The Use of Biologically Converted Agricultural Byproducts in Chicken Nutrition
Abstract
:1. Introduction
2. Agricultural Byproducts and Their Nutritional and Anti-Nutritional Factors
2.1. Volume of Biomass of Agricultural Byproducts
2.2. Nutritional Composition of Agricultural Byproduct
Feedstuffs | Ant Nutritional Factors | Reference |
---|---|---|
Soybean meal | Trypsin inhibitors, Lectins, Phytic Acid, Protease inhibitors, Saponins, Antivitamin | [25] |
Rapeseed meal | Glucosinolates, tannins, phenolic acids, phytic acid, and fiber | [33,34,39] |
Canola meal | Glucosinolates, tannins, crude fiber, and phytate | [40] |
Cassava peels | Cyanide and phytate | [48] |
Cotton seed meal | Gossypol | [26,27] |
Shrimp by product | Chitin | [30,31] |
Flaxseed Meal | Cyanogenic glycosides, phytic acid, and antivitamin B6 | [41,42] |
Mulberry leaf | Protease inhibitors, tannin tannic acid | [49,50] |
Groundnut shells, pigeon pea husk | Phytate and tannin | [7] |
Wheat straw and bran | Tannin, phytic acid | [51,52] |
Rice bran | Phytic acid | [53,54] |
2.3. Methods for Reducing Anti-Nutritional Factors
Types of Agricultural Byproducts | Treatment | Reduced Anti-Nutritional Factors | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tannins | Glucosinolates | Phytic Acid | Cyanide | Reference | ||||||
Before | After | Before | After | Before | After | Before | After | |||
Rapeseed meal | SSF by R. oligosporus | N.A. | N.A. | 63.4 | 36.3 (−42.8%) | 29.3 | 16.9 (−42.3%) | N.A. | N.A. | [66] |
S.S.F. by A. niger | N.A. | N.A. | 16.45 | 9.37 (−43.0%) | N.A. | N.A. | N.A. | N.A. | [65] | |
S.S.F. by A. niger | N.A. | N.A. | 23.79 | 16.51 (−30.6) | N.A. | N.A. | [72] | |||
Rapeseed Cake | S.S.F. by A. niger | N.A. | N.A. | NA | NA | 2.78 (%) | 1.54 (−44.60%) | N.A. | N.A. | [73] |
SSF by L. delbrueckii and B. subtilis | N.A. | N.A. | 64.56 μmol/g | 3.47 (−94.6%) | N.A. | N.A. | [74] | |||
Wheat straw | S.S.F. by E. fungi | 702 μg/100 g | 502 (−28.5%) | N.A. | N.A. | 200 μg/100 g | 175 (−12.5%) | N.A. | N.A. | [7] |
Pigeon pea | S.S.F. by E. fungi | 665 μg/100 g | 589 (−11.4%) | N.A. | N.A. | 611 μg/100 g | 298 (−51.2%) | N.A. | N.A. | [7] |
Groundnut | SSF by E. fungi | 454 μg/100 g | 314 (−30.8%) | N.A. | N.A. | 465 μg/100 g | 303 (−34.3%) | N.A. | N.A. | [7] |
Cassava peels | Mixture of Lactobacillus delbruckii and Lactobacillus coryneformis and Saccharomyces cerevisae | N.A. | N.A. | N.A. | N.A. | 1043.6 mg/100 g | 789.7 (−24.3%) | 44.6 mg/kg | 6.2 (−86.1%) | [48] |
Canola meal | S.S.F. by Aspergillus sojae, Aspergillus ficuum, and their co-cultures | N.A. | N.A. | 9.31 | 6.52 (−30.0%) | N.A. | N.A. | [75] | ||
Cotton seed meal | S.S.F. by L.A.B. | N.A. | N.A. | 77.18 μmol/g | 54.05 (−30.0%) | 7.71 μmol/g | 3.9 (−49.4%) | N.A. | N.A. | [76] |
Olive cake | S.S.F. by Filamentous fungi | 4.78 mg/g | 3.23 (−32.4%) | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | [77] |
Cassava peels | SSF | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | 14.7 | 1.4 (−90.5%) | [78] |
2.4. Nutritional Composition of Bioconverted Agricultural Byproducts
Agricultural Byproducts | Unfermented | Fermented | Reference | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CP | CF | Ash | Ca | P | Reference | CP | CF | Ash | Ca | P | ||
Palm kernel cake | 16.47 | 16.96 | 4.74 | N.A. | N.A. | [43] | 16.7 (+1.6) | 14.09 (−16.9) | 4.82 (+1.6) | N.A. | N.A. | [43] |
19.7 | 22.5 | 5.0 | N.A. | N.A. | [78] | 26.3 (+33.3) | 12.5 (−44.5) | 8.6 (+72) | N.A. | N.A. | [78] | |
Pineapple peel | 4.52 | 13.95 | 6.79 | N.A. | N.A. | [98] | 14.7–21.0 | N.A. | N.A. | N.A. | N.A. | [98] |
Dried Yam peel | 6.60 | 9.02 | 4.45 | N.A. | N.A. | [98] | 6.6–14.7 | N.A. | N.A. | N.A. | N.A. | [98] |
Cassava pulp | 3.0 | N.A. | N.A. | N.A. | N.A. | [99] | 22.6 | N.A. | N.A. | N.A. | N.A. | [100] |
2.02 | 14.6 | N.A. | N.A. | N.A. | [101] | 11.82 | 10.6 | N.A. | N.A. | N.A. | [101] | |
Cassava peels | 5.36 | N.A. | 6.05 | 3.47 | 1.60 | [102] | 21.5 | 11.7 | 7.2 | 0.03 | N.A. | [48] |
8.2 | 12.5 | 6.4 | 0.03 | N.A. | [48] | |||||||
12.3 | 14.7 | 9.4 | N.A. | N.A. | [78] | 19.0 (+55.4) | 13.5 (−8.6) | 11.8 (+26.0) | N.A. | N.A. | [78] | |
Cocoa pod husk | 8.2 | 18.3 | 11.3 | N.A. | N.A. | [78] | 16.0 (+94.8) | 16.9 (−7.2) | 20.8 (+83.1) | N.A. | N.A. | [78] |
Wheat straw | 3.45 | N.A. | 5.23 | N.A. | N.A. | [7] | 10.20 | N.A. | 5.2 | N.A. | N.A. | [7] |
Pigeon pea | 8.41 | N.A. | 1.95 | N.A. | N.A. | [7] | 16.41 | N.A. | 2.95 | N.A. | N.A. | [7] |
Groundnut | 4.35 | N.A. | 2.01 | N.A. | N.A. | [7] | 24.95 | N.A. | 3.06 | N.A. | N.A. | [7] |
Corn stover | 4.75 | N.A. | 2.61 | N.A. | N.A. | [103] | 7.65 | N.A. | 9.93 | N.A. | N.A. | [103] |
Olive cake mg/g DW | 42.65 | N.A. | N.A. | N.A. | N.A. | [77] | 82.83 | N.A. | N.A. | N.A. | N.A. | [77] |
Shrimp by product | 43.41 | 18.25% | N.A. | 5.54% | 1.31% | [71] | 48.5% | N.A. | N.A. | 7.57% | 3.14% | [104] |
39.29 | 7.79 | N.A. | 6.81 | 2.83 | [105] | |||||||
48.5% | N.A. | N.A. | 7.57% | 3.14% | [106] | |||||||
Rice bran | 11.4–17.4 | 10.4–20.0 | N.A. | N.A. | N.A. | [19] | N.A. | N.A. | N.A. | N.A. | ||
14.8% | N.A. | 9.4 | N.A. | N.A. | [107] | 26.6 (+49%) | N.A. | 13.9 (+48%) | N.A. | N.A. | [107] | |
8.8 | 8.3 | 7.4 | N.A. | N.A. | [108] | 15.3 | 6.7 | 7.0 | N.A. | N.A. | [108] | |
14.52 | 12.05 | 9.8 | N.A. | 1.74 | [54] | 16.58 | 9.35 | 13.7 | N.A. | 1. 88 | [54] | |
Rice straw | 5.60 | N.A. | N.A. | N.A. | [109] | 5.91–6.34% | N.A. | N.A. | N.A. | N.A. | [109] | |
N.A. | N.A. | 15.69% | N.A. | N.A. | [110] | N.A. | 27.84–32.63% | 20.53% | N.A. | N.A. | [110] | |
5.63 | 34.7 | 14.60 | N.A. | N.A. | [111] [112] | N.A. | 7.92% | N.A. | N.A. | N.A. | [113] | |
Wheat bran | 15.5 | 42.8 | N.A. | N.A. | [19] | 20.79 | 18.0 | 5.68 | N.A. | N.A. | [5,51] | |
18.36 | 15.67 | 5.46 | N.A. | N.A. | [5,51] | |||||||
Sugarcane bagasse | 1.57% | N.A. | N.A. | [109] | 2.57–3.01% | N.A. | N.A. | N.A. | N.A. | [109] | ||
3.75 | 36.8 | 2.4 | N.A. | N.A. | [111] [112] | N.A. | N.A. | N.A. | N.A. | N.A. | [111] [112] | |
Sweet sorghum | 4–8% | N.A. | N.A. | [114] | 35.7% | N.A. | N.A. | N.A. | N.A. | [115] | ||
sugar beet leaves | 10.94 | 7.9 | 12.50 | N.A. | N.A. | [111] [112] | 14.2% | N.A. | N.A. | N.A. | N.A. | [113] |
sugar beet pulp | 14.31 | 27.7 | 5.5 | N.A. | N.A. | [111] [112] | 17.9% | N.A. | N.A. | N.A. | N.A. | [113] |
Tomato leaves | 15.13 | 14.5 | 13.56 | N.A. | N.A. | [111] [112] | 18.53% | N.A. | N.A. | N.A. | N.A. | [113] |
Yam Peels | 7.72–11.33 | 9.50 | 9.80 | N.A. | N.A. | [58,116] | 14.44% | 5.49 | 4.85 | N.A. | N.A. | [58] |
3. Effects of Feeding Bioconverted Agricultural Byproducts to Chickens
3.1. The Impact of Feeding Bioconverted Byproducts on Performance and Product Quality in Broilers and Layers
Bioconverted Meal | Inclusion Level | Growth/Laying Performance | Carcass Yield | Meat/Egg Quality | Reference |
---|---|---|---|---|---|
