A Systematic Review of Socio-Technical Systems in the Water–Energy–Food Nexus: Building a Framework for Infrastructure Justice
Abstract
:1. Introduction
2. Context
3. Methodology
4. Results
4.1. Quantitative Models
4.2. Modelling and Decision Support Frameworks
4.3. Participatory and Social
4.4. Drivers and Policy
4.4.1. Food
4.4.2. Energy
4.5. Disaster
4.6. Critiques
‘Accordingly, nexus studies tend to have a very strong bias towards a focus on accountable flows (omitting or ignoring unaccountable flows), formal networks (neglecting the fragmented nature of infrastructure) and state provision’.[79]
5. Discussion
5.1. Themes
5.1.1. Overview
- Resources in an ecosystem;
- Infrastructure services;
- Influence of place;
- Governance, interests, and scale;
- Justice;
- Flows;
- Disruption and risk.
5.1.2. Resources in an Ecosystem
5.1.3. Infrastructure Services
5.1.4. Influence of Place
5.1.5. Governance, Interests, and Scale
5.1.6. Flows
5.1.7. Disruption and Risk
5.1.8. Justice
5.1.9. Themes and Studies
5.2. Framework
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daccache, A.; Ciurana, J.S.; Rodriguez Diaz, J.A.; Knox, J.W. Water and Energy Footprint of Irrigated Agriculture in the Mediterranean Region. Environ. Res. Lett. 2014, 9, 124014. [Google Scholar] [CrossRef]
- Khatavkar, P.; Mays, L.W. Real-Time Operation of Water-Supply Canal Systems under Limited Electrical Power and/or Water Availability. J. Water Resour. Plan. Manag. 2020, 146, 04020012. [Google Scholar] [CrossRef]
- Mohtar, R.H. The WEF Nexus Journey. Front. Sustain. Food Syst. 2022, 6, 183. [Google Scholar] [CrossRef]
- UN Water Water, Food and Energy|UN-Water. Available online: https://www.unwater.org/water-facts/water-food-and-energy (accessed on 8 November 2022).
- Cansino-Loeza, B.; Munguía-López, A.d.C.; Ponce-Ortega, J.M. A Water-Energy-Food Security Nexus Framework Based on Optimal Resource Allocation. Environ. Sci. Policy 2022, 133, 1–16. [Google Scholar] [CrossRef]
- Geels, F.W. The Dynamics of Transitions in Socio-Technical Systems: A Multi-Level Analysis of the Transition Pathway from Horse-Drawn Carriages to Automobiles (1860–1930). Technol. Anal. Strateg. Manag. 2005, 17, 445–476. [Google Scholar] [CrossRef]
- Hughes, T.P. The Seamless Web: Technology, Science, Etcetera, Etcetera. Soc. Stud. Sci. 1986, 16, 281–292. [Google Scholar] [CrossRef]
- Bolton, R.; Foxon, T.J. Infrastructure Transformation as a Socio-Technical Process—Implications for the Governance of Energy Distribution Networks in the UK. Technol. Forecast. Soc. Chang. 2015, 90, 538–550. [Google Scholar] [CrossRef]
- United Nations. SDGs. Available online: https://sdgs.un.org/goals (accessed on 20 April 2023).
- Smith, S. Just Transition: A Report for the OECD; OECD: Paris, France, 2017. [Google Scholar]
- European Commission. The Just Transition Mechanism: Making Sure No-One Is Left Behind. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/finance-and-green-deal/just-transition-mechanism_en (accessed on 12 May 2023).
