LCA Operational Carbon Reduction Based on Energy Strategies Analysis in a Mass Timber Building
Abstract
:1. Introduction
1.1. Overall Influence of Mass Timber Operation on Carbon Emission
1.2. Past Research LCA Metric on Mass Timber Buildings Operation
1.3. Efforts at Reducing OC at University Campuses
1.4. Procedural Approaches to Data Use in Building Operations
1.5. Data Need for OC in Campus Mass Timber Buildings
2. Materials and Methods
2.1. Quantitative Method
2.2. LCA, Tools, and Databases
2.3. The Case Study, Adohi Hall
2.4. Goals, Scope, and System Boundaries
3. Adohi Hall Operational Energy Flows and Energy Generation
3.1. Appliance and Lighting
3.1.1. Electricity
3.1.2. Natural Gas
3.2. Heating
3.3. Cooling
3.4. Water
3.4.1. Water Supply
3.4.2. Hot Water Supply
4. Results
4.1. Appliance and Lighting GWP Impact
4.1.1. Emissions from Electricity
4.1.2. Emissions from Natural Gas
4.2. Heating GWP Impact
4.3. Cooling GWP Impact
4.4. Water GWP Impact
4.5. Total GWP Impact
5. Discussion
5.1. Sensitivity Analysis
5.1.1. Scenarios
Scenario 1—Adohi Hall’s Electricity Power Sourced Entirely from SWEPCO
Scenario 2—SWEPCO Future, Improving SWEPCO’s Efficiency by Incorporating Wind and Solar Resources
Scenario 3—Adohi Hall’s Electric Power Sourced Entirely from the On-Campus CHP Plant
Scenario 4—SWEPCO Future with CHP Plant Contribution
Scenario 5—SWEPCO Future with No Coal Contribution
5.1.2. Analytical Results
6. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Averchenkova, A.; Fankhauser, S.; Finnegan, J.J. The impact of strategic climate legislation: Evidence from expert interviews on the UK Climate Change Act. Clim. Policy 2021, 21, 251–263. [Google Scholar] [CrossRef]
- Scannell, L.; Grouzet, F.M.E. The metacognitions of climate change. New Ideas Psychol. 2010, 28, 94–103. [Google Scholar] [CrossRef]
- Rostami, E.; Vahid, R.; Zarei, A.; Amani, M. Dynamic Analysis of Water Surface Extent and Climate Change Parameters in Zarivar Lake, Iran. Environ. Sci. Proc. 2024, 29, 71. [Google Scholar] [CrossRef]
- Mansourihanis, O.; Zaroujtaghi, A.; Hemmati, M.; Maghsoodi Tilaki, M.J.; Alipour, M. Unraveling the Tourism–Environment–Equity Nexus: A Neighborhood-Scale Analysis of Texas Urban Centers. Urban Sci. 2024, 8, 82. [Google Scholar] [CrossRef]
- Sandanayake, M.; Lokuge, W.; Zhang, G.M.; Setunge, S.; Thushar, Q. Greenhouse gas emissions during timber and concrete building construction—A scenario based comparative case study. Sustain. Cities Soc. 2018, 38, 91–97. [Google Scholar] [CrossRef]
- Nagpal, S.; Reinhart, C.F. A comparison of two modeling approaches for establishing and implementing energy use reduction targets for a university campus. Energy Build. 2018, 173, 103–116. [Google Scholar] [CrossRef]
- Kisku, N.; Joshi, H.; Ansari, M.; Panda, S.K.; Nayak, S.; Dutta, S.C. A critical review and assessment for usage of recycled aggregate as sustainable construction material. Constr. Build. Mater. 2017, 131, 721–740. [Google Scholar] [CrossRef]
- Yan, H.; Shen, Q.P.; Fan, L.C.H.; Wang, Y.W.; Zhang, L. Greenhouse gas emissions in building construction: A case study of One Peking in Hong Kong. Build. Environ. 2010, 45, 949–955. [Google Scholar] [CrossRef]