Feather meal | 10% | Highest body weight gain, feed intake, and feed conversion ratio | Highest carcass yield | Highest protein content and the lowest fat content | [129] |
Corn, soybean meal, fish meal, and rice bran | 10%, 20% and 30% | The 30% level resulted in the highest feed intake and egg production | N.A. | Feeding of 30% increased yolk color and reduced egg cholesterol | [138] |
Plant fraction (corn, soybean meal, cottonseed meal, and rapeseed meal) | 5%, 10%, and 15% | Adding 5% significantly improved A.D.G. and A.D.F.I. in 1–42 days and also enhanced growth performance | N.A. | Fermented feed improved the meat quality, reduced the cholesterol content | [15] |
Rice bran | 1% | Improved egg-laying performance | N.A. | Reduced the levels of cholesterol in egg yolk | [139] |
Ginkgo-leaves | 0.5% | Improved laying rate and feed conversion ratio | N.A. | There was a decrease in cracked egg rate and egg-yolk cholesterol, while the concentrations of total polyunsaturated fatty acids were increased with F.G.L. supplementation | [140] |
Tea residues | 1%, 3% and 5% | Including 1% resulted in a significant increase in the egg-laying rate and average egg weight in birds | N.A. | Supplementation of 1% significantly improved the Haugh unit, whereas 3% improved the content of essential amino acids and total omega-3 polyunsaturated fatty acids in the eggs | [141] |
Corn and soybean meal | 250, 750, and 1500 g | N.A. | There was no effect on the carcass yield; however, the inclusion of 1500 g/t increased leg yield and reduced P.H. | There was no effect on the color, water holding capacity, cooking loss, and shear force, while the inclusion of 750 g/t decreased the lipid oxidation of breast meat | [142] |
3.2. Effects of Feeding Bioconverted Residues on Chicken Health
Types of Byproducts | Organism | Birds | Effect on Intestinal Morphology | Effect on Gut Microbiota | Reference |
---|---|---|---|---|---|
Palm Kernel Cake | L.A.B. | Broilers | Significantly increases duodenal V.H. and CD of jejunum and ileum | [151] | |
Basal diet (corn, soybean meal, corn gluten meal, dried distiller’s grain, and wheat bran) | Enzyme-bacteria co-fermented feed | Broilers | M.O.s and their metabolites could improve the gut microecological environment, increase disease resistance, and help maintain gut health. | [126] | |
Mixed substrate (corn, soybean meal, and wheat bran) | Clostridium butyricum, Lactobacillus crispatus, and Lactobacillus salivarius | Layers | Duodenal V.H. and VH/CD, jejunal V.H., and ileal VH/CD were significantly increased, while the jejunal CD was significantly decreased. The study found improved gut health by improving gut morphology. | Feeding fermented feed did not alter the major bacterial species in the cecum in laying hens. However, fermented dietary supplementation with Lactobacillus salivarius could improve gut health by altering the microbial composition and increasing microbial community richness. | [152] |
Soybean meal and miscellaneous meal (cottonseed meal: coconut meal at a 1:1 ratio) | Multistrain cultures (Bacillus, Saccharomyces, Lactobacillus, and Clostridium butyricum) | Layers | Dietary supplementation with 2 to 4% F.S.B.M. or F.M.M. had beneficial effects on gut health. V.H. and CD were significantly improved, resulting in a larger V.H. to CD ratio. | [89] | |
Dry basal feed (corn, soybean meal, wheat bran) with distilled water | Bacillus subtilis and Saccharomyces cerevisiae | Layers | They increased the V.H. of the duodenum, jejunum, and ileum in laying hens. Ileac CD also trended up for hens. However, there were no differences in the VH/CD ratio of the duodenum, jejunum, and ileum between the F.F. and CON groups; there were improvements in immune function and gut integrity. | The microecological environment of the cecum was also improved by increasing the abundance of Lactobacillus and decreasing the abundance of Campylobacter. | [14] |
Mixed diet (corn, wheat bran, and soybean meal) | Compound bacteria (Bacillus subtilis, Lactobacillus, yeast, Clostridium butyricum, and Lactobacillus salivarius) | Layers | Improved the intestinal immunity of laying hens. | The cecal microflora structure was improved. | [79] |
Astragalus | Lactobacillus plantarum (CGMCC 1.557) | Layers | There was an increased ileal bacterial community diversity with an increasing feeding time. At the strain level, Firmicutes, Bacteroidetes, and Proteobacteria were the most dominant strains in the chicken gut microbiota. | [153] |
3.3. Effects of Feeding Bioconverted Byproduct on Oxidative Stress in Chickens
Types of Recycled Byproducts | Microorganism | Oxidative Stress | Reference | ||||
---|---|---|---|---|---|---|---|
Malondialdehyde (M.D.A.) | Glutathione Peroxidase (G.P.X.) | Superoxide Dismutase (S.O.D.) | Total Antioxidant Capacity (T-AOC) | Catalase (C.A.T.) | |||
Grape pomace | Aspergillus niger | Not changed | N.A. | N.A. | Increased | [155] | |
Astragalus | Lactobacillus plantarum (CGMCC 1.557) | Reduced | Increased | Increased | Increased | Increased | [153] |
Pine needles | Aspergillus niger | Decreased | Increased | Increased | [167] | ||
Plant fraction (corn, cotton seed meal, soybean meal, and rapeseed meal) | Lactobacillus plantarum and Bacillus subtilis | Adding 15% fermented feed to broiler feed reduced serum M.D.A. levels. | N.A. | N.A. | Adding 15% fermented feed to broiler feed increased their T-AOC | N.A. | [15] |
Wheat bran | White-rot fungi | Decreased | [171] | ||||
Rapeseed meal | Bacillus subtilis, C. utilis and Enterococcus faecalis | N.A. | N.A. | It increases the levels of serum total S.O.D. | Increased the levels of serum T-AOC | N.A. | [61] |
Alfalfa meal | Bacillus subtilis | Decreased M.D.A. in serum | Increased the activities of G.P.X. | Increased the activities of total S.O.D. | N.A. | Increased the activities of C.A.T. | [172] |
Cottonseed meal | Bacillus subtilis ST-141 and Saccharomycetes N5 | Decreased M.D.A. in serum and liver | Increased levels of G.P.X. | Increased levels of total S.O.D. | Increased levels of T-AOC | N.A. | [173] |
3.4. Effects of Feeding Bioconverted Byproduct on Chicken Welfare
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural Waste Management Strategies for Environmental Sustainability. Environ. Res. 2022, 206, 112285. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). Poultry Sector: Global Overview. 2020. Available online: https://www.fao.org/poultry-production-products/production/en/ (accessed on 11 September 2020).
- FAO (Food and Agriculture Organization). Global Poultry Industry and Trends. Feed & Additive Magazine. Magazine (2021). 2021. Available online: https://www.feedandadditive.com (accessed on 7 September 2023).
- FAO (Food and Agriculture Organization). Global Food Losses and Food Waste—Extent, Causes and Prevention. 2020. Available online: http://www.fao.org/3/I2697e/I2697e.pdf (accessed on 7 September 2023).