- Markolf, S.A.; Chester, M.V.; Eisenberg, D.A.; Iwaniec, D.M.; Davidson, C.I.; Zimmerman, R.; Miller, T.R.; Ruddell, B.L.; Chang, H. Interdependent Infrastructure as Linked Social, Ecological, and Technological Systems (SETSs) to Address Lock-in and Enhance Resilience. Earths Future 2018, 6, 1638–1659. [Google Scholar] [CrossRef]
- Ahlborg, H.; Ruiz-Mercado, I.; Molander, S.; Masera, O. Bringing Technology into Social-Ecological Systems Research—Motivations for a Socio-Technical-Ecological Systems Approach. Sustainability 2019, 11, 2009. [Google Scholar] [CrossRef]
- Pelling, M. The Vulnerability of Cities; Routledge: Abingdon, UK, 2012; ISBN 9781136551475. [Google Scholar]
- Collins, A.E. , Disaster and Development; Routledge: Abingdon, UK, 2009. [Google Scholar]
- van Vliet, B.J.M.; Spaargaren, G.; Oosterveer, P. Sanitation under Challenge: Contributions from the Social Sciences. Water Policy 2011, 13, 797–809. [Google Scholar] [CrossRef]
- Dhaubanjar, S.; Lutz, A.F.; Gernaat, D.E.H.J.; Nepal, S.; Smolenaars, W.; Pradhananga, S.; Biemans, H.; Ludwig, F.; Shrestha, A.B.; Immerzeel, W.W. A Systematic Framework for the Assessment of Sustainable Hydropower Potential in a River Basin—The Case of the Upper Indus. Sci. Total Environ. 2021, 786. [Google Scholar] [CrossRef] [PubMed]
- Daniels, R.J.; Kettl, D.F.; Kunreuther, H. On Risk and Disaster: Lessons from Hurricane Katrina; University of Pennsylvania Press: Philadelphia, PA, USA, 2006; ISBN 0812219597. [Google Scholar]
- Belmont Forum MADIS. Available online: https://sites.psu.edu/belmont/ (accessed on 26 May 2023).
- Sass, K.S.; Konak, A.; Batalini de Macedo, M.; Benso, M.R.; Shrimpton, E.; Balta-Ozkan, N.; Sarmah, T.; Mendiondo, E.M.; Jesus da Silva, G.; Câmara da Silva, P.G.; et al. Enhancing Drought Resilience and Vulnerability Assessment in Small Farms: A Global Expert Survey on Multidimensional Indicators. Int. J. Disaster Risk Reduct. 2024, 110, 104616. [Google Scholar] [CrossRef]
- Hughes, T.P. Networks of Power: Electrification in Western Society, 1880–1930; The John Hopkins University Press: Baltimore, MD, USA, 1983. [Google Scholar]
- Foxon, T.J.; Reed, M.S.; Stringer, L.C. Governing Long-Term Social-Ecological Change: What Can the Adaptive Management and Transition Management Approaches Learn from Each Other? Environ. Policy Gov. 2009, 19, 3–20. [Google Scholar] [CrossRef]
- Loorbach, D.; Frantzeskaki, N.; Avelino, F. Sustainability Transitions Research: Transforming Science and Practice for Societal Change. Annu. Rev. Environ. Resour. 2017, 42, 599–626. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Zhang, X.; Shen, C.; Shao, Z. How Social Impressions Affect Public Acceptance of Nuclear Energy: A Case Study in China. Sustainability 2022, 14, 11190. [Google Scholar] [CrossRef]
- Lawson, A. ‘We’ve Got No Choice’: Locals Fear Life as Lab Rats in UK Hydrogen Heating Pilot. The Guardian, 21 November 2022. [Google Scholar]
- Gordon, J.A.; Balta-Ozkan, N.; Nabavi, S.A. Homes of the Future: Unpacking Public Perceptions to Power the Domestic Hydrogen Transition. Renew. Sustain. Energy Rev. 2022, 164, 112481. [Google Scholar] [CrossRef]
- Geels, F.W. Technological Transitions as Evolutionary Reconfiguration Processes: A Multi-Level Perspective and a Case-Study. Res. Policy 2002, 31, 1257–1274. [Google Scholar] [CrossRef]
- Geels, F.W. Socio-Technical Transitions to Sustainability: A Review of Criticisms and Elaborations of the Multi-Level Perspective. Curr. Opin. Environ. Sustain. 2019, 39, 187–201. [Google Scholar] [CrossRef]
- Goodwin, D.; Raffin, M.; Jeffrey, P.; Smith, H.M. Collaboration on Risk Management: The Governance of a Non-Potable Water Reuse Scheme in London. J. Hydrol. 2019, 573, 1087–1095. [Google Scholar] [CrossRef]
- World Economic Forum; Marsh & McLennan Companies; Swiss Reinsurance Company; Wharton Center for Risk Management; University of Pennsylvania; Zurich Financial Services. Global Risks 2011 Sixth Edition An Initiative of the Risk Response Network. 2011. Available online: https://www3.weforum.org/docs/WEF_Global_Risks_Report_2011.pdf (accessed on 8 November 2022).