- Ingrao, C.; Scrucca, F.; Tricase, C.; Asdrubali, F. A comparative Life Cycle Assessment of external wall-compositions for cleaner construction solutions in buildings. J. Clean. Prod. 2016, 124, 283–298. [Google Scholar] [CrossRef]
- Jayalath, A.; Navaratnam, S.; Ngo, T.; Mendis, P.; Hewson, N.; Aye, L. Life cycle performance of Cross Laminated Timber mid-rise residential buildings in Australia. Energy Build. 2020, 223, 110091. [Google Scholar] [CrossRef]
- Zhu, H.; Liou, S.R.; Chen, P.C.; He, X.Y.; Sui, M.L. Carbon Emissions Reduction of a Circular Architectural Practice: A Study on a Reversible Design Pavilion Using Recycled Materials. Sustainability 2024, 16, 1729. [Google Scholar] [CrossRef]
- Rinne, R.; Ilgin, H.E.; Karjalainen, M. Comparative Study on Life-Cycle Assessment and Carbon Footprint of Hybrid, Concrete and Timber Apartment Buildings in Finland. Int. J. Environ. Res. Public Health 2022, 19, 774. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Nord, N.; Chen, S.Q. Energy planning of university campus building complex: Energy usage and coincidental analysis of individual buildings with a case study. Energy Build. 2016, 124, 99–111. [Google Scholar] [CrossRef]
- Akbarnezhad, A.; Xiao, J. Estimation and minimization of embodied carbon of buildings: A review. Buildings 2017, 7, 5. [Google Scholar] [CrossRef]
- Upton, B.; Miner, R.; Spinney, M.; Heath, L.S. The greenhouse gas and energy impacts of using wood instead of alternatives in residential construction in the United States. Biomass Bioenergy 2008, 32, 1–10. [Google Scholar] [CrossRef]
- Hemmati, M.; Messadi, T.; Gu, H.M. Life Cycle Assessment of Cross-Laminated Timber Transportation from Three Origin Points. Sustainability 2022, 14, 336. [Google Scholar] [CrossRef]
- Chau, C.K.; Leung, T.M.; Ng, W.Y. A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings. Appl. Energy 2015, 143, 395–413. [Google Scholar] [CrossRef]
- Blengini, G.A.; Di Carlo, T. The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings. Energy Build. 2010, 42, 869–880. [Google Scholar] [CrossRef]
- Kofoworola, O.F.; Gheewala, S.H. Environmental life cycle assessment of a commercial office building in Thailand. Int. J. Life Cycle Assess. 2008, 13, 498–511. [Google Scholar] [CrossRef]
- Pierobon, F.; Huang, M.; Simonen, K.; Ganguly, I. Environmental benefits of using hybrid CLT structure in midrise non-residential construction: An LCA based comparative case study in the U.S. Pacific Northwest. J. Build. Eng. 2019, 26, 100862. [Google Scholar] [CrossRef]
- Ramesh, T.; Prakash, R.; Shukla, K.K. Life cycle energy analysis of buildings: An overview. Energy Build. 2010, 42, 1592–1600. [Google Scholar] [CrossRef]
- Marjaba, G.E.; Chidiac, S.E. Sustainability and resiliency metrics for buildings—Critical review. Build. Environ. 2016, 101, 116–125. [Google Scholar] [CrossRef]
- Hemmati, M.; Messadi, T.; Gu, H.; Seddelmeyer, J.; Hemmati, M. Comparison of Embodied Carbon Footprint of a Mass Timber Building Structure with a Steel Equivalent. Buildings 2024, 14, 1276. [Google Scholar] [CrossRef]
- Hafner, A. Contribution of timber buildings on sustainability issues. World Sustain. Build. 2014, 4. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C4&q=.+Contribution+of+timber+buildings+on+sustainability+issues&btnG= (accessed on 5 March 2024).