- Mata-Alvarez, J.; Macé, S.; Llabres, P. Anaerobic Digestion of Organic Solid Wastes. An Overview of Research Achievements and Perspectives. Bioresour. Technol. 2000, 74, 3–16. [Google Scholar] [CrossRef]
- Chilakamarry, C.R.; Sakinah, A.M.; Zularisam, A.W.; Sirohi, R.; Khilji, I.A.; Ahmad, N.; Pandey, A. Advances in Solid-State Fermentation for Bioconversion of Agricultural Wastes to Value-Added Products: Opportunities and Challenges. Bioresour. Technol. 2022, 343, 126065. [Google Scholar] [CrossRef]
- Patil, R.H.; Patil, M.P.; Maheshwari, V.L. Microbial Transformation of Crop Residues into a Nutritionally Enriched Substrate and Its Potential Application in Livestock Feed. SN Appl. Sci. 2020, 2, 1140. [Google Scholar] [CrossRef]
- Canibe, N.; Jensen, B.B. Fermented Liquid Feed—Microbial and Nutritional Aspects and Impact on Enteric Diseases in Pigs. Anim. Feed Sci. Technol. 2012, 173, 17–40. [Google Scholar] [CrossRef]
- Sugiharto, S.; Ranjitkar, S. Recent Advances in Fermented Feeds towards Improved Broiler Chicken Performance, Gastrointestinal Tract Microecology and Immune Responses: A Review. Anim. Nutr. 2019, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shahowna, E.M.; Mahala, A.G.; Mokhtar, A.M.; Amasaib, E.O.; Attaelmnan, B. Evaluation of Nutritive Value of Sugar Cane Bagasse Fermented with Poultry Litter as Animal Feed. Afr. J. Food Sci. Technol. 2013, 4, 106–109. [Google Scholar]
- Ni, Y.J.; Liang, Y.; Tian, D.D. Effects of Fermented Unconventional Protein Feed on Growth Performance and Nutrient Digestibility of Broilers. Cereal Feed. Ind. 2012, 4, 56–59. [Google Scholar]
- Boroojeni, F.G.; Senz, M.; Kozłowski, K.; Boros, D.; Wisniewska, M.; Rose, D.; Männer, K.; Zentek, J. The Effects of Fermentation and Enzymatic Treatment of Pea on Nutrient Digestibility and Growth Performance of Broilers. Animal 2017, 11, 1698–1707. [Google Scholar] [CrossRef]
- Yan, J.; Zhou, B.; Xi, Y.; Huan, H.; Li, M.; Yu, J.; Zhu, H.; Dai, Z.; Ying, S.; Zhou, W. Fermented Feed Regulates Growth Performance and the Cecal Microbiota Community in Geese. Poult. Sci. 2019, 98, 4673–4684. [Google Scholar] [CrossRef]
- Guo, W.; Xu, L.; Guo, X.; Wang, W.; Hao, Q.; Wang, S.; Zhu, B. The Impacts of Fermented Feed on Laying Performance, Egg Quality, Immune Function, Intestinal Morphology and Microbiota of Laying Hens in the Late Laying Cycle. Animal 2022, 16, 100676. [Google Scholar] [CrossRef]
- Sun, H.; Chen, D.; Cai, H.; Chang, W.; Wang, Z.; Liu, G.; Deng, X.; Chen, Z. Effects of Fermenting the Plant Fraction of a Complete Feed on the Growth Performance, Nutrient Utilization, Antioxidant Functions, Meat Quality, and Intestinal Microbiota of Broilers. Animals 2022, 12, 2870. [Google Scholar] [CrossRef] [PubMed]
- Supriyati, S.; Haryati, T.; Susanti, T.; Susana, I.W.R. Nutritional Value of Rice Bran Fermented by Bacillus Amyloliquefaciens and Humic Substances and Its Utilization as a Feed Ingredient for Broiler Chickens. Asian-Australas. J. Anim. Sci. 2015, 28, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Sugiharto, S.; Jensen, B.B.; Jensen, K.H.; Lauridsen, C. Prevention of Enterotoxigenic Escherichia Coli Infections in Pigs by Dairy-Based Nutrition. CABI Rev. 2015, 1–16. [Google Scholar] [CrossRef]
- Agamuthu, P. Challenges and Opportunities in Agro-Waste Management: An Asian Perspective. In Proceedings of the Inaugural Meeting of First Regional 3R Forum in Asia, Tokyo, Japan, 11–12 November 2009; University of Malasiya: Kuala Lumpur, Malaysia, 2009; pp. 11–12. [Google Scholar]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Bio-Processing of Agro-Byproducts to Animal Feed. Crit. Rev. Biotechnol. 2012, 32, 382–400. [Google Scholar] [CrossRef] [PubMed]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-Industrial Wastes and Their Utilization Using Solid State Fermentation: A Review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef]
- Ravindran, R.; Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. A Review on Bioconversion of Agro-Industrial Wastes to Industrially Important Enzymes. Bioengineering 2018, 5, 93. [Google Scholar] [CrossRef] [PubMed]
- Ramteke, R.; Doneria, R.; Gendley, M.K. Antinutritional Factors in Feed and Fodder Used for Livestock and Poultry Feeding. Acta Sci. Nutr. Health 2019, 3, 39–48. [Google Scholar]
- López-Gámez, G.; Soliva-Fortuny, R.; Elez-Martínez, P. Food Processing Interventions to Improve the Bioaccessibility and Bioavailability of Plant Food Nutrients. In Engineering Plant-Based Food Systems; Elsevier: Amsterdam, The Netherlands, 2023; pp. 277–298. [Google Scholar]
- Francis, G.; Makkar, H.P.; Becker, K. Antinutritional Factors Present in Plant-Derived Alternate Fish Feed Ingredients and Their Effects in Fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- Small, B.C. Nutritional Physiology. In Fish Nutrition; Elsevier: Amsterdam, The Netherlands, 2022; pp. 593–641. [Google Scholar]
- Lordelo, M.M.; Calhoun, M.C.; Dale, N.M.; Dowd, M.K.; Davis, A.J. Relative Toxicity of Gossypol Enantiomers in Laying and Broiler Breeder Hens. Poult. Sci. 2007, 86, 582–590. [Google Scholar] [CrossRef]
- Mahmood, F.; Khan, M.Z.; Khan, A.; Muhammad, G.; Javed, I. Lysine Induced Modulation of Toxico-Pathological Effects of Cottonseed Meal in Broiler Breeder Males. Pak. J. Zool. 2011, 43, 357–365. [Google Scholar]
- Henry, M.H.; Pesti, G.M.; Brown, T.P. Pathology and Histopathology of Gossypol Toxicity in Broiler Chicks. Avian Dis. 2001, 45, 598–604. [Google Scholar] [CrossRef]
- Punekar, N.S.; Punekar, N.S. Enzyme Kinetic Data: Collection and Analysis. In ENZYMES: Catalysis, Kinetics and Mechanisms; Springer: Berlin/Heidelberg, Germany, 2018; pp. 193–211. [Google Scholar]
- Lin, H.-T.V.; Huang, M.-Y.; Kao, T.-Y.; Lu, W.-J.; Lin, H.-J.; Pan, C.-L. Production of Lactic Acid from Seaweed Hydrolysates via Lactic Acid Bacteria Fermentation. Fermentation 2020, 6, 37. [Google Scholar] [CrossRef]
- Saleh, A.A.; Paray, B.A.; Dawood, M.A. Olive Cake Meal and Bacillus Licheniformis Impacted the Growth Performance, Muscle Fatty Acid Content, and Health Status of Broiler Chickens. Animals 2020, 10, 695. [Google Scholar] [CrossRef]
- Pandey, A.; Soccol, C.R.; Mitchell, D. New Developments in Solid State Fermentation: I-Bioprocesses and Products. Process Biochem. 2000, 35, 1153–1169. [Google Scholar] [CrossRef]
- Konkol, D.; Szmigiel, I.; Domżał-Kędzia, M.; Kułażyński, M.; Krasowska, A.; Opaliński, S.; Korczyński, M.; Łukaszewicz, M. Biotransformation of Rapeseed Meal Leading to Production of Polymers, Biosurfactants, and Fodder. Bioorganic Chem. 2019, 93, 102865. [Google Scholar] [CrossRef]
- Lee, J.W.; Woyengo, T.A. Growth Performance, Organ Weights, and Blood Parameters of Nursery Pigs Fed Diets Containing Increasing Levels of Cold-Pressed Canola Cake. J. Anim. Sci. 2018, 96, 4704–4712. [Google Scholar] [CrossRef] [PubMed]
- Jacela, J.Y.; DeRouchey, J.M.; Tokach, M.D.; Goodband, R.D.; Nelssen, J.L.; Renter, D.G.; Dritz, S.S. Feed Additives for Swine: Fact Sheets–Flavors and Mold Inhibitors, Mycotoxin Binders, and Antioxidants. J. Swine Health Prod. 2010, 18, 27–32. [Google Scholar] [CrossRef]
- Nissar, J.; Ahad, T.; Naik, H.R.; Hussain, S.Z. A Review Phytic Acid: As Antinutrient or Nutraceutical. J. Pharmacogn. Phytochem. 2017, 6, 1554–1560. [Google Scholar]
- Hashmi, S.I.; Satwadhar, P.N.; Khotpal, R.R.; Deshpande, H.W.; Syed, K.A.; Vibhute, B.P. Rapeseed Meal Nutraceuticals. J. Oilseed Brassica 2016, 1, 43–54. [Google Scholar]
- Tanwar, B.; Modgil, R.; Goyal, A. Antinutritional Factors and Hypocholesterolemic Effect of Wild Apricot Kernel (Prunus Armeniaca L.) as Affected by Detoxification. Food Funct. 2018, 9, 2121–2135. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Liu, X.; Xiao, Q.; Zhang, F.; Liu, N.; Tang, L.; Wang, J.; Ma, X.; Tan, B.; Chen, J. Rapeseed Meal and Its Application in Pig Diet: A Review. Agriculture 2022, 12, 849. [Google Scholar] [CrossRef]
- Kocher, A.; Choct, M.; Porter, M.D.; Broz, J. The Effects of Enzyme Addition to Broiler Diets Containing High Concentrations of Canola or Sunflower Meal. Poult. Sci. 2000, 79, 1767–1774. [Google Scholar] [CrossRef]
- Cho, H.-J.; Do, B.-K.; Shim, S.-M.; Kwon, H.; Lee, D.-H.; Nah, A.-H.; Choi, Y.-J.; Lee, S.-Y. Determination of Cyanogenic Compounds in Edible Plants by Ion Chromatography. Toxicol. Res. 2013, 29, 143–147. [Google Scholar] [CrossRef]
- Mayengbam, S.S. Characterization, Quantification, and In Vivo Effects of Vitamin B6 Antagonists from Flaxseed on Amino Acid Metabolism in a Rodent Model of Moderate Vitamin B6 Deficiency. 2014. Available online: https://mspace.lib.umanitoba.ca/items/d9f6cd31-4b9b-4ab3-9874-2e5b5505e6b1 (accessed on 7 September 2023).
