Assessing the Multifaceted Tradeoffs of Agricultural Conservation Practices on Ecosystem Services in the Midwest U.S.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Biogeochemical Model and Input Data
2.3. Management Scenarios
2.4. Model Simulation and Statistical Analysis
2.5. Climate
2.6. Global Warming Potential (GWP)
2.7. Land Use Change during the Study Period
3. Results
3.1. Annual and Seasonal CO2 Emission
3.2. Annual and Seasonal N2O Emission
3.3. Annual and Seasonal Global Warming Potential
3.4. Annual Change in SOC
3.5. Dry Corn Silage and Corn Grain Yield
3.6. Soybean Yield
3.7. Tradeoffs among the Ecosystem Services
4. Discussion
4.1. Seasonal Fluctuations in GHG Emissions
4.2. Annual CO2 and N2O Emissions
4.3. SOC Change
4.4. Dry Silage, Corn, and Soybean Grain Yield
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prokopy, L.S.; Gramig, B.M.; Bower, A.; Church, S.P.; Ellison, B.; Gassman, P.W.; Genskow, K.; Gucker, D.; Hallett, S.G.; Hill, J.; et al. The Urgency of Transforming the Midwestern U.S. Landscape into More than Corn and Soybean. Agric. Hum. Values 2020, 37, 537–539. [Google Scholar] [CrossRef] [PubMed]
- Canales, E.; Bergtold, J.S.; Williams, J.R. Modeling the Choice of Tillage Used for Dryland Corn, Wheat and Soybean Production by Farmers in Kansas. Agric. Resour. Econ. Rev. 2018, 47, 90–117. [Google Scholar] [CrossRef]
- Thompson, N.M.; Reeling, C.J.; Fleckenstein, M.R.; Prokopy, L.S.; Armstrong, S.D. Examining Intensity of Conservation Practice Adoption: Evidence from Cover Crop Use on U.S. Midwest Farms. Food Policy 2021, 101, 102054. [Google Scholar] [CrossRef]
- Volsi, B.; Higashi, G.E.; Bordin, I.; Telles, T.S. The Diversification of Species in Crop Rotation Increases the Profitability of Grain Production Systems. Sci. Rep. 2022, 12, 19849. [Google Scholar] [CrossRef] [PubMed]
- Sangotayo, A.O.; Chellappa, J.; Sekaran, U.; Bansal, S.; Angmo, P.; Jasa, P.; Kumar, S.; Iqbal, J. Long-Term Conservation and Conventional Tillage Systems Impact Physical and Biochemical Soil Health Indicators in a Corn–Soybean Rotation. Soil. Sci. Soc. Am. J. 2023, 87, 1056–1071. [Google Scholar] [CrossRef]
- Yuan, M.; Bi, Y.; Han, D.; Wang, L.; Wang, L.; Fan, C.; Zhang, D.; Wang, Z.; Liang, W.; Zhu, Z.; et al. Long-Term Corn–Soybean Rotation and Soil Fertilization: Impacts on Yield and Agronomic Traits. Agronomy 2022, 12, 2554. [Google Scholar] [CrossRef]
- Bolinder, M.A.; Crotty, F.; Elsen, A.; Frac, M.; Kismányoky, T.; Lipiec, J.; Tits, M.; Tóth, Z.; Kätterer, T. The Effect of Crop Residues, Cover Crops, Manures and Nitrogen Fertilization on Soil Organic Carbon Changes in Agroecosystems: A Synthesis of Reviews. Mitig. Adapt. Strateg. Glob. Change 2020, 25, 929–952. [Google Scholar] [CrossRef]
- Giusti, B.; Hogue, R.; Jeanne, T.; Lucotte, M. Impacts of Winter Wheat and Cover Crops on Soil Microbial Diversity in a Corn–Soybean No-till Cropping System in Quebec (Canada). Agrosyst. Geosci. Environ. 2023, 6, e20349. [Google Scholar] [CrossRef]
- Kovács, G.P.; Simon, B.; Balla, I.; Bozóki, B.; Dekemati, I.; Gyuricza, C.; Percze, A.; Birkás, M. Conservation Tillage Improves Soil Quality and Crop Yield in Hungary. Agronomy 2023, 13, 894. [Google Scholar] [CrossRef]
- Yang, X.; Xiong, J.; Du, T.; Ju, X.; Gan, Y.; Li, S.; Xia, L.; Shen, Y.; Pacenka, S.; Steenhuis, T.S.; et al. Diversifying Crop Rotation Increases Food Production, Reduces Net Greenhouse Gas Emissions and Improves Soil Health. Nat. Commun. 2024, 15, 198. [Google Scholar] [CrossRef] [PubMed]
- Cambron, T.W.; Deines, J.M.; Lopez, B.; Patel, R.; Liang, S.-Z.; Lobell, D.B. Further Adoption of Conservation Tillage Can Increase Maize Yields in the Western US Corn Belt. Environ. Res. Lett. 2024, 19, 054040. [Google Scholar] [CrossRef]
- Chen, B.; Gramig, B.M.; Yun, S.D. Conservation Tillage Mitigates Drought-Induced Soybean Yield Losses in the US Corn Belt. Q. Open 2021, 1, qoab007. [Google Scholar] [CrossRef]