- Vidal, R.; Sánchez-Pantoja, N.; Martínez, G. Life cycle assessment of a residential building with cross-laminated timber structure in Granada-Spain. Inf. Constr. 2019, 71, 289. [Google Scholar] [CrossRef]
- Quintana-Gallardo, A.; Schau, E.M.; Niemelä, E.P.; Burnard, M.D. Comparing the environmental impacts of wooden buildings in Spain, Slovenia, and Germany. J. Clean. Prod. 2021, 329, 129587, Erratum in J. Clean. Prod. 2022, 331, 129984. [Google Scholar] [CrossRef]
- Lee, D.; Kim, J.; Lee, S. Optimal Design of Truss Structures for Sustainable Carbon Emission Reduction in Korean Construction. Sustainability 2024, 16, 5830. [Google Scholar] [CrossRef]
- Felmer, G.; Morales-Vera, R.; Astroza, R.; González, I.; Puettmann, M.; Wishnie, M. A Lifecycle Assessment of a Low-Energy Mass-Timber Building and Mainstream Concrete Alternative in Central Chile. Sustainability 2022, 14, 1249. [Google Scholar] [CrossRef]
- Chen, Z.J.; Gu, H.M.; Bergman, R.D.; Liang, S.B. Comparative Life-Cycle Assessment of a High-Rise Mass Timber Building with an Equivalent Reinforced Concrete Alternative Using the Athena Impact Estimator for Buildings. Sustainability 2020, 12, 4708. [Google Scholar] [CrossRef]
- Greene, J.M.; Hosanna, H.R.; Willson, B.; Quinn, J.C. Whole life embodied emissions and net-zero emissions potential for a mid-rise office building constructed with mass timber. Sustain. Mater. Technol. 2023, 35, e00528. [Google Scholar] [CrossRef]
- Hacker, J.N.; De Saulles, T.P.; Minson, A.J.; Holmes, M.J. Embodied and operational carbon dioxide emissions from housing: A case study on the effects of thermal mass and climate change. Energy Build. 2008, 40, 375–384. [Google Scholar] [CrossRef]
- Bejo, L. Operational vs. Embodied Energy: A Case for Wood Construction. Drv. Ind. 2017, 68, 163–172. [Google Scholar] [CrossRef]
- Takano, A.; Hafner, A.; Linkosalmi, L.; Ott, S.; Hughes, M.; Winter, S. Life cycle assessment of wood construction according to the normative standards. Eur. J. Wood Wood Prod. 2015, 73, 299–312. [Google Scholar] [CrossRef]
- Dong, Y.; Qin, T.; Zhou, S.; Huang, L.; Bo, R.; Guo, H.; Yin, X. Comparative Whole Building Life Cycle Assessment of Energy Saving and Carbon Reduction Performance of Reinforced Concrete and Timber Stadiums-A Case Study in China. Sustainability 2020, 12, 1566. [Google Scholar] [CrossRef]
- Duan, Z.C. Impact of climate change on the life cycle greenhouse gas emissions of cross-laminated timber and reinforced concrete buildings in China. J. Clean. Prod. 2023, 395, 136446. [Google Scholar] [CrossRef]
- Dodoo, A.; Gustavsson, L.; Sathre, R. Effect of thermal mass on life cycle primary energy balances of a concrete-and a wood-frame building. Appl. Energy 2012, 92, 462–472. [Google Scholar] [CrossRef]
- Xue, Z.Y.; Liu, H.B.; Zhang, Q.X.; Wang, J.X.; Fan, J.L.; Zhou, X. The Impact Assessment of Campus Buildings Based on a Life Cycle Assessment-Life Cycle Cost Integrated Model. Sustainability 2020, 12, 294. [Google Scholar] [CrossRef]
- Chung, M.H.; Rhee, E.K. Potential opportunities for energy conservation in existing buildings on university campus: A field survey in Korea. Energy Build. 2014, 78, 176–182. [Google Scholar] [CrossRef]
- Anand, C.K.; Bisaillon, V.; Webster, A.; Amor, B. Integration of sustainable development in higher education—A regional initiative in Quebec (Canada). J. Clean. Prod. 2015, 108, 916–923. [Google Scholar] [CrossRef]