- Alshelmani, M.I.; Loh, T.C.; Foo, H.L.; Lau, W.H.; Sazili, A.Q. Biodegradation of Palm Kernel Cake by Cellulolytic and Hemicellulolytic Bacterial Cultures through Solid State Fermentation. Sci. World J. 2014, 2014, 729852. [Google Scholar] [CrossRef]
- Fan, S.-P.; Jiang, L.-Q.; Chia, C.-H.; Fang, Z.; Zakaria, S.; Chee, K.-L. High Yield Production of Sugars from Deproteinated Palm Kernel Cake under Microwave Irradiation via Dilute Sulfuric Acid Hydrolysis. Bioresour. Technol. 2014, 153, 69–78. [Google Scholar] [CrossRef]
- Sundu, B.; Kumar, A.; Dingle, J. Palm Kernel Meal in Broiler Diets: Effect on Chicken Performance and Health. World’s Poult. Sci. J. 2006, 62, 316–325. [Google Scholar] [CrossRef]
- Alimon, A.R. The Nutritive Value of Palm Kernel Cake for Animal Feed. Palm Oil Dev 2004, 40, 12–14. [Google Scholar]
- Canibe, N.; Jensen, B.B. Fermented and Nonfermented Liquid Feed to Growing Pigs: Effect on Aspects of Gastrointestinal Ecology and Growth Performance. J. Anim. Sci. 2003, 81, 2019–2031. [Google Scholar] [CrossRef]
- Oboh, G. Nutrient Enrichment of Cassava Peels Using a Mixed Culture of Saccharomyces Cerevisae and Lactobacillus Spp Solid Media Fermentation Techniques. Electron. J. Biotechnol. 2006, 9. [Google Scholar] [CrossRef]
- Ding, Y.; Jiang, X.; Yao, X.; Zhang, H.; Song, Z.; He, X.; Cao, R. Effects of Feeding Fermented Mulberry Leaf Powder on Growth Performance, Slaughter Performance, and Meat Quality in Chicken Broilers. Animals 2021, 11, 3294. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Yang, J.; Zhang, J.; Meng, G.; Lu, Q.; Yang, X.; Zhao, P.; Li, Y. Physicochemical Properties and Elimination of the Activity of Anti-Nutritional Serine Protease Inhibitors from Mulberry Leaves. Molecules 2022, 27, 1820. [Google Scholar] [CrossRef]
- Hassan, E.G.; Alkareem, A.M.A.; Mustafa, A.M.I. Effect of Fermentation and Particle Size of Wheat Bran on the Antinutritional Factors and Bread Quality. Pak. J. Nutr. 2008, 7, 521–526. [Google Scholar] [CrossRef]
- Shahryari, Z.; Fazaelipoor, M.H.; Setoodeh, P.; Nair, R.B.; Taherzadeh, M.J.; Ghasemi, Y. Utilization of Wheat Straw for Fungal Phytase Production. Int. J. Recycl. Org. Waste Agric. 2018, 7, 345–355. [Google Scholar] [CrossRef]
- Bidura, I.; Mahardika, I.G.; Suyadnya, I.P.; Partama, I.G.; Oka, I.G.L.; Candrawati, D.; Aryani, I. The Implementation of Saccharomyces spp. n-2 Isolate Culture (Isolation from Traditional Yeast Culture) for Improving Feed Quality and Performance of Male Bali Duckling. Agric. Sci. Res. J. 2012, 2, 486–492. [Google Scholar]
- Ahmad, A.; Anjum, A.A.; Rabbani, M.; Ashraf, K.; Awais, M.M.; Nawaz, M.; Ahmad, N.; Asif, A.; Sana, S. Effect of Fermented Rice Bran on Growth Performance and Bioavailability of Phosphorus in Broiler Chickens. Indian J. Anim. Res. 2019, 53, 361–365. [Google Scholar] [CrossRef]
- Parmar, A.B.; Patel, V.R.; Usadadia, S.V.; Rathwa, S.D.; Prajapati, D.R. A Solid State Fermentation, Its Role in Animal Nutrition: A Review. Int. J. Chem. Stud. 2019, 7, 4626–4633. [Google Scholar]
- Abdul Manan, M.; Webb, C. Modern Microbial Solid State Fermentation Technology for Future Biorefineries for the Production of Added-Value Products. Biofuel Res. J. 2017, 4, 730–740. [Google Scholar] [CrossRef]
- Heiniö, R.-L.; Katina, K.; Wilhelmson, A.; Myllymäki, O.; Rajamäki, T.; Latva-Kala, K.; Liukkonen, K.-H.; Poutanen, K. Relationship between Sensory Perception and Flavour-Active Volatile Compounds of Germinated, Sourdough Fermented and Native Rye Following the Extrusion Process. LWT-Food Sci. Technol. 2003, 36, 533–545. [Google Scholar] [CrossRef]
- Yafetto, L.; Odamtten, G.T.; Birikorang, E.; Adu, S. Protein Enhancement of Yam (Dioscorea Rotundata) Peels with Single-or Co-Inoculation of Aspergillus Niger van Tieghem and Trichoderma Viride Pers Ex Fr. under Solid-State Fermentation. Ghana J. Sci. 2020, 61, 27–37. [Google Scholar] [CrossRef]
- Yusuf, N.D.; Ogah, D.M.; Hassan, D.I.; Musa, M.M.; Doma, U.D. Effect of Decorticated Fermented Prosopis Seed Meal (Prosopis Africana) on Growth Performance of Broiler Chicken. Int. J. Poult. Sci. 2008, 7, 1054–1057. [Google Scholar] [CrossRef]
- Feng, J.; Liu, X.; Xu, Z.R.; Wang, Y.Z.; Liu, J.X. Effects of Fermented Soybean Meal on Digestive Enzyme Activities and Intestinal Morphology in Broilers. Poult. Sci. 2007, 86, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, Y.; Li, A.; Wang, Z.; Zhang, X.; Yun, T.; Qiu, L.; Yin, Y. Effects of Fermented Rapeseed Meal on Antioxidant Functions, Serum Biochemical Parameters and Intestinal Morphology in Broilers. Food Agric. Immunol. 2016, 27, 182–193. [Google Scholar] [CrossRef]
- Yacout, M.H.M. Anti-Nutritional Factors & Its Roles in Animal Nutrition. J. Dairy Vet. Anim. Res. 2016, 4, 237–239. [Google Scholar]
- Chiang, G.; Lu, W.Q.; Piao, X.S.; Hu, J.K.; Gong, L.M.; Thacker, P.A. Effects of Feeding Solid-State Fermented Rapeseed Meal on Performance, Nutrient Digestibility, Intestinal Ecology and Intestinal Morphology of Broiler Chickens. Asian-Australas. J. Anim. Sci. 2009, 23, 263–271. [Google Scholar] [CrossRef]
- Xu, F.Z.; Li, L.M.; Liu, H.J.; Zhan, K.; Qian, K.; Wu, D.; Ding, X.L. Effects of Fermented Soybean Meal on Performance, Serum Biochemical Parameters and Intestinal Morphology of Laying Hens. J. Anim. Vet. Adv. 2012, 11, 81–86. [Google Scholar] [CrossRef]
- Shi, C.; He, J.; Wang, J.; Yu, J.; Yu, B.; Mao, X.; Zheng, P.; Huang, Z.; Chen, D. Effects of Aspergillus Niger Fermented Rapeseed Meal on Nutrient Digestibility, Growth Performance and Serum Parameters in Growing Pigs. Anim. Sci. J. 2016, 87, 557–563. [Google Scholar] [CrossRef]
- Vig, A.P.; Walia, A. Beneficial Effects of Rhizopus Oligosporus Fermentation on Reduction of Glucosinolates, Fibre and Phytic Acid in Rapeseed (Brassica Napus) Meal. Bioresour. Technol. 2001, 78, 309–312. [Google Scholar]
- Tripathi, M.K.; Mishra, A.S. Glucosinolates in Animal Nutrition: A Review. Anim. Feed Sci. Technol. 2007, 132, 1–27. [Google Scholar] [CrossRef]
- Tang, J.W.; Sun, H.; Yao, X.H.; Wu, Y.F.; Wang, X.; Feng, J. Effects of Replacement of Soybean Meal by Fermented Cottonseed Meal on Growth Performance, Serum Biochemical Parameters and Immune Function of Yellow-Feathered Broilers. Asian-Australas. J. Anim. Sci. 2012, 25, 393–400. [Google Scholar] [CrossRef]
- Xiong, J.L.; Wang, Z.J.; Miao, L.H.; Meng, F.T.; Wu, L.Y. Growth Performance and Toxic Response of Broilers Fed Diets Containing Fermented or Unfermented Cottonseed Meal. J. Anim. Feed Sci. 2016, 25, 348–353. [Google Scholar] [CrossRef]
- Pulvirenti, A.; De Vero, L.; Blaiotta, G.; Sidari, R.; Iosca, G.; Gullo, M.; Caridi, A. Selection of Wine Saccharomyces Cerevisiae Strains and Their Screening for the Adsorption Activity of Pigments, Phenolics and Ochratoxin A. Fermentation 2020, 6, 80. [Google Scholar] [CrossRef]
