainable City Logistics. IEEE Trans. Fuzzy Syst. 2023, 31, 407–420. [Google Scholar] [CrossRef]
Evaluation Metrics | ||||
---|---|---|---|---|
Models | Accuracy | Precision | Recall | F1-Score |
LR | 99.96 | 99.95 | 99.97 | 99.96 |
DT | 99.95 | 99.95 | 99.96 | 99.95 |
SVM | 99.92 | 99.89 | 99.94 | 99.91 |
NB | 98.91 | 98.96 | 98.57 | 98.76 |
ANN | 60.69 | 33.44 | 50.00 | 40.08 |
Proposed Ensemble Classifier | 99.90 | 99.96 | 99.98 | 99.96 |
ML Models | Mean Absolute Error | Root Mean Square Error |
---|---|---|
LR | 0.00025 | 0.016100 |
DT | 0.00057 | 0.023800 |
SVM | 0.00088 | 0.029688 |
NB | 0.01223 | 0.110617 |
ANN | 0.326178 | 0.571120 |
Com No. 1 | Pre(hPa) 2 | Tem(C) 3 | WSp (m/s) 4 | WDir (deg) 5 | SR(W/m2) 6 | R (mm) 7 | Class |
---|---|---|---|---|---|---|---|
3 | 1012.917 | 14.429 | 2.667 | 106.699 | 0 | 0 | Operational |
5 | 1013.247 | 14.390 | 3.141 | 102.371 | 0 | 0 | Operational |
9 | 1012.876 | 20.277 | 2.120 | 156.114 | 333.671 | 0 | Operational |
13 | 1012.829 | 20.601 | 2.794 | 214.971 | 548.236 | 0 | Damaged |
14 | 1012.648 | 20.785 | 2.765 | 209.89 | 412.398 | 0 | Damaged |
53 | 1015.040 | 12.054 | 3.515 | 65.738 | 0 | 0 | Operational |
59 | 1016.296 | 20.209 | 4.081 | 302.274 | 675.432 | 0 | Damaged |
67 | 1016.969 | 15.482 | 1.834 | 121.943 | 0 | 0 | Operational |
47 | 1015.900 | 13.810 | 2.805 | 73.3100 | 0 | 0 | Operational |
17 | 1012.672 | 19.765 | 0.800 | 186.866 | 0 | 0 | Operational |
14,161 | 1002.664 | 28.213 | 3.968 | 132.535 | 0 | 0 | Operational |
19,292 | 1009.626 | 23.466 | 2.178 | 149.937 | 0 | 0 | Damaged |
30,280 | 1006.045 | 28.311 | 5.043 | 274.751 | 89.396 | 0 | Damaged |
30,282 | 1005.931 | 27.403 | 0.709 | 308.247 | 89.396 | 0 | Operational |
66,164 | 1001.678 | 28.620 | 2.125 | 154.453 | 0 | 0 | Damaged |
979 | 1016.091 | 16.468 | 1.264 | 72.3990 | 0 | 0 | Operational |
999 | 1015.462 | 19.598 | 5.260 | 251.148 | 518.165 | 0 | Damaged |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlHaddad, U.; Basuhail, A.; Khemakhem, M.; Eassa, F.E.; Jambi, K. Towards Sustainable Energy Grids: A Machine Learning-Based Ensemble Methods Approach for Outages Estimation in Extreme Weather Events. Sustainability 2023, 15, 12622. https://doi.org/10.3390/su151612622
AlHaddad U, Basuhail A, Khemakhem M, Eassa FE, Jambi K. Towards Sustainable Energy Grids: A Machine Learning-Based Ensemble Methods Approach for Outages Estimation in Extreme Weather Events. Sustainability. 2023; 15(16):12622. https://doi.org/10.3390/su151612622
Chicago/Turabian StyleAlHaddad, Ulaa, Abdullah Basuhail, Maher Khemakhem, Fathy Elbouraey Eassa, and Kamal Jambi. 2023. "Towards Sustainable Energy Grids: A Machine Learning-Based Ensemble Methods Approach for Outages Estimation in Extreme Weather Events" Sustainability 15, no. 16: 12622. https://doi.org/10.3390/su151612622
APA StyleAlHaddad, U., Basuhail, A., Khemakhem, M., Eassa, F. E., & Jambi, K. (2023). Towards Sustainable Energy Grids: A Machine Learning-Based Ensemble Methods Approach for Outages Estimation in Extreme Weather Events. Sustainability, 15(16), 12622. https://doi.org/10.3390/su151612622