- Findler, F.; Schönherr, N.; Lozano, R.; Stacherl, B. Assessing the Impacts of Higher Education Institutions on Sustainable Development-An Analysis of Tools and Indicators. Sustainability 2019, 11, 59. [Google Scholar] [CrossRef]
- Del Borghi, A.; Spiegelhalter, T.; Moreschi, L.; Gallo, M. Carbon-Neutral-Campus Building: Design Versus Retrofitting of Two University Zero Energy Buildings in Europe and in the United States. Sustainability 2021, 13, 9023. [Google Scholar] [CrossRef]
- Legorburu, G.; Smith, A.D. Incorporating observed data into early design energy models for life cycle cost and carbon emissions analysis of campus buildings. Energy Build. 2020, 224, 110279. [Google Scholar] [CrossRef]
- Busaeri, N.; Hiron, N.; Giriantari, I.A.D.; Ariastina, W.G.; Swamardika, I.B.A. Green Campus Establishment Through Carbon Emission and Energy Efficiency Control. In Proceedings of the 2021 International Conference on Smart-Green Technology in Electrical and Information Systems (ICSGTEIS), Sanur, Bali, Indonesia, 28–30 October 2021; pp. 106–111. [Google Scholar]
- Save, P.; Cavka, B.T.; Froese, T. Evaluation and Lessons Learned from a Campus as a Living Lab Program to Promote Sustainable Practices. Sustainability 2021, 13, 1739. [Google Scholar] [CrossRef]
- Sustainability. Available online: https://sustainability.uark.edu/ (accessed on 2 March 2024).
- Ascione, F.; Bianco, N.; De Masi, R.F.; Vanoli, G.P. Rehabilitation of the building envelope of hospitals: Achievable energy savings and microclimatic control on varying the HVAC systems in Mediterranean climates. Energy Build. 2013, 60, 125–138. [Google Scholar] [CrossRef]
- DIN V 4108; Wärmeschutz und Energie-Einsparung in Gebäuden–Berechnung des Jahresheizwärme-und des Jahresheizenergiebedarfs. Beuth: Berlin, Germany, 2003.
- Ramon, D.; Allacker, K.; Trigaux, D.; Wouters, H.; van Lipzig, N.P.M. Dynamic modelling of operational energy use in a building LCA: A case study of a Belgian office building. Energy Build. 2023, 278, 112634. [Google Scholar] [CrossRef]
- Mansourihanis, O.; Tilaki, M.J.M.; Yousefian, S.; Zaroujtaghi, A. A Computational Geospatial Approach to Assessing Land-Use Compatibility in Urban Planning. Land 2023, 12, 2083. [Google Scholar] [CrossRef]
- Wang, S.; Huang, X.; Liu, P.; Zhang, M.; Biljecki, F.; Hu, T.; Fu, X.; Liu, L.; Liu, X.; Wang, R.; et al. Mapping the landscape and roadmap of geospatial artificial intelligence (GeoAI) in quantitative human geography: An extensive systematic review. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103734. [Google Scholar] [CrossRef]
- Cuerda, E.; Guerra-Santin, O.; Sendra, J.; Neila, F. Understanding the performance gap in energy retrofitting: Measured input data for adjusting building simulation models. Energy Build. 2020, 209, 109688. [Google Scholar] [CrossRef]
- La Fleur, L.; Moshfegh, B.; Rohdin, P. Measured and predicted energy use and indoor climate before and after a major renovation of an apartment building in Sweden. Energy Build. 2017, 146, 98–110. [Google Scholar] [CrossRef]
- Balaras, C.; Dascalaki, E.; Droutsa, K.; Kontoyiannidis, S. Empirical assessment of calculated and actual heating energy use in Hellenic residential buildings. Appl. Energy 2016, 164, 115–132. [Google Scholar] [CrossRef]
- Wang, D.; Pang, X.; Wang, W.; Qi, Z.; Ji, Y.; Yin, R. Evaluation of the dynamic energy performance gap of green buildings: Case studies in China. Build. Simul. 2020, 13, 1191–1204. [Google Scholar] [CrossRef]