- Abun, A.; Saefulhadjar, D.; Widjastuti, T.; Haetami, K.; Wiradimadja, R. Energy-Protein-Consentrate as Product of Glucosamine Extract from Shrimp Waste on Performance Ofnative Chicken. Int. J. Environ. Agric. Biotechnol. 2017, 2, 238801. [Google Scholar] [CrossRef]
- Tie, Y.; Li, L.; Liu, J.; Liu, C.; Fu, J.; Xiao, X.; Wang, G.; Wang, J. Two-Step Biological Approach for Treatment of Rapeseed Meal. J. Food Sci. 2020, 85, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; He, J.; Yu, J.; Yu, B.; Huang, Z.; Mao, X.; Zheng, P.; Chen, D. Solid State Fermentation of Rapeseed Cake with Aspergillus Niger for Degrading Glucosinolates and Upgrading Nutritional Value. J. Anim. Sci. Biotechnol. 2015, 6, 13. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, M.; Chang, Y. Degradation of Glucosinolates in Rapeseed Meal by Lactobacillus Delbrueckii and Bacillus Subtilis. Grain Oil Sci. Technol. 2020, 3, 70–76. [Google Scholar] [CrossRef]
- Olukomaiya, O.O.; Fernando, W.C.; Mereddy, R.; Li, X.; Sultanbawa, Y. Solid-State Fermentation of Canola Meal with Aspergillus Sojae, Aspergillus Ficuum and Their Co-Cultures: Effects on Physicochemical, Microbiological and Functional Properties. LWT 2020, 127, 109362. [Google Scholar] [CrossRef]
- Yusuf, H.A.; Piao, M.; Ma, T.; Huo, R.; Tu, Y. Effect of Lactic Acid Bacteria and Yeast Supplementation on Anti-Nutritional Factors and Chemical Composition of Fermented Total Mixed Ration Containing Cottonseed Meal or Rapeseed Meal. Anim. Biosci. 2022, 35, 556. [Google Scholar] [CrossRef]
- Chebaibi, S.; Grandchamp, M.L.; Burgé, G.; Clément, T.; Allais, F.; Laziri, F. Improvement of Protein Content and Decrease of Anti-Nutritional Factors in Olive Cake by Solid-State Fermentation: A Way to Valorize This Industrial by-Product in Animal Feed. J. Biosci. Bioeng. 2019, 128, 384–390. [Google Scholar] [CrossRef]
- Lateef, A.; Oloke, J.K.; Gueguim Kana, E.B.; Oyeniyi, S.O.; Onifade, O.R.; Oyeleye, A.O.; Oladosu, O.C.; Oyelami, A.O. Improving the Quality of Agro-Wastes by Solid-State Fermentation: Enhanced Antioxidant Activities and Nutritional Qualities. World J. Microbiol. Biotechnol. 2008, 24, 2369–2374. [Google Scholar] [CrossRef]
- Guo, L.; Lv, J.; Liu, Y.; Ma, H.; Chen, B.; Hao, K.; Feng, J.; Min, Y. Effects of Different Fermented Feeds on Production Performance, Cecal Microorganisms, and Intestinal Immunity of Laying Hens. Animals 2021, 11, 2799. [Google Scholar] [CrossRef]
- Purwadaria, T.; Nirwana, N.; Ketaren, P.P.; Pradono, D.I.; Widyastuti, Y. Synergistic Activity of Enzymes Produced by Eupenicillium Javanicum and Aspergillus Niger NRRL 337 on Palm Oil Factory Wastes. BIOTROPIA-Southeast Asian J. Trop. Biol. 2003. [Google Scholar] [CrossRef]
- Pinto, G.A.; Leite, S.G.; Terzi, S.C.; Couri, S. Selection of Tannase-Producing Aspergillus Niger Strains. Braz. J. Microbiol. 2001, 32, 24–26. [Google Scholar] [CrossRef]
- Mathivanan, R.; Selvaraj, P.; Nanjappan, K. Feeding of Fermented Soybean Meal on Broiler Performance. Int. J. Poult. Sci. 2006, 5, 868–872. [Google Scholar]
- Haddar, A.; Hmidet, N.; Ghorbel-Bellaaj, O.; Fakhfakh-Zouari, N.; Sellami-Kamoun, A.; Nasri, M. Alkaline Proteases Produced by Bacillus Licheniformis RP1 Grown on Shrimp Wastes: Application in Chitin Extraction, Chicken Feather-Degradation and as a Dehairing Agent. Biotechnol. Bioprocess Eng. 2011, 16, 669–678. [Google Scholar] [CrossRef]
- Fujita, J.; Shigeta, S.; Yamane, Y.-I.; Fukuda, H.; Kizaki, Y.; Wakabayashi, S.; Ono, K. Production of Two Types of Phytase from Aspergillus Oryzae during Industrial Koji Making. J. Biosci. Bioeng. 2003, 95, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Taheri, H.R.; Moravej, H.; Tabandeh, F.; Zaghari, M.; Shivazad, M. Screening of Lactic Acid Bacteria toward Their Selection as a Source of Chicken Probiotic. Poult. Sci. 2009, 88, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Tang, J.-W.; Yao, X.-H.; Wu, Y.-F.; Wang, X.; Feng, J. Improvement of the Nutritional Quality of Cottonseed Meal by Bacillus Subtilis and the Addition of Papain. Int. J. Agric. Biol. 2012, 14, 563–568. [Google Scholar]
- Hardin, E.; Castro, F.L.S.; Kim, W.K. Keel Bone Injury in Laying Hens: The Prevalence of Injuries in Relation to Different Housing Systems, Implications, and Potential Solutions. World’s Poult. Sci. J. 2019, 75, 285–292. [Google Scholar] [CrossRef]
- Missotten, J.A.; Michiels, J.; Ovyn, A.; De Smet, S.; Dierick, N.A. Fermented Liquid Feed for Pigs. Arch. Anim. Nutr. 2010, 64, 437–466. [Google Scholar] [CrossRef]
- Lu, Z.; Zeng, N.; Jiang, S.; Wang, X.; Yan, H.; Gao, C. Dietary Replacement of Soybean Meal by Fermented Feedstuffs for Aged Laying Hens: Effects on Laying Performance, Egg Quality, Nutrient Digestibility, Intestinal Health, Follicle Development, and Biological Parameters in a Long-Term Feeding Period. Poult. Sci. 2023, 102, 102478. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, Y.; Lu, Z.; Wang, Y. Solid-State Fermentation of Corn-Soybean Meal Mixed Feed with Bacillus Subtilis and Enterococcus Faecium for Degrading Antinutritional Factors and Enhancing Nutritional Value. J. Anim. Sci. Biotechnol. 2017, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.-H.; Park, S.-E.; Yoo, S.-A.; Lee, K.I.; Na, C.-S.; Son, H.-S. Metabolite Profiling of Makgeolli for the Understanding of Yeast Fermentation Characteristics during Fermentation and Aging. Process Biochem. 2016, 51, 1363–1373. [Google Scholar] [CrossRef]
- Iyayi, E.A. Changes in the Cellulose, Sugar and Crude Protein Contents of Agro-Industrial by-Products Fermented with Aspergillus niger, Aspergillus flavus and Penicillium Sp. Afr. J. Biotechnol. 2004, 3, 186–188. [Google Scholar]
- Oboh, G.; Akindahunsi, A.A.; Oshodi, A.A. Nutrient and Anti-Nutrient Contents of Aspergillus Niger-Fermented Cassava Products (Flour and Gari). J. Food Compos. Anal. 2002, 15, 617–622. [Google Scholar] [CrossRef]
- Begum, M.; Alimon, A.R. Bioconversion and Saccharification of Some Lignocellulosic Wastes by Aspergillus Oryzae ITCC-4857.01 for Fermentable Sugar Production. Electron. J. Biotechnol. 2011, 14, 3. [Google Scholar] [CrossRef]
- Fazhi, X.; Lvmu, L.; Jiaping, X.; Kun, Q.; Zhide, Z.; Zhangyi, L. Effects of Fermented Rapeseed Meal on Growth Performance and Serum Parameters in Ducks. Asian-Australas. J. Anim. Sci. 2011, 24, 678–684. [Google Scholar] [CrossRef]
- Hardini, D. The Nutrient Evaluation of Fermented Rice Bran as Poultry Feed. Int. J. Poult. Sci. 2010, 9, 152–154. [Google Scholar] [CrossRef]
- Abun, A.; Widjastuti, T.; Haetami, K. The Effect of Fermented Shrimp Waste in the Ration on the Performance of Local Chickens. 2021. Available online: https://www.gajrc.com/media/articles/GAJAB_36_85-91.pdf (accessed on 7 September 2023).