- Lee, S.; Chu, M.L.; Guzman, J.A.; Botero-Acosta, A. A Comprehensive Modeling Framework to Evaluate Soil Erosion by Water and Tillage. J. Environ. Manag. 2021, 279, 111631. [Google Scholar] [CrossRef] [PubMed]
- Steponavičienė, V.; Rudinskienė, A.; Žiūraitis, G.; Bogužas, V. The Impact of Tillage and Crop Residue Incorporation Systems on Agrophysical Soil Properties. Plants 2023, 12, 3386. [Google Scholar] [CrossRef] [PubMed]
- Skaalsveen, K.; Clarke, L. Impact of No-Tillage on Water Purification and Retention Functions of Soil. J. Soil. Water Conserv. 2021, 76, 116–129. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Drury, C.F.; Liebig, M.; Johnson, J.M.F.; Wang, Z.; Feng, H.; Abalos, D. The Role of Conservation Agriculture Practices in Mitigating N2O Emissions: A Meta-Analysis. Agron. Sustain. Dev. 2023, 43, 63. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, W.; Grove, J.; Poffenbarger, H.; Jacobsen, K.; Tao, B.; Zhu, X.; McNear, D. Assessing Synergistic Effects of No-Tillage and Cover Crops on Soil Carbon Dynamics in a Long-Term Maize Cropping System under Climate Change. Agric. For. Meteorol. 2020, 291, 108090. [Google Scholar] [CrossRef]
- Zhao, X.; Christianson, L.E.; Harmel, D.; Pittelkow, C.M. Assessment of Drainage Nitrogen Losses on a Yield-Scaled Basis. Field Crops Res. 2016, 199, 156–166. [Google Scholar] [CrossRef]
- Elli, E.F.; Ciampitti, I.A.; Castellano, M.J.; Purcell, L.C.; Naeve, S.; Grassini, P.; La Menza, N.C.; Moro Rosso, L.; de Borja Reis, A.F.; Kovács, P.; et al. Climate Change and Management Impacts on Soybean N Fixation, Soil N Mineralization, N2O Emissions, and Seed Yield. Front. Plant Sci. 2022, 13, 849896. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, M.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.M.; Smith, P. A Critical Review of the Impacts of Cover Crops on Nitrogen Leaching, Net Greenhouse Gas Balance and Crop Productivity. Glob. Change Biol. 2019, 25, 2530–2543. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Canqui, H.; Ruis, S.J. No-Tillage and Soil Physical Environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- Mitchell, J.P.; Shrestha, A.; Mathesius, K.; Scow, K.M.; Southard, R.J.; Haney, R.L.; Schmidt, R.; Munk, D.S.; Horwath, W.R. Cover Cropping and No-Tillage Improve Soil Health in an Arid Irrigated Cropping System in California’s San Joaquin Valley, USA. Soil. Tillage Res. 2017, 165, 325–335. [Google Scholar] [CrossRef]
- Negassa, W.C.; Price, R.F.; Basir, A.; Snapp, S.S.; Kravchenko, A. Cover Crop and Tillage Systems Effect on Soil CO2 and N2O Fluxes in Contrasting Topographic Positions. Soil. Tillage Res. 2015, 154, 64–74. [Google Scholar] [CrossRef]
- Deines, J.M.; Guan, K.; Lopez, B.; Zhou, Q.; White, C.S.; Wang, S.; Lobell, D.B. Recent Cover Crop Adoption Is Associated with Small Maize and Soybean Yield Losses in the United States. Glob. Change Biol. 2023, 29, 794–807. [Google Scholar] [CrossRef] [PubMed]
- Bourns, M.; Manzar, E.K.; Nelson, N.; Roozeboom, K.; Kluitenberg, G.; Hettiarachchi, G.; Yeager, E.; Tomlinson, P.; Presley, D. Corn and Soybean Yield as Affected by Cover Crop and Phosphorus Fertilizer Management. Kans. Agric. Exp. Stn. Res. Rep. 2023, 9, 5. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Dalal, R.C.; Finn, D.; Menzies, N.W. Global Changes in Soil Stocks of Carbon, Nitrogen, Phosphorus, and Sulphur as Influenced by Long-Term Agricultural Production. Glob. Change Biol. 2017, 23, 2509–2519. [Google Scholar] [CrossRef]
- Francis Clar, J.T.; Anex, R.P. Measuring Frequently during Peak Soil N2O Emissions Is More Important than Choosing the Time of Day to Sample. Biogeosci.Discuss. 2019, 2019, 1–21. [Google Scholar] [CrossRef]
- Lafond, G.; Walley, F.; Schoenau, J.; May, W.; Holzapfel, C.; McKell, J. Long-Term vs Short-Term Conservation Tillage. In Proceedings of the 20th Annual Meeting and Conference of the Saaskatchewan Soil Conservation Association, Regina, SK, Canada, 12–13 February 2008. [Google Scholar]
