Multi-Scenario Simulation of Land Use/Cover Change and Terrestrial Ecosystem Carbon Reserve Response in Liaoning Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Driving Factors
2.2.2. Carbon Density Data
2.3. Research Framework and Study Methods
2.3.1. Research Framework
2.3.2. LUCC Dynamic Analysis
2.3.3. LUCC Simulation Using the PLUS Model
- The Markov model is utilized to forecast land utilization rates.
- 2.
- LUCC Simulation and Validation for Future Scenarios
- 3.
- Setting of Development Scenarios
- Business-as-usual scenario: under this scenario, the elements influencing land use variety in Liaoning Province remain relatively stable, and land use change continues along the development trend observed from 2000 to 2020.
- Urban development scenario: in this scenario, land allocation prioritizes urban construction, resulting in an increased likelihood of transition of arable land, woodland, and grassland to impervious land [44]. Specifically, the convert odds of grassland, arable land, and woodland to impervious land are augmented by 20%, while the convert odds of impervious land to other land patterns, except cropland, are lowered by 60%.
- Cropland protection scenario: under this scenario, Liaoning Province implements the national conservation tillage plan to safeguard cropland, which is crucial for food security [45]. The objective is to curtail the transition of arable land to other land types. The convert likelihood of arable land to impervious land is diminished by 60%.
- Ecological protection scenario: in this scenario, LUCC is managed through measures such as reverting arable land to woodland and grassland, closing mountains, and banning grazing. The convert odds of specific land patterns are adjusted as follows [46]: the convert odds of woodland and grassland to impervious land are dwindled by 50%, the convert odds of arable land to impervious land are declined by 30%, and the convert odds of arable land and grassland to woodland are raised by 30%.
2.3.4. Carbon Reserve Estimated by InVEST Model
3. Results
3.1. Land Use Changes in Liaoning Province
3.1.1. Dynamic Changes in Land Use from 2000 to 2020
3.1.2. Dynamic Changes in Land Use from 2020 to 2030
3.2. Dynamic Changes in Carbon Reserves in Liaoning Province
3.2.1. Dynamic Changes in Carbon Reserves from 2000 to 2020
3.2.2. Dynamic Changes in Carbon Reserves in 2020–2030
4. Discussion
4.1. Impact of LUCC on Carbon Reserves in Liaoning Province
4.2. Impacts of Distinct Advancement Circumstances on Carbon Reserves in Liaoning Province
4.3. Limitations
5. Conclusions
- (1)
- During the period from 2000 to 2020, land use patterns in Liaoning Province were primarily characterized by the mutation of cultivated land to impervious land. During this period, affected by the interplay of different LUCC types, carbon reserves initially declined before rebounding, resulting in a cumulative increase of 30.52 Tg C.
- (2)
- Land use simulation results indicate that forest area preservation is prioritized in the ecological protection circumstance, with a 3801.45 km2 increase compared to 2020, while built-up land growth slows. The carbon reserve value of the whole province in the ecological conservation circumstances for 2030 will increase by 23.69 Tg C.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, Z.; Feng, Q.; Zhu, R.; Wang, L.; Chen, Z.; Fang, C.; Lu, R. Analysis and Prediction of the Impact of Land Use/Cover Change on Ecosystem Services Value in Gansu Province, China. Ecol. Indic. 2023, 154, 110868. [Google Scholar] [CrossRef]
- Dong, J.; Guo, Z.; Zhao, Y.; Hu, M.; Li, J. Coupling Coordination Analysis of Industrial Mining Land, Landscape Pattern and Carbon Storage in a Mining City: A Case Study of Ordos, China. J. Geo. Nat. Haz. Risk 2023, 14, 2275539. [Google Scholar] [CrossRef]
- Li, Z.; Xia, J.; Deng, X.; Yan, H. Corrigendum to ‘Multilevel Modelling of Impacts of Human and Natural Factors on Ecosystem Services Change in an Oasis. Resour. Conserv. Recycl. 2021, 174, 105791. [Google Scholar] [CrossRef]
- Chang, X.; Xing, Y.; Wang, J.; Yang, H.; Gong, W. Effects of Land Use and Cover Change (LUCC) on Terrestrial Carbon Stocks in China between 2000 and 2018. Resour. Conserv. Recycl. 2022, 182, 106333. [Google Scholar] [CrossRef]
- Liu, X.; Ye, Y.; Ge, D.; Wang, Z.; Liu, B. Study on the Evolution and Trends of Agricultural Carbon Emission Intensity and Agricultural Economic Development Levels—Evidence from Jiangxi Province. Sustainability 2022, 14, 14265. [Google Scholar] [CrossRef]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Available online: https://www.ipcc.ch/report/ar6/wg2/resources/press/press-release-chinese/ (accessed on 23 March 2022).