- Stockholm Environment Institute. Background Paper for the Bonn 2011 Nexus Conference: The Water, Energy and Food Security Nexus. 2011. Available online: https://www.sei.org/publications/understanding-the-nexus/ (accessed on 8 November 2022).
- Al-Saidi, M.; Elagib, N.A. Towards Understanding the Integrative Approach of the Water, Energy and Food Nexus. Sci. Total Environ. 2017, 574, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Stringer, L.; Quinn, C.; Berman, R.; Le, H.; Msuya, F.; Orchard, S.; Pezzuti, J. Combining Nexus and Resilience Thinking in a Novel Framework to Enable More Equitable and Just Outcomes; The University of Leeds: Leeds, UK, 2014. [Google Scholar]
- Manuel Núñez-López, J.; Cansino-Loeza, B.; Sánchez-Zarco, X.G.; Ponce-Ortega, J.M. Involving Resilience in Assessment of the Water-Energy-Food Nexus for Arid and Semiarid Regions Graphical Abstract. Clean. Technol. Environ. Policy 2022, 24, 1681–1693. [Google Scholar] [CrossRef]
- Dargin, J.; Berk, A.; Mostafavi, A. Assessment of Household-Level Food-Energy-Water Nexus Vulnerability during Disasters. Sustain. Cities Soc. 2020, 62, 102366. [Google Scholar] [CrossRef]
- Daher, B.; Hamie, S.; Pappas, K.; Nahidul Karim, M.; Thomas, T. Toward Resilient Water-Energy-Food Systems under Shocks: Understanding the Impact of Migration, Pandemics, and Natural Disasters. Sustainability 2021, 13, 9402. [Google Scholar] [CrossRef]
- Ding, K.; Gilligan, J.M.; Hornberger, G.M. Avoiding “Day-Zero”: A Testbed for Evaluating Integrated Food-Energy-Water Management in Cape Town, South Africa. In Proceedings of the 2019 Winter Simulation Conference (WSC), National Harbor, MD, USA, 8–11 December 2019. [Google Scholar]
- Ostrom, E. Background on the Institutional Analysis and Development Framework. Policy Stud. J. 2011, 39, 7–27. [Google Scholar] [CrossRef]
- Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Hardin, G. The Tragedy of the Commons. Science 1968, 162, 1243–1248. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Stirling, A. The Politics of Social-Ecological Resilience and Sustainable Socio-Technical Transitions. Ecol. Soc. 2010, 15, 11. [Google Scholar] [CrossRef]
- Kurian, M. The Water-Energy-Food Nexus: Trade-Offs, Thresholds and Transdisciplinary Approaches to Sustainable Development. Environ. Sci. Policy 2017, 68, 97–106. [Google Scholar] [CrossRef]
- Grabowski, Z.J.; Matsler, A.M.; Thiel, C.; McPhillips, L.; Hum, R.; Bradshaw, A.; Miller, T.; Redman, C. Infrastructures as Socio-Eco-Technical Systems: Five Considerations for Interdisciplinary Dialogue. J. Infrastruct. Syst. 2017, 23, 02517002. [Google Scholar] [CrossRef]
- Schlosberg, D. Defining Environmental Justice: Theories, Movements, and Nature/David Schlosberg; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Schlosberg, D. Climate Justice and Capabilities: A Framework for Adaptation Policy. Ethics Int. Aff. 2012, 26, 445–461. [Google Scholar] [CrossRef]