- Myers, R. How Conservation Practices Influence Agricultural Economic Returns; Agree: Washington, DC, USA, 2023; pp. 1–19. [Google Scholar]
- Kephe, P.N.; Ayisi, K.K.; Petja, B.M. Challenges and Opportunities in Crop Simulation Modelling under Seasonal and Projected Climate Change Scenarios for Crop Production in South Africa. Agric. Food Secur. 2021, 10, 10. [Google Scholar] [CrossRef]
- Timilsina, A.P.; Baigorria, G.A.; Wilhite, D.; Shulski, M.; Heeren, D.; Romero, C.; Fensterseifer, C. Soybean Response under Climatic Scenarios with Changed Mean and Variability under Rainfed and Irrigated Conditions in Major Soybean Growing States of the United States. J. Agric. Sci. 2023, 161, 157–174. [Google Scholar] [CrossRef]
- Bista, P.; Hartman, M.D.; DelGrosso, S.J.; Thapa, V.R.; Ghimire, R. Simulating Long-Term Soil Carbon Storage, Greenhouse Gas Balance, and Crop Yields in Semi-Arid Cropping Systems Using DayCent Model. Nutr. Cycl. Agroecosyst. 2024, 128, 99–114. [Google Scholar] [CrossRef]
- Basche, A.D. Climate-Smart Agriculture in Midwest Cropping Systems: Evaluating the Benefits and Tradeoffs of Cover Crops; Iowa State University: Ames, IA, USA, 2015. [Google Scholar]
- Deng, Q.; Hui, D.; Wang, J.; Yu, C.-L.; Li, C.; Reddy, K.C.; Dennis, S. Assessing the Impacts of Tillage and Fertilization Management on Nitrous Oxide Emissions in a Cornfield Using the DNDC Model. J. Geophys. Res. Biogeosci. 2016, 121, 337–349. [Google Scholar] [CrossRef]
- Williams, M.R.; King, K.W.; Ford, W.; Fausey, N.R. Edge-of-Field Research to Quantify the Impacts of Agricultural Practices on Water Quality in Ohio. J. Soil Water Conserv. 2016, 71, 9–12. [Google Scholar] [CrossRef]
- Smith, W.; Grant, B.; Qi, Z.; He, W.; VanderZaag, A.; Drury, C.F.; Helmers, M. Development of the DNDC Model to Improve Soil Hydrology and Incorporate Mechanistic Tile Drainage: A Comparative Analysis with RZWQM2. Environ. Model. Softw. 2020, 123, 104577. [Google Scholar] [CrossRef]
- Gheisari, A.; Asgharipour, M.R.; Mousavi-Nik, M.; Ghanbari, A.; Javaheri, M.A. Utilization of the DNDC Model to Estimate Yield and CO2 and CH4 Emissions in a Cotton-Wheat Rotation under the Influence of Various Tillage Treatments. Ecol. Model. 2023, 481, 110357. [Google Scholar] [CrossRef]
- Jiang, R.; Yang, J.Y.; Drury, C.F.; He, W.; Smith, W.N.; Grant, B.B.; He, P.; Zhou, W. Assessing the Impacts of Diversified Crop Rotation Systems on Yields and Nitrous Oxide Emissions in Canada Using the DNDC Model. Sci. Total Environ. 2021, 759, 143433. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Madramootoo, C.A.; Qi, Z. Soil Carbon and Nitrous Oxide Dynamics in Corn (Zea Mays L.) Production under Different Nitrogen, Tillage and Residue Management Practices. Field Crops Res. 2022, 277, 108421. [Google Scholar] [CrossRef]
- Jiang, Z.; Yang, S.; Smith, P.; Abdalla, M.; Pang, Q.; Xu, Y.; Qi, S.; Hu, J. Development of DNDC-BC Model to Estimate Greenhouse Gas Emissions from Rice Paddy Fields under Combination of Biochar and Controlled Irrigation Management. Geoderma 2023, 433, 116450. [Google Scholar] [CrossRef]
- Costa, C.; Galford, G.L.; Coe, M.T.; Macedo, M.; Jankowski, K.; O’Connell, C.; Neill, C. Modeling Nitrous Oxide Emissions from Large-Scale Intensive Cropping Systems in the Southern Amazon. Front. Sustain. Food Syst. 2021, 5, 701416. [Google Scholar] [CrossRef]
- Bhattarai, A.; Steinbeck, G.; Grant, B.B.; Kalcic, M.; King, K.; Smith, W.; Xu, N.; Deng, J.; Khanal, S. Development of a Calibration Approach Using DNDC and PEST for Improving Estimates of Management Impacts on Water and Nutrient Dynamics in an Agricultural System. Environ. Model. Softw. 2022, 157, 105494. [Google Scholar] [CrossRef]
- NADP. 2018 Annual Summary; National Atmospheric Deposition Program: Madison, WI, USA, 2019. [Google Scholar]
- Gridded Soil Survey Geographic (gSSURGO) Database|Natural Resources Conservation Service. Available online: https://www.nrcs.usda.gov/resources/data-and-reports/gridded-soil-survey-geographic-gssurgo-database (accessed on 22 June 2024).