- Stankovic, M.; Ambo-Rappe, R.; Carly, F.; Dangan-Galon, F.; Fortes, M.D.; Hossain, M.S.; Kiswara, W.; Van Luong, C.; Minh-Thu, P.; Mishra, A.K.; et al. Quantification of Blue Carbon in Seagrass Ecosystems of Southeast Asia and Their Potential for Climate Change Mitigation. Sci. Total Environ. 2021, 783, 146858. [Google Scholar] [CrossRef]
- Zhao, Y.; Dong, Y.; Liu, P. Predicting Low Carbon Pathways on the Township Level in China: A Case Study of an Island. Environ. Monit. Assess. 2024, 196, 150. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, R.; Yin, Z.; Chen, Z.; Fang, C.; Lu, R.; Zhou, J.; Feng, Y. Impacts of Land-Use Change on the Spatio-Temporal Patterns of Terrestrial Ecosystem Carbon Storage in the Gansu Province, Northwest China. Remote Sens. 2022, 14, 3164. [Google Scholar] [CrossRef]
- Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-Scenario Simulation and Ecological Risk Analysis of Land Use Based on the PLUS Model: A Case Study of Nanjing. J. Sustain. Cities Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- NDRCC. Enhanced Actions on Climate Change: China’s Intended Nationally Determined Contributions; Department of Climate Change, National Development and Reform Commission of China: Beijing, China, 2015.
- Chanapathi, T.; Thatikonda, S. Investigating the Impact of Climate and Land-Use Land Cover Changes on Hydrological Predictions over the Krishna River Basin under Present and Future Scenarios. Sci. Total Environ. 2020, 721, 137736. [Google Scholar] [CrossRef]
- Sun, X.; Liu, H.; Li, Y.; Hao, J. CA-Markov model-based identification of impacts of land use on landscape pattern. J. Ecol. Rural Environ. 2009, 25, 1–7+31. [Google Scholar]
- Hamad, R.; Balzter, H.; Kolo, K. Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability 2018, 10, 3421. [Google Scholar] [CrossRef]
- Lin, J.; Chen, Q. Analyzing and Simulating the Influence of a Water Conveyance Project on Land Use Conditions in the Tarim River Region. Land 2023, 12, 2073. [Google Scholar] [CrossRef]
- Cong, W.; Sun, X.; Luan, X. Simulation of land use change in Nansihu Lake Basin based on the CLUE-S model. J. Qu Fu Normal Univ. 2021, 47, 106–112. [Google Scholar]
- Gu, H.; Ma, T.; Qian, F.; Cai, Y. Simulation of county land use scenario and carbon emission effect analysis based on CLUE-S model. J. Agric. Eng. 2022, 38, 288–296. [Google Scholar] [CrossRef]
- Liu, J.; Lin, Y.; Zhao, J. County land use change simulation and expansion analysis based on FLUS model. J. Urban Geo. Investig. Sur. 2022, 2, 16–21. [Google Scholar]
- Tang, J.; Hu, X.; Wei, B.; Luo, Z.; Zhao, S.; Wang, Y. Land use change prediction and hydrological response assessment of watershed based on FLUS model. J. Yangtze River Sci. Res. Inst. 2022, 39, 63–69. [Google Scholar] [CrossRef]
- Li, L.; Song, Y.; Wei, X.; Dong, J. Exploring the Impacts of Urban Growth on Carbon Storage under Integrated Spatial Regulation: A Case Study of Wuhan, China. Ecol. Indic. 2020, 111, 106064. [Google Scholar] [CrossRef]
- Liang, Y.; Hashimoto, S.; Liu, L. Integrated Assessment of Land-Use/Land-Cover Dynamics on Carbon Storage Services in the Loess Plateau of China from 1995 to 2050. Ecol. Indic. 2021, 120, 106939. [Google Scholar] [CrossRef]
- Qiu, Z.; Feng, Z.; Song, Y.; Li, M.; Zhang, P. Carbon Sequestration Potential of Forest Vegetation in China from 2003 to 2050: Predicting Forest Vegetation Growth Based on Climate and the Environment. J. Clean. Prod. 2020, 252, 119715. [Google Scholar] [CrossRef]