- Schlosberg, D. Ecological Reflexivity, Engagement, and Institutions: Implementing Environmental and Ecological Justice. In Defining Environmental Justice; Oxford University Press: Oxford, UK, 2007; ISBN 9780199286294. [Google Scholar]
- Rawls, J. Justice as Fairness: Political Not Metaphysical. Philos. Public Aff. 1985, 14, 223–251. [Google Scholar]
- Rawls, J. A Theory of Justice, Revised edition; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Müller, F.; Tunn, J.; Kalt, T. Hydrogen Justice. Environ. Res. Lett. 2022, 17, 115006. [Google Scholar] [CrossRef]
- Neal, M.J.; Lukasiewicz, A.; Syme, G.J. Why Justice Matters in Water Governance: Some Ideas for a ‘Water Justice Framework’. Water Policy 2014, 16, 1–18. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Desouza, K.C.; Butler, L.; Roozkhosh, F. Contributions and Risks of Artificial Intelligence (AI) in Building Smarter Cities: Insights from a Systematic Review of the Literature. Energies 2020, 13, 1473. [Google Scholar] [CrossRef]
- Cairns, R.; Krzywoszynska, A. Anatomy of a Buzzword: The Emergence of ‘the Water-Energy-Food Nexus’ in UK Natural Resource Debates. Environ. Sci. Policy 2016, 64, 164–170. [Google Scholar] [CrossRef]
- Johnson, O.W.; Karlberg, L. Co-Exploring the Water-Energy-Food Nexus: Facilitating Dialogue through Participatory Scenario Building. Front. Environ. Sci. 2017, 5, 24. [Google Scholar] [CrossRef]
- Hejazi, M.; Santos Da Silva, S.R.; Miralles-Wilhelm, F.; Kim, S.; Kyle, P.; Liu, Y.; Vernon, C.; Delgado, A.; Edmonds, J.; Clarke, L. Impacts of Water Scarcity on Agricultural Production and Electricity Generation in the Middle East and North Africa. Front. Environ. Sci. 2023, 11, 1082930. [Google Scholar] [CrossRef]
- Yue, Q.; Guo, P.; Wu, H.; Wang, Y.; Zhang, C. Towards Sustainable Circular Agriculture: An Integrated Optimization Framework for Crop-Livestock-Biogas-Crop Recycling System Management under Uncertainty. Agric. Syst. 2022, 196, 103347. [Google Scholar] [CrossRef]
- Braun, V.; Clark, V. Successful Qualitative Research; Sage: Los Angeles, CA, USA, 2013. [Google Scholar]
- Enayati, M.; Bozorg-Haddad, O.; Fallah-Mehdipour, E.; Zolghadr-Asli, B.; Chu, X. A Robust Multiple-Objective Decision-Making Paradigm Based on the Water–Energy–Food Security Nexus under Changing Climate Uncertainties. Sci. Rep. 2021, 11, 20927. [Google Scholar] [CrossRef]
- Bai, C.G.; Sarkis, J. The Water, Energy, Food and Sustainability Nexus Decision Environment: A Multistakeholder Transdisciplinary Approach. IEEE Trans. Eng. Manag. 2022, 69, 656–670. [Google Scholar] [CrossRef]
- Li, S.; Cai, X.; Emaminejad, S.A.; Juneja, A.; Niroula, S.; Oh, S.; Wallington, K.; Cusick, R.D.; Gramig, B.M.; John, S.; et al. Developing an Integrated Technology-Environment-Economics Model to Simulate Food-Energy-Water Systems in Corn Belt Watersheds. Environ. Model. Softw. 2021, 143, 105083. [Google Scholar] [CrossRef]