- USDA ARS SPAW. Available online: https://www.ars.usda.gov/research/software/download/?softwareid=492&modecode=80-42-05-10 (accessed on 25 March 2024).
- PRISM. Climate Group, Oregon State U. Available online: https://prism.oregonstate.edu/ (accessed on 6 March 2023).
- NASA POWER|Prediction of Worldwide Energy Resources. Available online: https://power.larc.nasa.gov/ (accessed on 22 June 2023).
- USDA. NASS USDA-National Agricultural Statistics Service-Quick Stats Lite. Available online: https://www.nass.usda.gov/Quick_Stats/Lite/index.php (accessed on 30 October 2022).
- Kalcic, M.M.; Kirchhoff, C.; Bosch, N.; Muenich, R.L.; Murray, M.; Griffith Gardner, J.; Scavia, D. Engaging Stakeholders to Define Feasible and Desirable Agricultural Conservation in Western Lake Erie Watersheds. Environ. Sci. Technol. 2016, 50, 8135–8145. [Google Scholar] [CrossRef] [PubMed]
- Panuska, J. The Basics of Agricultural Tile Drainage; University of Wisconsin-Madison: Madison, WI, USA, 2018. [Google Scholar]
- Manitoba Agriculture, Food and Rural Initiatives. Calculating Manure Application Rates; 2009. Available online: https://www.gov.mb.ca/agriculture/environment/nutrient-management/pubs/mmf_calcmanureapprates_factsheet.pdf (accessed on 22 May 2022).
- Sundermeier, A. Manure and Compost: Nitrogen Availability in Organic Production. Available online: https://ohioline.osu.edu/factsheet/anr-34 (accessed on 29 May 2023).
- Perlman, J.; Hijmans, R.J.; Horwath, W.R. Modelling Agricultural Nitrous Oxide Emissions for Large Regions. Environ. Model. Softw. 2013, 48, 183–192. [Google Scholar] [CrossRef]
- Tabatabaie, S.M.H.; Murthy, G.S. Effect of Geographical Location and Stochastic Weather Variation on Life Cycle Assessment of Biodiesel Production from Camelina in the Northwestern USA. Int. J. Life Cycle Assess. 2017, 22, 867–882. [Google Scholar] [CrossRef]
- Tabatabaie, S.M.H.; Bolte, J.P.; Murthy, G.S. A Regional Scale Modeling Framework Combining Biogeochemical Model with Life Cycle and Economic Analysis for Integrated Assessment of Cropping Systems. Sci. Total Environ. 2018, 625, 428–439. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Understanding Global Warming Potentials. Available online: https://www.epa.gov/ghgemissions/understanding-global-warming-potentials (accessed on 15 May 2023).
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group. I to the Fifth Assessment Report. of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Doschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 659–740. [Google Scholar]
- USDA. NASS CropScape-NASS CDL Program. Available online: https://nassgeodata.gmu.edu/CropScape/ (accessed on 14 February 2024).