- Speak, A.; Escobedo, F.J.; Russo, A.; Zerbe, S. Total Urban Tree Carbon Storage and Waste Management Emissions Estimated Using a Combination of LiDAR, Field Measurements and an End-of-Life Wood Approach. J. Clean. Prod. 2020, 256, 120420. [Google Scholar] [CrossRef]
- Mallick, J.; Almesfer, M.K.; Alsubih, M.; Ahmed, M.; Ben Kahla, N. Estimating Carbon Stocks and Sequestration with their Valuation under a Changing Land Use Scenario: A Multi-Temporal Research in Abha City, Saudi Arabia. Front. Ecol. Environ. 2022, 10, 905799. [Google Scholar] [CrossRef]
- Zhu, X.; Li, J.; Cheng, H.; Zheng, L.; Huang, W.; Yan, Y.; Liu, H.; Yang, X. Assessing the Impacts of Ecological Governance on Carbon Storage in an Urban Coal Mining Subsidence Area. Ecol. Inform. 2022, 72, 101901. [Google Scholar] [CrossRef]
- Yang, J.; Xie, B.; Zhang, D. Spat-temporal evolution of carbon stocks in the Yellow River Basin basedon InVEST and CA-Markov models. Chin. J. Eco-Agric. 2021, 29, 1018–1029. [Google Scholar] [CrossRef]
- Wei, Y.; Zhou, W.; Yu, D.; Zhou, L.; Fang, X.; Zhao, W.; Bao, Y.; Meng, Y.; Dai, L. Carbon storage of forest vegetation under the Natural Forest Protection Program in Northeast China. J. Ecol. 2014, 34, 5696–5705. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal Characteristics, Patterns, and Causes of Land-Use Changes in China since the Late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Li, M.; Zhang, J.; Gao, H.; Ji, G.; Li, G.; Li, L.; Li, Q. Spatiotemporal Variation Characteristics of Ecosystem Carbon Storage in Henan Province and Future Multi-Scenario Simulation Prediction. Land 2024, 13, 185. [Google Scholar] [CrossRef]
- He, Y.; Ma, J.; Zhang, C.; Yang, H. Spat-Temporal Evolution and Prediction of Carbon Storage in Guilin Based on FLUS and InVEST Models. Remote Sens. 2023, 15, 1445. [Google Scholar] [CrossRef]
- Guo, Y.; Ren, H. Remote Sensing Monitoring of Maize and Paddy Rice Planting Area Using GF-6 WFV Red Edge Features. J. Comput. Electron. Agric. 2023, 207, 107714. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Y.; Guo, D.; Zou, D. Development Application of Rural Domestic Sewage Treatment Project in Cold Areas of Northeast China: Opportunities and Challenges. J. Water Process Engin. 2023, 56, 104326. [Google Scholar] [CrossRef]
- Jiang, Y.; Ouyang, B.; Yan, Z. The Response of Carbon Storage to Multi-Objective Land Use/Cover Spatial Optimization and Vulnerability Assessment. Sustainability 2024, 16, 2235. [Google Scholar] [CrossRef]
- Zheng, H.; Zheng, H. Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Coastal Area of Shandong Province. Ecol. Indic. 2023, 153, 110474. [Google Scholar] [CrossRef]
- Cai, W.; Peng, W. Exploring Spatiotemporal Variation of Carbon Storage Driven by Land Use Policy in the Yangtze River Delta Region. Land 2021, 10, 1120. [Google Scholar] [CrossRef]
- Xiang, S.; Wang, Y.; Deng, H.; Yang, C.; Wang, Z.; Gao, M. Response and Multi-Scenario Prediction of Carbon Storage to Land Use/Cover Change in the Main Urban Area of Chongqing, China. Ecol. Indic. 2022, 142, 109205. [Google Scholar] [CrossRef]
- Zhu, Z.; Mei, Z.; Li, S.; Ren, G.; Feng, Y. Evaluation of Ecological Carrying Capacity and Identification of Its Influencing Factors Based on Remote Sensing and Geographic Information System: A Case Study of the Yellow River Basin in Shaanxi. Land 2022, 11, 1080. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Q.; Yu, Q.; Wang, J.; Wang, F.; Qiu, S.; Ai, M.; Zhao, J. Effects of Land Use/Cover Change on Carbon Storage between 2000 and 2040 in the Yellow River Basin, China. Ecol. Indic. 2023, 151, 110345. [Google Scholar] [CrossRef]