- Payet-Burin, R.; Kromann, M.; Pereira-Cardenal, S.; Marc Strzepek, K.; Bauer-Gottwein, P. WHAT-IF: An Open-Source Decision Support Tool for Water Infrastructure Investment Planning within the Water-Energy-Food-Climate Nexus. Hydrol. Earth Syst. Sci. 2019, 23, 4129–4152. [Google Scholar] [CrossRef]
- Shi, H.; Luo, G.; Zheng, H.; Chen, C.; Bai, J.; Liu, T.; Ochege, F.U.; De Maeyer, P. Coupling the Water-Energy-Food-Ecology Nexus into a Bayesian Network for Water Resources Analysis and Management in the Syr Darya River Basin. J. Hydrol. 2020, 581, 124387. [Google Scholar] [CrossRef]
- Nisal, A.; Diwekar, U.; Hanumante, N.; Shastri, Y.; Cabezas, H. Integrated Model for Food-Energy-Water (FEW) Nexus to Study Global Sustainability: The Main Generalized Global Sustainability Model (GGSM). PLoS ONE 2022, 17, e0267403. [Google Scholar] [CrossRef] [PubMed]
- Nisal, A.; Diwekar, U.; Hanumante, N.; Shastri, Y.; Cabezas, H.; Rico Ramirez, V.; Rodríguez-González, P.T. Evaluation of Global Techno-Socio-Economic Policies for the FEW Nexus with an Optimal Control Based Approach. Front. Sustain. 2022, 3, 948443. [Google Scholar] [CrossRef]
- Mouratiadou, I.; Biewald, A.; Pehl, M.; Bonsch, M.; Baumstark, L.; Klein, D.; Popp, A.; Luderer, G.; Kriegler, E. The Impact of Climate Change Mitigation on Water Demand for Energy and Food: An Integrated Analysis Based on the Shared Socioeconomic Pathways. Environ. Sci. Policy 2016, 64, 48–58. [Google Scholar] [CrossRef]
- Harmon, G.; Jepson, W.; Lefore, N. Farmer-Led Irrigation Development in Sub-Saharan Africa. Wiley Interdiscip. Rev. Water 2023, 10, e1631. [Google Scholar] [CrossRef]
- Hibbett, E.; Rushforth, R.R.; Roberts, E.; Ryan, S.M.; Pfeiffer, K.; Bloom, N.E.; Ruddell, B.L. Citizen-Led Community Innovation for Food Energy Water Nexus Resilience. Front. Environ. Sci. 2020, 8, 571614. [Google Scholar] [CrossRef]
- Miller, W. Food, Water, Energy, Waste: An Examination of Socio-Technical Issues for Urban Prosumers—Part 1 (Context). Energy Procedia 2019, 161, 360–367. [Google Scholar] [CrossRef]
- Miller, W. Food, Water, Energy, Waste: An Examination of Socio-Technical Issues for Urban Prosumers: Part 2 (Results and Discussion). Energy Procedia 2019, 161, 368–375. [Google Scholar] [CrossRef]
- Subedi, R.; Karki, M.; Panday, D. Food System and Water Energy Biodiversity Nexus in Nepal: A Review. Agronomy 2020, 10, 1129. [Google Scholar] [CrossRef]
- Smidt, S.J.; Haacker, E.M.K.; Kendall, A.D.; Deines, J.M.; Pei, L.; Cotterman, K.A.; Li, H.; Liu, X.; Basso, B.; Hyndman, D.W. Complex Water Management in Modern Agriculture: Trends in the Water-Energy-Food Nexus over the High Plains Aquifer. Sci. Total Environ. 2016, 566–567, 988–1001. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.; Ganapathysubramanian, B.; Chen, W.; Dorneich, M.; Gassman, P.; Krejci, C.; Liebman, M.; Nair, A.; Passe, U.; Schwab, N.; et al. Iowa Urban FEWS: Integrating Social and Biophysical Models for Exploration of Urban Food, Energy, and Water Systems. Front. Big Data 2021, 4, 662186. [Google Scholar] [CrossRef] [PubMed]