- Aruna, T.E.; Aworh, O.C.; Ezekiel, O.O. Effect of Administration of Saccharomyces Cerevisiae and Trichoderma Viride Fermented Yam and Pineapple Peels on Essential Organs of Wistar Rats. Ann. Food Sci. Technol. 2018, 19, 369–377. [Google Scholar]
- Grace, M.R. Cassava Processing; Food and Agriculture Organization of the United Nations: Rome, Italy, 1977. [Google Scholar]
- Yafetto, L. Protein Enrichment of Cassava Pulp by Solid-State Fermentation Using Aspergillus Niger. Stud. Fungi 2018, 3, 7–18. [Google Scholar] [CrossRef]
- Khempaka, S.; Thongkratok, R.; Okrathok, S.; Molee, W. An Evaluation of Cassava Pulp Feedstuff Fermented with A. Oryzae, on Growth Performance, Nutrient Digestibility and Carcass Quality of Broilers. J. Poult. Sci. 2014, 51, 71–79. [Google Scholar] [CrossRef]
- Morgan, N.K.; Choct, M. Cassava: Nutrient Composition and Nutritive Value in Poultry Diets. Anim. Nutr. 2016, 2, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Luo, Y.; Luo, L.; Zhang, H.; Liao, Y.; Gou, C. Enhancement of the Nutritional Value of Fermented Corn Stover as Ruminant Feed Using the Fungi Pleurotus spp. Sci. Rep. 2021, 11, 111961. [Google Scholar] [CrossRef] [PubMed]
- Hasbuna, A.; Widjastuti, T.; Haetami, K. Bioconversion of Shrimp Waste with Fermentation Stage Process on Proximate Analysis and Digestibility Values of Feed. Eur. J. Agric. Food Sci. 2021, 3, 36–40. [Google Scholar] [CrossRef]
- Abun, T.W.; Haetami, K. Bioprocessing of Shrimp Waste and Its Effect on the Production and Quality of Eggs from Domestic Laying Hens. Int. J. Poult. Sci 2019, 18, 530–537. [Google Scholar]
- Abun, A.; Widjastuti, T.; Haetami, K. The Effect of Treatment of Shrimp Waste with Three Microbial on Nutrient Content and Digestibility of Feed in Native Chicken. World J. Adv. Res. Rev. 2022, 15, 619–625. [Google Scholar] [CrossRef]
- Kupski, L.; Cipolatti, E.; da Rocha, M.; dos Santos Oliveira, M.; de Almeida Souza-Soares, L.; Badiale-Furlong, E. Solid-State Fermentation for the Enrichment and Extraction of Proteins and Antioxidant Compounds in Rice Bran by Rhizopus Oryzae. Braz. Arch. Biol. Technol. 2012, 55, 937–942. [Google Scholar] [CrossRef]
- Kang, H.K.; Kim, J.H.; Kim, C.H. Effect of Dietary Supplementation with Fermented Rice Bran on the Growth Performance, Blood Parameters and Intestinal Microflora of Broiler Chickens. Eur. Poult. Sci. 2015, 79. [Google Scholar] [CrossRef]
- Valentino, M.J.G.; Ganado, L.S.; Undan, J.R. Single Cell Protein Potential of Endophytic Fungi Associated with Bamboo Using Rice Bran as Substrate. Adv. Appl. Sci. Res 2016, 7, 68–72. [Google Scholar]
- Santiago, J.C.; David, E.S.; Valentino, M.J.G. Proximate Composition Profiling of the Rice Straw Enriched with Mycoprotein of Fungal Endophytes. Adv. Appl. Sci. Res. 2016, 7, 100–103. [Google Scholar]
- Farghaly, M.S. Biological or Chemical Treatment of Rice Straw for Ruminant. Ph.D. Thesis, Faculty of Agriculture Cairo University, Giza, Egypt, 1993. [Google Scholar]
- Mohamed, I.M.E. Effect of Mechanical, Chemical and/or Biological Treatment of Roughage on Ruminal Activity. Ph.D. Thesis, Faculty of Agriculture Cairo University, Giza, Egypt, 2001. [Google Scholar]
- Osama, A.S.; Khaled, M.A.; Abir, M.H. Bioconversion of Some Agricultural Wastes into Animal Feed by Trichoderma spp. J. Am. Sci. 2013, 9, 203–212. [Google Scholar]
- Villas-Bôas, S.G.; Esposito, E.; Mitchell, D.A. Microbial Conversion of Lignocellulosic Residues for Production of Animal Feeds. Anim. Feed Sci. Technol. 2002, 98, 1–12. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Dai, S. Production of Protein Feed from Sweet Sorghum Stalk by the Two-Step Solid State Fermentation. J. Biofertil. Biopestic. 2011, 3, 112. [Google Scholar]
- Lawal, M.O.; Aderolu, A.Z.; Ajayi, J.A.; Soyinka, O.O. Dietary Effects of Yam Peels on the Growth and Haematology of Clarias Gariepinus (BURCHELL, 1822) Juveniles. Zoologist 2012, 10, 13–17. [Google Scholar]
- Wang, J.; Wang, J.; Fu, Z.; Lou, P.; Ren, H. Effects of Dietary Calcium and Phosphorus Levels on Bone Growth in Broilers from 1 to 3 Weeks of Age. Chin. J. Anim. Nutr. 2010, 22, 1088–1095. [Google Scholar]
- Alshelmani, M.I.; Loh, T.C.; Foo, H.L.; Sazili, A.Q.; Lau, W.H. Effect of Feeding Different Levels of Palm Kernel Cake Fermented by Paenibacillus Polymyxa ATCC 842 on Nutrient Digestibility, Intestinal Morphology, and Gut Microflora in Broiler Chickens. Anim. Feed Sci. Technol. 2016, 216, 216–224. [Google Scholar] [CrossRef]
- Alshelmani, M.I.; Loh, T.C.; Foo, H.L.; Sazili, A.Q.; Lau, W.H. Effect of Solid State Fermentation on Nutrient Content and Ileal Amino Acids Digestibility of Palm Kernel Cake in Broiler Chickens. Indian J. Anim. Sci. 2017, 87, 1135–1140. [Google Scholar] [CrossRef]
- Muangkeow, N.; Chinajariyawong, C. Determination of True Amino Acid Digestibility and Metabolizable Energy in Fermented Palm Kernel Meal with Aspergillus Wentii TISTR 3075 for Chickens. Walailak J. Sci. Technol. (WJST) 2009, 6, 231–241. [Google Scholar]
- Missotten, J.A.; Michiels, J.; Dierick, N.; Ovyn, A.; Akbarian, A.; De Smet, S. Effect of Fermented Moist Feed on Performance, Gut Bacteria and Gut Histo-Morphology in Broilers. Br. Poult. Sci. 2013, 54, 627–634. [Google Scholar] [CrossRef]
- Sun, H.; Tang, J.; Yao, X.; Wu, Y.; Wang, X.; Feng, J. Effects of Dietary Inclusion of Fermented Cottonseed Meal on Growth, Cecal Microbial Population, Small Intestinal Morphology, and Digestive Enzyme Activity of Broilers. Trop. Anim. Health Prod. 2013, 45, 987–993. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, L.; Pang, W.; Liu, W.; Li, J.; Wang, H.; Shi, G. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model. PLoS ONE 2016, 11, e0147778. [Google Scholar] [CrossRef]
- Ahmed, A.; Zulkifli, I.; Farjam, A.S.; Abdullah, N.; Liang, J.B.; Awad, E.A. Effect of Solid State Fermentation on Nutrient Content and Ileal Amino Acids Digestibility of Canola Meal in Broiler Chickens. Ital. J. Anim. Sci. 2014, 13, 3293. [Google Scholar] [CrossRef]
- Kim, C.H.; Kang, H.K. Effects of Fermented Barley or Wheat as Feed Supplement on Growth Performance, Gut Health and Meat Quality of Broilers. Eur. Poult. Sci. 2016, 80, 1–11. [Google Scholar]
- Li, J.; Tao, L.; Zhang, R.; Yang, G. Effects of Fermented Feed on Growth Performance, Nutrient Metabolism and Cecal Microflora of Broilers. Anim. Biosci. 2022, 35, 596. [Google Scholar] [CrossRef] [PubMed]
- Adeyemo; Oso. Olayemi Effect of Feeding Bio-Converted Feather Meal on the Performance and Carcass Characteristics of Broiler Chickens. J. Anim. Sci. Technol. 2018, 60, 1–7. [Google Scholar]
- El-Sabrout; El-Sayed, S.A.; El-Sayed, M.A. Effect of Feeding Bio-Converted Poultry Waste on the Performance and Egg Quality of Laying Hens. J. Anim. Physiol. Anim. Nutr. 2019, 103, 479–486. [Google Scholar]
- Yeh, R.-H.; Hsieh, C.-W.; Chen, K.-L. Two-Stage Fermented Feather Meal Enhances Growth Performance and Amino Acid Digestibility in Broilers. Fermentation 2023, 9, 128. [Google Scholar] [CrossRef]