- Sun, K.; Hong, T.; Kim, J.; Hooper, B. Application and evaluation of a pattern-based building energy model calibration method using public building datasets. Build. Simul. 2022, 15, 1385–1400. [Google Scholar] [CrossRef]
- Hong, T.; Langevin, J.; Sun, K. Building simulation: Ten challenges. Build. Simul. 2018, 11, 871–898. [Google Scholar] [CrossRef]
- Yoshino, H.; Hong, T.; Nord, N. IEA EBC annex 53: Total energy use in buildings Analysis and evaluation methods. Energy Build. 2017, 152, 124–136. [Google Scholar] [CrossRef]
- Yin, L.; Shaw, S.-L.; Yu, H. Potential effects of ICT on face-to-face meeting opportunities: A GIS-based time-geographic approach. J. Transp. Geogr. 2011, 19, 422–433. [Google Scholar] [CrossRef]
- Zabalza, I.; Scarpellini, S.; Aranda, A.; Llera, E.; Jáñez, A. Use of LCA as a Tool for Building Ecodesign. A Case Study of a Low Energy Building in Spain. Energies 2013, 6, 3901–3921. [Google Scholar] [CrossRef]
- Kurian, R.; Kulkarni, K.; Ramani, P.; Meena, C.; Kumar, A.; Cozzolino, R. Estimation of Carbon Footprint of Residential Building in Warm Humid Climate of India through BIM. Energies 2021, 14, 4237. [Google Scholar] [CrossRef]
- Leal, W.; Vidal, D.; Dinis, M.; Lambrechts, W.; Vasconcelos, C.; Molthan-Hill, P.; Abubakar, I.; Dunk, R.; Salvia, A. Low carbon futures: Assessing the status of decarbonisation efforts at universities within a 2050 perspective. Energy Sustain. Soc. 2023, 13, 5. [Google Scholar] [CrossRef]
- Dibazar, A.S.; Aliasghar, A.; Behzadnezhad, A.; Shakiba, A.; Pazoki, M. Energy cycle assessment of bioethanol production from sugarcane bagasse by life cycle approach using the fermentation conversion process. Biomass Convers. Biorefin. 2023, 20, 1–20. [Google Scholar] [CrossRef]
- Sadeghi, M.; Naghedi, R.; Behzadian, K.; Shamshirgaran, A.; Tabrizi, M.R.; Maknoon, R. Customisation of green buildings assessment tools based on climatic zoning and experts judgement using K-means clustering and fuzzy AHP. Build. Environ. 2022, 223, 109473. [Google Scholar] [CrossRef]
- Cornago, S.; Tan, Y.S.; Ramakrishna, S.; Low, J.S.C. Temporal hotspot identification using dynamic life cycle inventory: Which are the critical time-spans within the product life cycle? Procedia CIRP 2022, 105, 249–254. [Google Scholar] [CrossRef]
- Delehan, S.; Vilceková, S.; Melehanych, H.; Burdová, E.; Khorolskyi, A. A comparative assessment of the capabilities and success of the wood construction industry in Slovakia and Ukraine based on life cycle assessment certification standards. Front. Environ. Sci. 2024, 12, 1319823. [Google Scholar] [CrossRef]
- Schenk, D.; Amiri, A. Life cycle energy analysis of residential wooden buildings versus concrete and steel buildings: A review. Front. Built Environ. 2022, 8, 975071. [Google Scholar] [CrossRef]
- PRé. Sustainability That Makes a Difference. 2024. Available online: https://www.pre-sustainability.com/ (accessed on 5 March 2024).
- Ciroth, A. Software for life cycle assessment. In Life Cycle Assessment Handbook; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 143–157. [Google Scholar]
- LTS. DATASMART LCI Package. Available online: https://longtrailsustainability.com/software/datasmart-life-cycle-inventory/ (accessed on 2 February 2024).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- U.S. Life Cycle Inventory Database. Available online: https://www.lcacommons.gov/nrel/search (accessed on 2 February 2024).