- Lark, T.J.; Salmon, J.M.; Gibbs, H.K. Cropland Expansion Outpaces Agricultural and Biofuel Policies in the United States. Environ. Res. Lett. 2015, 10, 044003. [Google Scholar] [CrossRef]
- Zhang, X.; Lark, T.J.; Clark, C.; Yuan, Y.; LeDuc, S.D. Grassland-to-Cropland Conversion Increased Soil, Nutrient, and Carbon Losses in the US Midwest between 2008 and 2016. Environ. Res. Lett. 2021, 16, 054018. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.K.; Wimberly, M.C. Recent Land Use Change in the Western Corn Belt Threatens Grasslands and Wetlands. Proc. Natl. Acad. Sci. USA 2013, 110, 4134–4139. [Google Scholar] [CrossRef] [PubMed]
- Al-Kaisi, M.M.; Yin, X. Tillage and Crop Residue Effects on Soil Carbon and Carbon Dioxide Emission in Corn-Soybean Rotations. J. Environ. Qual. 2005, 34, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Reicosky, D.C.; Lindstrom, M.J. Fall Tillage Method: Effect on Short-Term Carbon Dioxide Flux from Soil. Agron. J. 1993, 85, 1237–1243. [Google Scholar] [CrossRef]
- Flynn, N.E.; Stewart, C.E.; Comas, L.H.; Del Grosso, S.J.; Schnarr, C.; Schipanski, M.; von Fischer, J.C.; Stuchiner, E.R.; Fonte, S.J. Deficit Irrigation Impacts on Greenhouse Gas Emissions under Drip-Fertigated Maize in the Great Plains of Colorado. J. Environ. Qual. 2022, 51, 877–889. [Google Scholar] [CrossRef]
- Ding, W.; Cai, Y.; Cai, Z.; Yagi, K.; Zheng, X. Soil Respiration under Maize Crops: Effects of Water, Temperature, and Nitrogen Fertilization. Soil. Sci. Soc. Am. J. 2007, 71, 944–951. [Google Scholar] [CrossRef]
- Biswas, J.C.; Haque, M.M.; Hossain, M.B.; Maniruzzaman, M.; Zahan, T.; Rahman, M.M.; Sen, R.; Ishtiaque, S.; Chaki, A.K.; Ahmed, I.M.; et al. Seasonal Variations in Grain Yield, Greenhouse Gas Emissions and Carbon Sequestration for Maize Cultivation in Bangladesh. Sustainability 2022, 14, 9144. [Google Scholar] [CrossRef]
- Yılmaz, G. Seasonal Variations in Soil CO2 Emissions under Continuous Field Crop Production in Semi Arid Southeastern Turkey. Appl. Ecol. Environ. Res. 2019, 17, 6563–6579. [Google Scholar] [CrossRef]
- Sherman, J.F.; Young, E.O.; Jokela, W.E.; Cavadini, J. Impacts of Low-Disturbance Dairy Manure Incorporation on Ammonia and Greenhouse Gas Fluxes in a Corn Silage–Winter Rye Cover Crop System. J. Environ. Qual. 2021, 50, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.; Marutani, S.; Desyatkin, A.R.; Jin, T.; Hata, H.; Hatano, R. The Effect of Manure Application on Carbon Dynamics and Budgets in a Managed Grassland of Southern Hokkaido, Japan. Agric. Ecosyst. Environ. 2009, 130, 31–40. [Google Scholar] [CrossRef]
- Verdi, L.; Marco, M.; Napoli, M.; Orlandini, S.; Marta, A.D. Soil Carbon Emissions from Maize under Different Fertilization Methods in an Extremely Dry Summer in Italy. Ital. J. Agrometeorol. 2019, 2, 3–10. [Google Scholar] [CrossRef]
- YunFa, Q.; XiaoZeng, H.; Doane, T.A.; ShuJie, M. Emission of CO2 and N2O from Maize-Soybean Rotations under Five Long-Term Fertilizer Regimes in Northeastern China. J. Food Agric. Environ. 2014, 12, 492–497. [Google Scholar]
- Xia, L.; Lam, S.K.; Yan, X.; Chen, D. How Does Recycling of Livestock Manure in Agroecosystems Affect Crop Productivity, Reactive Nitrogen Losses, and Soil Carbon Balance? Environ. Sci. Technol. 2017, 51, 7450–7457. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Greaver, T.L. A Global Perspective on Belowground Carbon Dynamics under Nitrogen Enrichment. Ecol. Lett. 2010, 13, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Ozlu, E.; Kumar, S. Response of Surface GHG Fluxes to Long-Term Manure and Inorganic Fertilizer Application in Corn and Soybean Rotation. Sci. Total Environ. 2018, 626, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Weidhuner, A.; Zandvakili, O.R.; Krausz, R.; Crittenden, S.J.; Deng, M.; Hunter, D.; Sadeghpour, A. Continuous No-till Decreased Soil Nitrous Oxide Emissions during Corn Years after 48 and 50 Years in a Poorly-Drained Alfisol. Sci. Total Environ. 2022, 838, 156296. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Zhou, Z.; Zhu, B.; Zheng, X.; Li, C.; Wang, X.; Jian, Z. Modeling Nitrogen Loading in a Small Watershed in Southwest China Using a DNDC Model with Hydrological Enhancements. Biogeosciences 2011, 8, 2999–3009. [Google Scholar] [CrossRef]