- Wistedt, A.; Ridderstråle, Y.; Wall, H.; Holm, L. Exogenous Estradiol Improves Shell Strength in Laying Hens at the End of the Laying Period. Acta Vet. Scand. 2014, 56, 34. [Google Scholar] [CrossRef]
- Hao, E.; Chen, H.; Wang, D.-H.; Huang, C.; Tong, Y.; Chen, Y.; Zhou, R.-Y.; Huang, R. Melatonin Regulates the Ovarian Function and Enhances Follicle Growth in Aging Laying Hens via Activating the Mammalian Target of Rapamycin Pathway. Poult. Sci. 2020, 99, 2185–2195. [Google Scholar] [CrossRef]
- Jiao, Y.; Jha, R.; Zhang, W.L.; Kim, I.H. Effects of Chitooligosaccharide Supplementation on Egg Production, Egg Quality and Blood Profiles in Laying Hens. Indian J. Anim. Res. 2019, 53, 1199–1204. [Google Scholar] [CrossRef]
- AL-Dhanki, Z.T.; AL-Jugifi, W.I.; AL-Enzy, A.F.M. Research Article Impact of Feeding Fermented Wet Feed on Broiler Breeder Production Performance and Some Hatchability Traits. 2019. Available online: https://www.researchgate.net/profile/Waleed-Al-Jugifi/publication/331043837_OPEN_ACCESS_International_Journal_of_Poultry_Science_Research_Article_Impact_of_Feeding_Fermented_Wet_Feed_on_Broiler_Breeder_Production_Performance_and_Some_Hatchability_Traits/links/5dc0836392851c81802c541a/OPEN-ACCESS-International-Journal-of-Poultry-Science-Research-Article-Impact-of-Feeding-Fermented-Wet-Feed-on-Broiler-Breeder-Production-Performance-and-Some-Hatchability-Traits.pdf (accessed on 7 September 2023).
- Gonzalez-Esquerra, R.; Leeson, S. Effect of Feeding Hens Regular or Deodorized Menhaden Oil on Production Parameters, Yolk Fatty Acid Profile, and Sensory Quality of Eggs. Poult. Sci. 2000, 79, 1597–1602. [Google Scholar] [CrossRef]
- Sun, J.; Li, M.; Tang, Z.; Zhang, X.; Chen, J.; Sun, Z. Effects of Rhodotorula Mucilaginosa Fermentation Product on the Laying Performance, Egg Quality, Jejunal Mucosal Morphology and Intestinal Microbiota of Hens. J. Appl. Microbiol. 2020, 128, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Hammershøj, M.; Johansen, N.F. The Effect of Grass and Herbs in Organic Egg Production on Egg Fatty Acid Composition, Egg Yolk Colour and Sensory Properties. Livest. Sci. 2016, 194, 37–43. [Google Scholar] [CrossRef]
- Kidd, M.T.; Araujo, L.; Araujo, C.; McDaniel, C.D.; McIntyre, D. A Study Assessing Hen and Progeny Performance through Dam Diet Fortification with a Saccharomyces Cerevisiae Fermentation Product. J. Appl. Poult. Res. 2013, 22, 872–877. [Google Scholar] [CrossRef]
- Nuraini, S.; Latif, S.A. Fermented Product by Monascus Purpureus in Poultry Diet: Effects on Laying Performance and Egg Quality. Pak. J. Nutr. 2012, 11, 507. [Google Scholar]
- Kim, C.H.; Park, S.B.; Jeon, J.J.; Kim, H.S.; Kim, S.H.; Hong, E.C.; Kang, H.K. Effects of Dietary Supplementation of Fermented Rice Bran (FRB) or Fermented Broken Rice (FBR) on Laying Performance, Egg Quality, Blood Parameter, and Cholesterol in Egg Yolk of Hy-Line Brown Laying Hens. Korean J. Poult. Sci. 2017, 44, 235–243. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, X.; Cao, F.; Sun, D.; Wang, T.; Wang, G. Effect of Dietary Supplementation with Fermented Ginkgo-Leaves on Performance, Egg Quality, Lipid Metabolism and Egg-Yolk Fatty Acids Composition in Laying Hens. Livest. Sci. 2013, 155, 77–85. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, X.; Li, S.; Zhang, H.; Liu, Z. Effects of Tea Residues-Fermented Feed on Production Performance, Egg Quality, Antioxidant Capacity, Caecal Microbiota, and Ammonia Emissions of Laying Hens. Front. Vet. Sci. 2023, 10, 1195074. [Google Scholar] [CrossRef]
- Aristides, L.G.A.; Venancio, E.J.; Alfieri, A.A.; Otonel, R.A.A.; Frank, W.J.; Oba, A. Carcass Characteristics and Meat Quality of Broilers Fed with Different Levels of Saccharomyces Cerevisiae Fermentation Product. Poult. Sci. 2018, 97, 3337–3342. [Google Scholar] [CrossRef]
- Niba, A.T.; Beal, J.D.; Kudi, A.C.; Brooks, P.H. Potential of Bacterial Fermentation as a Biosafe Method of Improving Feeds for Pigs and Poultry. Afr. J. Biotechnol. 2009, 8, 1758–1767. [Google Scholar]
- Bai, K.; Huang, Q.; Zhang, J.; He, J.; Zhang, L.; Wang, T. Supplemental Effects of Probiotic Bacillus Subtilis FmbJ on Growth Performance, Antioxidant Capacity, and Meat Quality of Broiler Chickens. Poult. Sci. 2017, 96, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Teng, P.Y.; Chang, C.L.; Huang, C.M.; Chang, S.C.; Lee, T.T. Effects of Solid-State Fermented Wheat Bran by Bacillus Amyloliquefaciens and Saccharomyces Cerevisiae on Growth Performance and Intestinal Microbiota in Broiler Chickens. Ital. J. Anim. Sci. 2017, 16, 552–562. [Google Scholar] [CrossRef]
- Jazi, V.; Boldaji, F.; Dastar, B.; Hashemi, S.R.; Ashayerizadeh, A. Effects of Fermented Cottonseed Meal on the Growth Performance, Gastrointestinal Microflora Population and Small Intestinal Morphology in Broiler Chickens. Br. Poult. Sci. 2017, 58, 402–408. [Google Scholar] [CrossRef]
- Jazi, V.; Ashayerizadeh, A.; Toghyani, M.; Shabani, A.; Tellez, G. Fermented Soybean Meal Exhibits Probiotic Properties When Included in Japanese Quail Diet in Replacement of Soybean Meal. Poult. Sci. 2018, 97, 2113–2122. [Google Scholar] [CrossRef]
- Hossain, M.E.; Yang, C.J. Effect of Fermented Water Plantain on Growth Performance, Meat Composition, Oxidative Stability, and Fatty Acid Composition of Broiler. Livest. Sci. 2014, 162, 168–177. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, H.J.; Wu, S.G.; Yu, S.H.; Yoon, I.; Moore, D.; Gao, Y.P.; Yan, H.J.; Qi, G.H. Effect of Saccharomyces Cerevisiae Fermentation Product on Immune Functions of Broilers Challenged with Eimeria Tenella. Poult. Sci. 2009, 88, 2141–2151. [Google Scholar] [CrossRef] [PubMed]
- Sugiharto, S.; Lauridsen, C.; Jensen, B.B. Gastrointestinal Ecosystem and Immunological Responses in E. Coli Challenged Pigs after Weaning Fed Liquid Diets Containing Whey Permeate Fermented with Different Lactic Acid Bacteria. Anim. Feed Sci. Technol. 2015, 207, 278–282. [Google Scholar] [CrossRef]
- Hakim, A.H.; Zulkifli, I.; Farjam, A.S.; Awad, E.A.; Ramiah, S.K. Impact of Feeding Fermented Palm Kernel Cake and High Dietary Fat on Nutrient Digestibility, Enzyme Activity, Intestinal Morphology and Intestinal Nutrient Transporters MRNA Expression in Broiler Chickens under Hot and Humid Conditions. Animals 2022, 12, 882. [Google Scholar] [CrossRef]
- Lv, J.; Guo, L.; Chen, B.; Hao, K.; Ma, H.; Liu, Y.; Min, Y. Effects of Different Probiotic Fermented Feeds on Production Performance and Intestinal Health of Laying Hens. Poult. Sci. 2022, 101, 101570. [Google Scholar] [CrossRef]
- Shi, H.-T.; Wang, B.-Y.; Bian, C.-Z.; Han, Y.-Q.; Qiao, H.-X. Fermented Astragalus in Diet Improved Laying Performance, Egg Quality, Antioxidant and Immunological Status and Intestinal Microbiota in Laying Hens. Amb Express 2020, 10, 159. [Google Scholar] [CrossRef]