- Ortiz, O.; Castells, F.; Sonnemann, G. Operational energy in the life cycle of residential dwellings: The experience of Spain and Colombia. Appl. Energy 2010, 87, 673–680. [Google Scholar] [CrossRef]
- Bare, J.; Young, D.; Qam, S.; Hopton, M.; Chief, S. Tool for the Reduction and Assessment of Chemical and other Environmental Impacts (TRACI); US Environmental Protection Agency: Washington, DC, USA, 2012.
- Hemmati, M.; Messadi, T.; Gu, H. Life Cycle Assessment of the Construction Process in a Mass Timber Structure. Sustainability 2024, 16, 262. [Google Scholar] [CrossRef]
- Climate Zones Buildings. Available online: https://www.energy.gov/eere/buildings/climate-zones (accessed on 22 May 2024).
- BS ISO EN 15978: 2011; Sustainability of Construction Works-Assessment of Environmental Performance of Buildings-Calculation Method. British Standards Institution: London, UK, 2011.
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Management. ISO: Geneva, Switzerland, 2006.
- Saturated Steam—Properties—Imperial Units. Available online: https://www.engineeringtoolbox.com/saturated-steam-properties-d_273.html (accessed on 10 February 2024).
- Water and Sewer Operations. Available online: https://www.fayetteville-ar.gov/426/Water-and-Sewer-Operations (accessed on 2 February 2024).
- About SWEPCO. Available online: www.swepco.com/lib/docs/company/about/SWEPCO_Fact%20Sheet_2024_03112024.pdf (accessed on 22 May 2024).
- Wang, Y.; Bermukhambetova, A.; Wang, J.-H.; Donner, M.; Lv, J.-F.; Gao, Q.-R. Modelling of the whole process of a university campus CHP power plant and dynamic performance study. Int. J. Autom. Comput. 2016, 13, 53–63. [Google Scholar] [CrossRef]
- Louisiana Public Service Commission Approves SWEPCO Renewable Projects. Available online: https://www.swepco.com/company/news/view?releaseID=9011 (accessed on 22 May 2024).
Year | Electricity Consumption (KWh) |
---|---|
2023 | 1,437,138 |
2022 | 1,393,127 |
2021 | 1,298,267 |
Year | Natural Gas Consumption (CCF) | Natural Gas Consumption (BTU) |
---|---|---|
2023 | 3421 | 342,100,000 |
2022 | 3249 | 324,900,000 |
2021 | 2236 | 223,600,000 |
Year | Steam (lb) | Steam (BTU) |
---|---|---|
2023 | 2,701,035 | 3,211,530,615 |
2022 | 2,380,107 | 2,829,947,223 |
2021 | 2,566,731 | 3,051,843,159 |
Year | Chilled Water (Ton-Hour) |
---|---|
2023 | 735,058 |
2022 | 829,325 |
2021 | 714,815 |
Year | Water (Gallon) | Water (m3) |
---|---|---|
2023 | 8,135,200 | 30,795 |
2022 | 6,316,200 | 23,909 |
2021 | 4,389,100 | 16,614 |
LCI Source | Database | Percent | Unit |
---|---|---|---|
Electricity, natural gas, at power plant/SPP 1 US-EI U | US-EI 2.2 | 47% | KWh |
Electricity, hard coal, at power plant/SPP US-EI U | US-EI 2.2 | 36% | KWh |
Electricity, at wind power plant/US 2 US-EI U | US-EI 2.2 | 17% | KWh |
LCI Source | Database | Unit |
---|---|---|
Electricity, at Mini CHP plant, allocation heat/US US-EI U | US-EI 2.2 | KWh |
LCI Source | Database | Unit |
---|---|---|
Heat, natural gas, at boiler atmospheric non-modulating <100 kW/US- US-EI U | US-EI 2.2 | BTU |
LCI Source | Database | Unit |
---|---|---|
Heat, at Mini CHP plant, allocation energy/US US-EI U | US-EI 2.2 | BTU |