- Russelle, M.P.; Birr, A.S. Large-Scale Assessment of Symbiotic Dinitrogen Fixation by Crops: Soybean and Alfalfa in the Mississippi River Basin. Agron. J. 2004, 96, 1754–1760. [Google Scholar] [CrossRef]
- Brophy, L.S.; Heichel, G.H. Nitrogen Release from Roots of Alfalfa and Soybean Grown in Sand Culture. Plant Soil. 1989, 116, 77–84. [Google Scholar] [CrossRef]
- Osterholz, W.R.; Kucharik, C.J.; Hedtcke, J.L.; Posner, J.L. Seasonal Nitrous Oxide and Methane Fluxes from Grain- and Forage-Based Production Systems in Wisconsin, USA. J. Environ. Qual. 2014, 43, 1833–1843. [Google Scholar] [CrossRef] [PubMed]
- Rutkowska, B.; Szulc, W.; Szara, E.; Skowrońska, M.; Jadczyszyn, T. Soil N2O Emissions under Conventional and Reduced Tillage Methods and Maize Cultivation. Plant Soil. Environ. 2017, 63, 342–347. [Google Scholar] [CrossRef]
- Zuber, S.M.; Behnke, G.D.; Nafziger, E.D.; Villamil, M.B. Multivariate Assessment of Soil Quality Indicators for Crop Rotation and Tillage in Illinois. Soil. Tillage Res. 2017, 174, 147–155. [Google Scholar] [CrossRef]
- Álvaro-Fuentes, J.; Cantero-Martínez, C.; López, M.V.; Arrúe, J.L. Soil Carbon Dioxide Fluxes Following Tillage in Semiarid Mediterranean Agroecosystems. Soil. Tillage Res. 2007, 96, 331–341. [Google Scholar] [CrossRef]
- Grossel, A.; Nicoullaud, B.; Bourennane, H.; Lacoste, M.; Guimbaud, C.; Robert, C.; Hénault, C. The Effect of Tile-Drainage on Nitrous Oxide Emissions from Soils and Drainage Streams in a Cropped Landscape in Central France. Agric. Ecosyst. Environ. 2016, 230, 251–260. [Google Scholar] [CrossRef]
- Haque, M.d.M.; Kim, S.Y.; Ali, M.A.; Kim, P.J. Contribution of Greenhouse Gas Emissions during Cropping and Fallow Seasons on Total Global Warming Potential in Mono-Rice Paddy Soils. Plant Soil. 2015, 387, 251–264. [Google Scholar] [CrossRef]
- Sanz-Cobena, A.; García-Marco, S.; Quemada, M.; Gabriel, J.L.; Almendros, P.; Vallejo, A. Do Cover Crops Enhance N2O, CO2 or CH4 Emissions from Soil in Mediterranean Arable Systems? Sci. Total Environ. 2014, 466–467, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, I.; Sainju, U.M.; Zhao, F.; Khan, A.; Ghimire, R.; Fu, X.; Wang, J. Regulation of Soil CO2 and N2O Emissions by Cover Crops: A Meta-Analysis. Soil. Tillage Res. 2019, 192, 103–112. [Google Scholar] [CrossRef]
- Gentile, R.; Vanlauwe, B.; Chivenge, P.; Six, J. Interactive Effects from Combining Fertilizer and Organic Residue Inputs on Nitrogen Transformations. Soil. Biol. Biochem. 2008, 40, 2375–2384. [Google Scholar] [CrossRef]
- Burzaco, J.P.; Smith, D.R.; Vyn, T.J. Nitrous Oxide Emissions in Midwest US Maize Production Vary Widely with Band-Injected N Fertilizer Rates, Timing and Nitrapyrin Presence. Environ. Res. Lett. 2013, 8, 035031. [Google Scholar] [CrossRef]
- Phillips, R.L.; Tanaka, D.L.; Archer, D.W.; Hanson, J.D. Fertilizer Application Timing Influences Greenhouse Gas Fluxes over a Growing Season. J. Environ. Qual. 2009, 38, 1569–1579. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Basche, A.D.; Archontoulis, S.V.; Kaspar, T.C.; Jaynes, D.B.; Parkin, T.B.; Miguez, F.E. Simulating Long-Term Impacts of Cover Crops and Climate Change on Crop Production and Environmental Outcomes in the Midwestern United States. Agric. Ecosyst. Environ. 2016, 218, 95–106. [Google Scholar] [CrossRef]