- Soares Dal Poz, M.E.; de Arruda Ignácio, P.S.; Azevedo, A.; Francisco, E.C.; Piolli, A.L.; Gheorghiu da Silva, G.; Pereira Ribeiro, T. Food, Energy and Water Nexus: An Urban Living Laboratory Development for Sustainable Systems Transition. Sustainability 2022, 14, 7163. [Google Scholar] [CrossRef]
- Lefore, N.; Closas, A.; Schmitter, P. Solar for All: A Framework to Deliver Inclusive and Environmentally Sustainable Solar Irrigation for Smallholder Agriculture. Energy Policy 2021, 154, 112313. [Google Scholar] [CrossRef]
- Larsen, M.A.D.; Petrovic, S.; Engström, R.E.; Drews, M.; Liersch, S.; Karlsson, K.B.; Howells, M. Challenges of Data Availability: Analysing the Water-Energy Nexus in Electricity Generation. Energy Strategy Rev. 2019, 26, 100426. [Google Scholar] [CrossRef]
- Irwin, E.; Campbell, J.; Wilson, R.; Faggian, A.; Moore, R.; Irwin, N. Human Adaptations in Food, Energy, and Water Systems. J. Environ. Stud. Sci. 2016, 6, 127–139. [Google Scholar] [CrossRef]
- Adom, R.K.; Simatele, M.D.; Reid, M. Addressing the Challenges of Water-Energy-Food Nexus Programme in the Context of Sustainable Development and Climate Change in South Africa. J. Water Clim. Chang. 2022, 13, 2761–2779. [Google Scholar] [CrossRef]
- Rollason, E.; Sinha, P.; Bracken, L.J. Interbasin Water Transfer in a Changing World: A New Conceptual Model. Prog. Phys. Geogr. 2022, 46, 371–397. [Google Scholar] [CrossRef]
- Avraam, C.; Zhang, Y.; Sankaranarayanan, S.; Zaitchik, B.; Moynihan, E.; Juturu, P.; Neff, R.; Siddiqui, S. Optimization-Based Systems Modeling for the Food-Energy-Water Nexus. Curr. Sustain./Renew. Energy Rep. 2021, 8, 4–16. [Google Scholar] [CrossRef]
- Bruns, A.; Meisch, S.; Ahmed, A.; Meissner, R.; Romero-Lankao, P. Nexus Disrupted: Lived Realities and the Water-Energy-Food Nexus from an Infrastructure Perspective. Geoforum 2022, 133, 79–88. [Google Scholar] [CrossRef]
- Shrimpton, E.A. Governance and Infrastructure in the Water Sector: Towards Successful and Just Interventions. Ph.D. Thesis, University of Birmingham, Birmingham, UK, 2023. [Google Scholar]
- Smith, K. Environmental Hazards: Assessing Risk and Reducing Disaster, 6th ed.; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Shrimpton, E.A.; Hunt, D.V.L.; Rogers, C.D.F. A Governance Framework for Implementation of Scientific and Engineering Innovation in Buried Infrastructure Systems. Front. Sustain. Cities 2022, 4, 765577. [Google Scholar] [CrossRef]
- Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Shrimpton, E.A.; Hunt, D.; Rogers, C.D.F. Justice in (English) Water Infrastructure: A Systematic Review. Sustainability 2021, 13, 3363. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Burke, M.; Baker, L.; Kotikalapudi, C.K.; Wlokas, H. New Frontiers and Conceptual Frameworks for Energy Justice. Energy Policy 2017, 105, 677–691. [Google Scholar] [CrossRef]