- Guo, H.; He, S.; Jing, H.; Yan, G.; Li, H. Evaluation of the Impacts of Change in Land Use/Cover on Carbon Storage in Multiple Scenarios in the Taihang Mountains, China. Sustainability 2023, 15, 14244. [Google Scholar] [CrossRef]
- Li, H. Evaluation of Ecological Effect of Returning Farmland to Forest Project in Liaoning Province Based on Remote Sensing and InVEST Model. Master’s Thesis, Jilin University, Changchun, China, 2019. [Google Scholar]
- Liu, Q.; Yang, D.; Cao, L.; Anderson, B. Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Tropics: A Case Study of Hainan Island, China. Land 2022, 11, 244. [Google Scholar] [CrossRef]
- Wu, X.; Shen, C.; Shi, L.; Wan, Y.; Ding, J.; Wen, Q. Spatio-Temporal Evolution Characteristics and Simulation Prediction of Carbon Storage: A Case Study in Sanjiangyuan Area, China. Ecol. Inform. 2024, 80, 102485. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, X.; Sun, D. A Coupled InVEST-PLUS Model for the Spatiotemporal Evolution of Ecosystem Carbon Storage and Multi-Scenario Prediction Analysis. Land 2024, 13, 509. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, S.; Liu, H.; Dong, Y.; Wang, F. Nature’s Contributions to People Responding to Landscape Stability in a Typical Karst Region, Southwest China. Appl. Geogr. 2024, 163, 103175. [Google Scholar] [CrossRef]
- Ma, Z.; Duan, X.; Wang, L.; Wang, Y.; Kang, J.; Yun, R. A Scenario Simulation Study on the Impact of Urban Expansion on Terrestrial Carbon Storage in the Yangtze River Delta, China. Land 2023, 12, 297. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Jin, G. Exploring the Optimization of Spatial Patterns for Carbon Sequestration Services Based on Multi-Scenario Land Use/Cover Changes in the Changchun-Jilin-Tumen Region, China. J. Clean. Prod. 2024, 438, 140788. [Google Scholar] [CrossRef]
- Clerici, N.; Cote-Navarro, F.; Escobedo, F.J.; Rubiano, K.; Villegas, J.C. Spat-Temporal and Cumulative Effects of Land Use-Land Cover and Climate Change on Two Ecosystem Services in the Colombian Andes. Sci. Total Environ. 2019, 685, 1181–1192. [Google Scholar] [CrossRef]
- Zhang, Y.; Naerkezi, N.; Zhang, Y.; Wang, B. Multi-Scenario Land Use/Cover Change and Its Impact on Carbon Storage Based on the Coupled GMOP-PLUS-InVEST Model in the Hexi Corridor, China. Sustainability 2024, 16, 1402. [Google Scholar] [CrossRef]
- Fan, L.; Cai, T.; Wen, Q.; Han, J.; Wang, S.; Wang, J.; Yin, C. Scenario Simulation of Land Use Change and Carbon Storage Response in Henan Province, China: 1990–2050. Ecol. Indic. 2023, 154, 110660. [Google Scholar] [CrossRef]
- Li, P.; Chen, J.; Li, Y.; Wu, W. Using the InVEST-PLUS Model to Predict and Analyze the Pattern of Ecosystem Carbon Storage in Liaoning Province, China. Remote Sens. 2023, 15, 4050. [Google Scholar] [CrossRef]
- Geng, X.; Li, W.; Min, C. Analysis of the evolution characteristics of carbon reserves in Chengdu based on land use change. J. Environ. Impact Rev. 2023, 45, 104–112. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, G.; Ye, H.; Wang, Y.; Huang, X.; Zhang, Q.; Cai, P. Impact of land use/cover change in Central Asia from 1975 to 2005. J. Nat. Resour. 2015, 30, 397–408. [Google Scholar] [CrossRef]
- Heng, Z.; Ge, L.; Zi, Y. Ecosystem service assessment and multi-scenario prediction in Liaoning Province from 2000 to 2020. J. Environ Sci. 2024, 45, 4137–4151. [Google Scholar] [CrossRef]
- Zhang, C.; Xiang, Y.; Fang, T.; Chen, Y.; Wang, S. Spatial and temporal change and prediction of carbon reserves in Taiyuan ecosystem under the influence of LUCC. J. Saf. Environ. Engin. 2022, 29, 248–258. [Google Scholar] [CrossRef]