Year | Electricity (KWh) | Tonne CO2 eq |
---|---|---|
2023 | 492,489 | 331 |
2022 | 555,647 | 373 |
2021 | 478,926 | 322 |
LCI Source | Database | Unit |
---|---|---|
Water use, with sewage treatment//US US-EI U | US-EI 2.2 | Gallon |
Year | Appliance and Lighting | Heating and Hot Water | Cooling | Water | Total |
---|---|---|---|---|---|
2023 | 998 | 314 | 331 | 27 | 1670 |
2022 | 967 | 276 | 373 | 21 | 1638 |
2021 | 894 | 298 | 322 | 14 | 1528 |
Appliance and Lighting | Heating and Hot Water | Cooling | Water | Total | |
---|---|---|---|---|---|
kg CO2 eq/m2/50 years | 2687 | 844 | 891 | 73 | 4496 |
LCI Source | Database | Percent | Unit |
---|---|---|---|
Electricity, natural gas, at power plant/SPP US-EI | US-EI 2.2 | 47% | KWh |
Electricity, hard coal, at power plant/SPP US-EI | US-EI 2.2 | 20% | KWh |
Electricity, at wind power plant/US US-EI | US-EI 2.2 | 27% | KWh |
Electricity, production mix photovoltaic, at plant/US US-EI | US-EI 2.2 | 6% | KWh |
Year | Appliance and Lighting | Heating and Hot Water | Cooling | Water |
---|---|---|---|---|
Baseline | 2/3 SWEPCO current 1 + 1/3 CHP | CHP | SWEPCO current | Fayetteville municipality 4 |
Scenario 1 | SWEPCO current | Gas-fired boilers | SWEPCO future | Fayetteville municipality |
Scenario 2 | SWEPCO future 2 | Gas-fired boilers | SWEPCO future | Fayetteville municipality |
Scenario 3 | CHP | CHP | CHP | Fayetteville municipality |
Scenario 4 | 2/3 SWEPCO future + 1/3 CHP | CHP | SWEPCO future + CHP | Fayetteville municipality |
Scenario 5 | SWEPCO future with no coal 3 | Gas-fired boilers | SWEPCO future with no coal | Fayetteville municipality |
Scenarios | Appliance and Lighting | Heating and Hot Water | Cooling | Water | Total |
---|---|---|---|---|---|
Baseline | 2687 | 844 | 891 | 73 | 4496 |
Scenario 1 | 3343 (24.38%) | 897 (6.20%) | 1116 (25.19%) | 73 (0%) | 5428 (20.73%) |
Scenario 2 | 2479 (−7.75%) | 897 (6.20%) | 820 (−8.01%) | 73 (0%) | 4269 (−5.05%) |
Scenario 3 | 1377 (−48.76%) | 844 (0%) | 442 (−50.39%) | 73 (0%) | 2737 (−39.13%) |
Scenario 4 | 2112 (−21.42%) | 844 (0%) | 694 (−22.13%) | 73 (0%) | 3723 (−17.19%) |
Scenario 5 | 1389 (−48.33%) | 897 (6.20%) | 446 (−49.94%) | 73 (0%) | 2804 (−37.62%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hemmati, M.; Messadi, T.; Gu, H.; Hemmati, M. LCA Operational Carbon Reduction Based on Energy Strategies Analysis in a Mass Timber Building. Sustainability 2024, 16, 6579. https://doi.org/10.3390/su16156579
Hemmati M, Messadi T, Gu H, Hemmati M. LCA Operational Carbon Reduction Based on Energy Strategies Analysis in a Mass Timber Building. Sustainability. 2024; 16(15):6579. https://doi.org/10.3390/su16156579
Chicago/Turabian StyleHemmati, Moein, Tahar Messadi, Hongmei Gu, and Mahboobeh Hemmati. 2024. "LCA Operational Carbon Reduction Based on Energy Strategies Analysis in a Mass Timber Building" Sustainability 16, no. 15: 6579. https://doi.org/10.3390/su16156579
APA StyleHemmati, M., Messadi, T., Gu, H., & Hemmati, M. (2024). LCA Operational Carbon Reduction Based on Energy Strategies Analysis in a Mass Timber Building. Sustainability, 16(15), 6579. https://doi.org/10.3390/su16156579