- Nash, P.R.; Gollany, H.T.; Liebig, M.A.; Halvorson, J.J.; Archer, D.W.; Tanaka, D.L. Simulated Soil Organic Carbon Responses to Crop Rotation, Tillage, and Climate Change in North Dakota. J. Environ. Qual. 2018, 47, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Poeplau, C.; Don, A. Carbon Sequestration in Agricultural Soils via Cultivation of Cover Crops–A Meta-Analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Austin, E.E.; Wickings, K.; McDaniel, M.D.; Robertson, G.P.; Grandy, A.S. Cover Crop Root Contributions to Soil Carbon in a No-till Corn Bioenergy Cropping System. GCB Bioenergy 2017, 9, 1252–1263. [Google Scholar] [CrossRef]
- Bai, X.; Huang, Y.; Ren, W.; Coyne, M.; Jacinthe, P.-A.; Tao, B.; Hui, D.; Yang, J.; Matocha, C. Responses of Soil Carbon Sequestration to Climate-Smart Agriculture Practices: A Meta-Analysis. Glob. Change Biol. 2019, 25, 2591–2606. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Z.; Chang, S.X.; Cui, S.; Jagadamma, S.; Zhang, Q.; Cai, Y. Residue Retention Promotes Soil Carbon Accumulation in Minimum Tillage Systems: Implications for Conservation Agriculture. Sci. Total Environ. 2020, 740, 140147. [Google Scholar] [CrossRef] [PubMed]
- Lembaid, I.; Moussadek, R.; Mrabet, R.; Douaik, A.; Bouhaouss, A. Modeling the Effects of Farming Management Practices on Soil Organic Carbon Stock under Two Tillage Practices in a Semi-Arid Region, Morocco. Heliyon 2021, 7, e05889. [Google Scholar] [CrossRef] [PubMed]
- Curtin, D.; Wang, H.; Selles, F.; McConkey, B.G.; Campbell, C.A. Tillage Effects on Carbon Fluxes in Continuous Wheat and Fallow–Wheat Rotations. Soil. Sci. Soc. Am. J. 2000, 64, 2080–2086. [Google Scholar] [CrossRef]
- Butler, T.J.; Muir, J.P. Dairy Manure Compost Improves Soil and Increases Tall Wheatgrass Yield. Agron. J. 2006, 98, 1090–1096. [Google Scholar] [CrossRef]
- O’Brien, P.L.; Hatfield, J.L. Dairy Manure and Synthetic Fertilizer: A Meta-Analysis of Crop Production and Environmental Quality. Agrosystems Geosci. Environ. 2019, 2, 190027. [Google Scholar] [CrossRef]
- Reports. Available online: https://www.iowalearningfarms.org/reports (accessed on 15 May 2024).
- Kessavalou, A.; Walters, D.T. Winter Rye Cover Crop Following Soybean under Conservation Tillage: Residual Soil Nitrate. Agron. J. 1999, 91, 643–649. [Google Scholar] [CrossRef]
- Tyler, H.L. Winter Cover Crops and No till Management Enhance Enzyme Activities in Soybean Field Soils. Pedobiologia 2020, 81–82, 150666. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; van Groenigen, K.J.; Lee, J.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. When Does No-till Yield More? A Global Meta-Analysis. Field Crops Res. 2015, 183, 156–168. [Google Scholar] [CrossRef]
- Daigh, A.L.M.; Dick, W.A.; Helmers, M.J.; Lal, R.; Lauer, J.G.; Nafziger, E.; Pederson, C.H.; Strock, J.; Villamil, M.; Mukherjee, A.; et al. Yields and Yield Stability of No-till and Chisel-Plow Fields in the Midwestern US Corn Belt. Field Crops Res. 2018, 218, 243–253. [Google Scholar] [CrossRef]
- Wilhelm, W.W.; Wortmann, C.S. Tillage and Rotation Interactions for Corn and Soybean Grain Yield as Affected by Precipitation and Air Temperature. Agron. J. 2004, 96, 425–432. [Google Scholar] [CrossRef]
- Randall, G.W.; Iragavarapu, T.K. Impact of Long-Term Tillage Systems for Continuous Corn on Nitrate Leaching to Tile Drainage. J. Environ. Qual. 1995, 24, 360–366. [Google Scholar] [CrossRef]
- Fabrizzi, K.P.; García, F.O.; Costa, J.L.; Picone, L.I. Soil Water Dynamics, Physical Properties and Corn and Wheat Responses to Minimum and No-Tillage Systems in the Southern Pampas of Argentina. Soil. Tillage Res. 2005, 81, 57–69. [Google Scholar] [CrossRef]
- Halvorson, A.D.; Mosier, A.R.; Reule, C.A.; Bausch, W.C. Nitrogen and Tillage Effects on Irrigated Continuous Corn Yields. Agron. J. 2006, 98, 63–71. [Google Scholar] [CrossRef]