- Goforth, T.; Levin, T.; Nock, D. Incorporating Energy Justice and Equity into Power System Models: A Review of Current Practices and Paths Forward. SSRN Electron. J. 2023. [Google Scholar] [CrossRef]
- Celermajer, D.; Schlosberg, D.; Rickards, L.; Stewart-Harawira, M.; Thaler, M.; Tschakert, P.; Verlie, B.; Winter, C. Multispecies Justice: Theories, Challenges, and a Research Agenda for Environmental Politics. Environ. Polit. 2021, 30, 119–140. [Google Scholar] [CrossRef]
- Kaljonen, M.; Kortetmäki, T.; Tribaldos, T.; Huttunen, S.; Karttunen, K.; Maluf, R.S.; Niemi, J.; Saarinen, M.; Salminen, J.; Vaalavuo, M.; et al. Justice in Transitions: Widening Considerations of Justice in Dietary Transition. Environ. Innov. Soc. Transit. 2021, 40, 474–485. [Google Scholar] [CrossRef]
- Heffron, R.J.; Mccauley, D. Critical Review What Is the “Just Transition”? Geoforum 2017, 88, 74–77. [Google Scholar] [CrossRef]
- Williams, S.; Doyon, A. The Energy Futures Lab: A Case Study of Justice in Energy Transitions. Environ. Innov. Soc. Transit. 2020, 37, 290–301. [Google Scholar] [CrossRef]
- Williams, S.; Doyon, A. Justice in Energy Transitions. Environ. Innov. Soc. Transit. 2019, 31, 144–153. [Google Scholar] [CrossRef]
- HyPT. Available online: https://www.cranfield.ac.uk/Research%20projects/HyPT (accessed on 10 June 2024).
Category | Authors | Ref. Number | Scale(s) |
---|---|---|---|
Quantitative Models | Enayati et al., 2021 | [57] | Waterbasin (Iran) |
Bai and Sarkis, 2019 | [58] | National, regional | |
Li et al., 2021 | [59] | Regional (Corn belt, USA) | |
Payet-Burin et al., 2019 | [60] | Waterbasin, cross-border (Zambezi River Basin) | |
Shi et al., 2020 | [61] | Waterbasin, cross-border (Syr Darya River Basin) | |
Yue et al., 2022 | [55] | Regional (Hubei, China) | |
Modelling and Decision Support Frameworks | Nisal et al., 2021 | [62] | Global |
Nisal et al., 2022 | [63] | Global | |
Mouriatidou et al., 2016 | [64] | Global | |
Hejazi et al., 2023 | [54] | Global, national (MENA) | |
Participatory and Social | Johnson and Karlberg, L 2017 | [53] | National (Ethiopia and Rwanda) |
Harmon et al., 2022 | [65] | Global, national, community, individual (SSA) | |
Hibbett et al., 2020 | [66] | Regional, community | |
Drivers and Policy (food) | Miller, W (parts 1 and 2) 2019 | [67,68] | Community (Gold Coast, Australia) |
Subedi et al., 2020 | [69] | National (Nepal) | |
Smidt et al., 2016 | [70] | Regional (High Plains, USA) | |
Thompson et al., 2021 | [71] | Regional (Des Moines, USA) | |
Soares Dal Poz et al., 2022 | [72] | National, regional | |
Drivers and Policy (energy) | Lefore, Closas and Schmitter, 2021 | [73] | National (MENA, SSA) |
Larsen et al., 2019 | [74] | Global, national, regional | |
Disaster | Daher et al., 2021 | [36] | Global |
Dhaubanjar et al., 2021 | [17] | Waterbasin, cross border (Indus basin) | |
Irwin et al., 2016 | [75] | Community, individual | |
Critiques | Adom et al., 2022 | [76] | National (South Africa) |
Cairns and Krzywoszynska, 2016 | [52] | National (UK) | |