- Lin, H.; Decuypere, E.; Buyse, J. Acute Heat Stress Induces Oxidative Stress in Broiler Chickens. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2006, 144, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Gungor, E.; Altop, A.; Erener, G. Effect of Raw and Fermented Grape Pomace on the Growth Performance, Antioxidant Status, Intestinal Morphology, and Selected Bacterial Species in Broiler Chicks. Animals 2021, 11, 364. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M. Free Radicals in Biology and Medicine; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Ahmad, H.; Tian, J.; Wang, J.; Khan, M.A.; Wang, Y.; Zhang, L.; Wang, T. Effects of Dietary Sodium Selenite and Selenium Yeast on Antioxidant Enzyme Activities and Oxidative Stability of Chicken Breast Meat. J. Agric. Food Chem. 2012, 60, 7111–7120. [Google Scholar] [CrossRef]
- Surai, P.F. Antioxidant Systems in Poultry Biology: Superoxide Dismutase. J. Anim. Res. Nutr. 2016, 1, 8. [Google Scholar] [CrossRef]
- Sugiharto, S. Feeding Fermented Agricultural Byproducts as a Potential Approach to Reduce Carbon Footprint from Broiler Production–A Brief Overview. Rev. Agric. Sci. 2022, 10, 90–100. [Google Scholar] [CrossRef]
- Hadibarata, T.; Teh, Z.C.; Zubir, M.M.F.A.; Khudhair, A.B.; Yusoff, A.R.M.; Salim, M.R.; Hidayat, T. Identification of Naphthalene Metabolism by White Rot Fungus Pleurotus Eryngii. Bioprocess Biosyst. Eng. 2013, 36, 1455–1461. [Google Scholar] [CrossRef]
- Hadibarata, T.; Kristanti, R.A. Potential of a White-Rot Fungus Pleurotus Eryngii F032 for Degradation and Transformation of Fluorene. Fungal Biol. 2014, 118, 222–227. [Google Scholar] [CrossRef]
- Dubost, N.J.; Ou, B.; Beelman, R.B. Quantification of Polyphenols and Ergothioneine in Cultivated Mushrooms and Correlation to Total Antioxidant Capacity. Food Chem. 2007, 105, 727–735. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, B.; Lin, R.; Jia, L.; Deng, P.; Fan, K.; Wang, G.; Wang, L.; Zhang, J. Extraction and Antioxidant Activities of Intracellular Polysaccharide from Pleurotus Sp. Mycelium. Int. J. Biol. Macromol. 2010, 47, 116–119. [Google Scholar] [CrossRef]
- Reis, F.S.; Martins, A.; Barros, L.; Ferreira, I.C. Antioxidant Properties and Phenolic Profile of the Most Widely Appreciated Cultivated Mushrooms: A Comparative Study between in Vivo and in Vitro Samples. Food Chem. Toxicol. 2012, 50, 1201–1207. [Google Scholar] [CrossRef]
- Zhang, M.; An, C.; Gao, Y.; Leak, R.K.; Chen, J.; Zhang, F. Emerging Roles of Nrf2 and Phase II Antioxidant Enzymes in Neuroprotection. Prog. Neurobiol. 2013, 100, 30–47. [Google Scholar] [CrossRef]
- Gungor, E.; Erener, G. Effect of Dietary Raw and Fermented Sour Cherry Kernel (Prunus Cerasus L.) on Growth Performance, Carcass Traits, and Meat Quality in Broiler Chickens. Poult. Sci. 2020, 99, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.J.; Wang, Z.B.; Wang, G.Y.; Li, Y.X.; Qi, Y.X. Effects of Feed Supplemented with Fermented Pine Needles (Pinus Ponderosa) on Growth Performance and Antioxidant Status in Broilers. Poult. Sci. 2015, 94, 1138–1144. [Google Scholar] [CrossRef] [PubMed]
- Harimurti, S.; Hadisaputro, W. Probiotics in Poultry. In Beneficial Microorganisms in Agriculture, Aquaculture and Other Areas; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–19. [Google Scholar]
- Wu, L.; Chen, C.; Cheng, C.; Dai, H.; Ai, Y.; Lin, C.; Chung, Y. Evaluation of Tyrosinase Inhibitory, Antioxidant, Antimicrobial, and Antiaging Activities of Magnolia Officinalis Extracts after Aspergillus Niger Fermentation. BioMed Res. Int. 2018, 2018, 5201786. [Google Scholar] [CrossRef]
- Lee, T.-T.; Ciou, J.-Y.; Chiang, C.-J.; Chao, Y.-P.; Yu, B. Effect of Pleurotus Eryngii Stalk Residue on the Oxidative Status and Meat Quality of Broiler Chickens. J. Agric. Food Chem. 2012, 60, 11157–11163. [Google Scholar] [CrossRef]
- Wang, C.C.; Lin, L.J.; Chao, Y.P.; Chiang, C.J.; Lee, M.T.; Chang, S.C.; Yu, B.; Lee, T.T. Antioxidant Molecular Targets of Wheat Bran Fermented by White Rot Fungi and Its Potential Modulation of Antioxidative Status in Broiler Chickens. Br. Poult. Sci. 2017, 58, 262–271. [Google Scholar] [CrossRef]
- Yin, H.; Huang, J. Effects of Soybean Meal Replacement with Fermented Alfalfa Meal on the Growth Performance, Serum Antioxidant Functions, Digestive Enzyme Activities, and Cecal Microflora of Geese. J. Integr. Agric. 2016, 15, 2077–2086. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, Q.; Song, D.; Wang, W.; Zhou, H.; Wang, L.; Li, A. Effects of Fermented Cottonseed Meal on Growth Performance, Serum Biochemical Parameters, Immune Functions, Antioxidative Abilities, and Cecal Microflora in Broilers. Food Agric. Immunol. 2017, 28, 725–738. [Google Scholar] [CrossRef]
- Skrede, G.; Herstad, O.; Sahlstrøm, S.; Holck, A.; Slinde, E.; Skrede, A. Effects of Lactic Acid Fermentation on Wheat and Barley Carbohydrate Composition and Production Performance in the Chicken. Anim. Feed Sci. Technol. 2003, 105, 135–148. [Google Scholar] [CrossRef]
- Ranjitkar, S.; Engberg, R.M. The Influence of Feeding Crimped Kernel Maize Silage on Growth Performance and Intestinal Colonization with Campylobacter Jejuni of Broilers. Avian Pathol. 2016, 45, 253–260. [Google Scholar] [CrossRef]
- Steenfeldt, S.; Kjaer, J.B.; Engberg, R.M. Effect of Feeding Silages or Carrots as Supplements to Laying Hens on Production Performance, Nutrient Digestibility, Gut Structure, Gut Microflora and Feather Pecking Behaviour. Br. Poult. Sci. 2007, 48, 454–468. [Google Scholar] [CrossRef] [PubMed]
- Engberg, R.M.; Hammersh⊘j, M.; Johansen, N.F.; Abousekken, M.S.; Steenfeldt, S.; Jensen, B.B. Fermented Feed for Laying Hens: Effects on Egg Production, Egg Quality, Plumage Condition and Composition and Activity of the Intestinal Microflora. Br. Poult. Sci. 2009, 50, 228–239. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ababor, S.; Tamiru, M.; Alkhtib, A.; Wamatu, J.; Kuyu, C.G.; Teka, T.A.; Terefe, L.A.; Burton, E. The Use of Biologically Converted Agricultural Byproducts in Chicken Nutrition. Sustainability 2023, 15, 14562. https://doi.org/10.3390/su151914562
Ababor S, Tamiru M, Alkhtib A, Wamatu J, Kuyu CG, Teka TA, Terefe LA, Burton E. The Use of Biologically Converted Agricultural Byproducts in Chicken Nutrition. Sustainability. 2023; 15(19):14562. https://doi.org/10.3390/su151914562
Chicago/Turabian StyleAbabor, Sebsib, Metekia Tamiru, Ashraf Alkhtib, Jane Wamatu, Chala G. Kuyu, Tilahun A. Teka, Lemlem Arega Terefe, and Emily Burton. 2023. "The Use of Biologically Converted Agricultural Byproducts in Chicken Nutrition" Sustainability 15, no. 19: 14562. https://doi.org/10.3390/su151914562
APA StyleAbabor, S., Tamiru, M., Alkhtib, A., Wamatu, J., Kuyu, C. G., Teka, T. A., Terefe, L. A., & Burton, E. (2023). The Use of Biologically Converted Agricultural Byproducts in Chicken Nutrition. Sustainability, 15(19), 14562. https://doi.org/10.3390/su151914562