- Cid, P.; Carmona, I.; Murillo, J.M.; Gómez-Macpherson, H. No-Tillage Permanent Bed Planting and Controlled Traffic in a Maize-Cotton Irrigated System under Mediterranean Conditions: Effects on Soil Compaction, Crop Performance and Carbon Sequestration. Eur. J. Agron. 2014, 61, 24–34. [Google Scholar] [CrossRef]
- Vyn, T.J.; Raimbult, B.A. Long-Term Effect of Five Tillage Systems on Corn Response and Soil Structure. Agron. J. 1993, 85, 1074–1079. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil Macroaggregate Turnover and Microaggregate Formation: A Mechanism for C Sequestration under No-Tillage Agriculture. Soil. Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Ji, J.; Li, J.; Luo, J.; Shi, Y.; Lindsey, S.; Liu, S.; Li, Y.; Zhao, C. How N Fertilizer Side-Dressing Timings Mediates Fertilizer N Fates in Maize Grown in a Mollisol. Arch. Agron. Soil. Sci. 2021, 67, 1231–1241. [Google Scholar] [CrossRef]
- Bender, R.R.; Haegele, J.W.; Ruffo, M.L.; Below, F.E. Modern Corn Hybrids’ Nutrient Uptake Patterns. Better Crops 2013, 97, 7–11. [Google Scholar]
- Purucker, T.S.; Steinke, K. Comparing Nitrogen Timing and Sidedressing Placement Strategies on Corn Growth and Yield in Michigan. Crop Forage Turfgrass Manag. 2020, 6, e20033. [Google Scholar] [CrossRef]
- Randall, G.W.; Vetsch, J.A.; Huffman, J.R. Corn Production on a Subsurface-Drained Mollisol as Affected by Time of Nitrogen Application and Nitrapyrin. Agron. J. 2003, 95, 1213–1219. [Google Scholar] [CrossRef]
SN | Cropping System (Scenario) | Tillage | Cover Crops | Fertilizer | Details |
---|---|---|---|---|---|
Silage corn and alfalfa-based scenarios (SC-AL scenarios) | |||||
1 | SC-WW-AL×3 (SN1) | Yes | No | M + SF | Current practice in the field under study |
2 | SC-WW-AL×4 (SN2) | Yes | No | M + SF | Same as SN1 but with four years of alfalfa |
3 | SC-CR-AL×4 (SN3) | Yes | Yes | M + SF | Same as SN2 but with cereal rye as a cover crop during winter |
Grain corn and soybean-based scenarios (CS scenarios) | |||||
4 | C-S[F + P] (SN4) | Yes | No | SF | A common cropping system in the Corn Belt Region with corn fertilized with SF (50% in fall and 50% at planting in spring) |
5 | C-S[PP + P] (SN5) | Yes | No | SF | Same as SN4 but with a spring application of SF before and at planting (50% PP and 50% P) |
6 | C-S[PP + SD]) (SN6) | Yes | No | SF | Same as SN5 but with 50% of total SF before planting and the remaining 50% as a side dressing at 28 days after planting |
7 | C-S[NT&PP + P] (SN7) | No | No | SF | Same as SN5 but with no-tillage |
8 | C-CR-S[PP + P] (SN8) | Yes | Yes | SF | Same as SN5 but with cover crop and tillage |
9 | C-CR-S[NT&PP + P] (SN9) | No | Yes | SF | Same as SN8 but with no-tillage |
10 | C-S[M + SF]) (SN10) | Yes | No | M + SF | Same as SN5 but with the use of manure as a substitute for fall SF and spring SF at planting |
11 | C-S[NT&M + SF]) (SN11) | No | No | M + SF | Same as SN10 but with no-tillage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timilsina, A.P.; Steinbeck, G.; Shah, A.; Khanal, S. Assessing the Multifaceted Tradeoffs of Agricultural Conservation Practices on Ecosystem Services in the Midwest U.S. Sustainability 2024, 16, 5622. https://doi.org/10.3390/su16135622
Timilsina AP, Steinbeck G, Shah A, Khanal S. Assessing the Multifaceted Tradeoffs of Agricultural Conservation Practices on Ecosystem Services in the Midwest U.S. Sustainability. 2024; 16(13):5622. https://doi.org/10.3390/su16135622
Chicago/Turabian StyleTimilsina, Amit P., Garrett Steinbeck, Ajay Shah, and Sami Khanal. 2024. "Assessing the Multifaceted Tradeoffs of Agricultural Conservation Practices on Ecosystem Services in the Midwest U.S." Sustainability 16, no. 13: 5622. https://doi.org/10.3390/su16135622
APA StyleTimilsina, A. P., Steinbeck, G., Shah, A., & Khanal, S. (2024). Assessing the Multifaceted Tradeoffs of Agricultural Conservation Practices on Ecosystem Services in the Midwest U.S. Sustainability, 16(13), 5622. https://doi.org/10.3390/su16135622