Rollason et al., 2021 | [77] | Waterbasin, cross border | |
Avraam et al., 2020 | [78] | N/A | |
Bruns et al., 2022 | [79] | National, Community (SSA) |
Category | Authors | Resources in an Ecosystem | Infrastructure Services | Influence of Place | Governance, Interests, and Scale | Flows | Shocks | Disruption and Risk | Justice |
---|---|---|---|---|---|---|---|---|---|
Quantitative Models | Enayati et al., 2021 [57] | x | x | x | |||||
Bai and Sarkis, 2019 [58] | x | x | x | x | |||||
Li et al., 2021 [59] | x | x | x | x | x | ||||
Payet-Burin et al., 2019 [60] | x | x | |||||||
Shi et al., 2020 [61] | x | x | x | x | |||||
Yue et al., 2022 [55] | x | x | x | ||||||
Modelling and Decision Support Frameworks | Nisal et al., 2021 [62] | x | x | x | x | ||||
Nisal et al., 2022 [63] | x | x | x | x | |||||
Hejazi et al., 2023 [54] | x | x | |||||||
Mouriatidou et al., 2016 [64] | x | x | |||||||
Participatory/Social | Johnson and Karlberg, 2017 [53] | x | x | x | x | ||||
Harmon et al., 2022 [65] | x | x | x | x | |||||
Hibbett et al., 2020 [66] | x | x | x | x | x | x | |||
Drivers and Policy (food) | Miller, W (part 1 and 2) (2 documents) [67,68] | x | x | x | x | ||||
Subedi et al., 2020 [69] | x | x | x | x | x | x | |||
Smidt et al., 2016 [70] | x | x | x | ||||||
Thompson et al., 2021 [71] | x | x | x | x | |||||
Soares Dal Poz et al., 2022 [72] | x | x | x | ||||||
Drivers and Policy (energy) | Lefore; Closas, and Schmitter, 2021 [73] | x | x | x | x | ||||
Larsen et al., 2019 [74] | x | x | x | ||||||
Disaster | Daher et al., 2021 [36] | x | x | x | x | x | x | ||
Dhaubanjar et al., 2021 [17] | x | x | x | x | x | x | x | ||
Irwin et al., 2016 [75] | x | x | x | x | x | x | x | ||
Critiques | Adom et al., 2022 [76] | x | x | x | x | ||||
Cairns and Krzywoszynska, 2016 [52] | x | ||||||||
Rollason et al., 2021 [77] | x | x | x | x | |||||
Avraam et al., 2020 [78] | x | x | x | x | |||||
Bruns et al., 2022 [79] | x | x | x | x | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrimpton, E.A.; Balta-Ozkan, N. A Systematic Review of Socio-Technical Systems in the Water–Energy–Food Nexus: Building a Framework for Infrastructure Justice. Sustainability 2024, 16, 5962. https://doi.org/10.3390/su16145962
Shrimpton EA, Balta-Ozkan N. A Systematic Review of Socio-Technical Systems in the Water–Energy–Food Nexus: Building a Framework for Infrastructure Justice. Sustainability. 2024; 16(14):5962. https://doi.org/10.3390/su16145962
Chicago/Turabian StyleShrimpton, Elisabeth A., and Nazmiye Balta-Ozkan. 2024. "A Systematic Review of Socio-Technical Systems in the Water–Energy–Food Nexus: Building a Framework for Infrastructure Justice" Sustainability 16, no. 14: 5962. https://doi.org/10.3390/su16145962
APA StyleShrimpton, E. A., & Balta-Ozkan, N. (2024). A Systematic Review of Socio-Technical Systems in the Water–Energy–Food Nexus: Building a Framework for Infrastructure Justice. Sustainability, 16(14), 5962. https://doi.org/10.3390/su16145962