- Nie, X.; Lu, B.; Chen, Z.; Yang, Y.; Chen, S.; Chen, Z.; Wang, H. Increase or Decrease? Integrating the CLUMondo and InVEST Models to Assess the Impact of the Implementation of the Major Function Oriented Zone Planning on Carbon Storage. Ecol. Indic. 2020, 118, 106708. [Google Scholar] [CrossRef]
- Zhu, L.Y.; Hu, K.; Sun, S.; Liu, Y.; Liang, J.X. Research on the spatiotemporal variation of carbon storage in the coastal zone of Liaoning Province based on InVEST model. J. Geosci. 2022, 36, 96–104. [Google Scholar]
- Lv, J. Spatial distribution characteristics of soil conservation function in the ecosystem of Liaoning Province. J. Environ. Prot. Circ. Econ. 2019, 39, 38–41. [Google Scholar]
- Lee, J.-G.; Lee, D.-H.; Jung, J.-Y.; Lee, S.-G.; Han, S.H.; Kim, S.; Kim, H.-J. The Effects of Stand Density Control on Carbon Cycle in Chamaecyparis obtusa (Siebold and Zucc.) Endl. Forests 2023, 14, 217. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, Z.; Feng, D.; Rong, X.; Zhang, S.; Yang, S. Assessment of the Impact of Land Use/Land Cover Change on Carbon Storage in Chengdu, China, in the Context of Carbon Peaking and Carbon Neutrality, 2000–2030. Environ. Dev. Sustain. 2024, 1–24. [Google Scholar] [CrossRef]
Data Type | Designation | Year | Resolution | Sources |
---|---|---|---|---|
Land use data | Land use | 2000, 2010, 2020 | 30 m × 30 m | Resource and Environmental Science and Data Center of the Chinese Academy of Sciences (https://www.resdc.cn/) (accessed on 25 June 2023) |
Natural environmental factors | Soil type | 2022 | 1000 m × 1000 m | https://www.resdc.cn/ (accessed on 25 June 2023) |
Temperature | 2022 | 1000 m × 1000 m | China Meterological Administration (https://data.cma.cn/) (accessed on 13 July 2023) | |
DEM | 2022 | 30 m × 30 m | Geospatial Data Cloud (https://www.gscloud.cn/home) (accessed on 13 July 2023) | |
Slope | 2022 | 30 m × 30 m | https://www.resdc.cn/ (accessed on 10 July 2023) | |
Socioeconomic factors | Population | 20 22 | 100 m × 100 m | https://www.resdc.cn/ (accessed on 10 July 2023) |
GDP | 202 2 | 1000 m × 1000 m | https://www.resdc.cn/ (accessed on 10 July 2023) | |
Adjacent to the railway station | 20 22 | 100 m × 100 m | OSM (https://www.openstreetmap.org/) (accessed on 15 July 2023) Using DEM through Euclidean distance calculation in ArcGIS | |
Adjacent to the highway | 20 22 | |||
Adjacent river water body | 20 22 | |||
Adjacent towns | 20 22 |
LUCC Type | Aboveground | Belowground | Soil Organic | Dead Organic |
---|---|---|---|---|
Cropland | 4.75 | 0 | 33.51 | 0 |
Forest | 49.6 | 24.97 | 128.67 | 1.99 |
Grassland | 24.38 | 19.59 | 52.29 | 22.74 |
Water | 2.45 | 0.62 | 80.11 | 0.1 |
Built-up land | 4.33 | 2.17 | 6.37 | 0.58 |
Bare land | 0 | 0 | 0 | 0 |
Cropland | Forest | Grassland | Water | Built-Up Land | Unused Land | |
---|---|---|---|---|---|---|
BAU | 0.4285 | 0.3134 | 0.1378 | 0.0181 | 0.1081 | 0.0001 |
UD | 0.4246 | 0.3126 | 0.1369 | 0.0180 | 0.1076 | 0.0003 |
CP | 0.4401 | 0.3143 | 0.1384 | 0.0183 | 0.0886 | 0.0003 |
EP | 0.4270 | 0.3273 | 0.1340 | 0.0181 | 0.0935 | 0.0001 |
Year | Cropland | Forest | Grassland | Water | Built-Up Land | Bare Land | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | |
2000 | 72,566.19 | 49.41 | 41,841.09 | 28.49 | 20,764.44 | 14.14 | 2952.72 | 2.01 | 8713.71 | 5.93 | 0.09 | 0.02 |
2010 | 71,367.57 | 48.71 | 41,702.22 | 28.46 | 20,852.46 | 14.23 | 3043.35 | 2.07 | 9536.49 | 6.50 | 1.08 | 0.03 |
2020 | 67,004.91 | 45.4 | 44,040.69 | 29.84 | 20,732.13 | 14.04 | 3167.01 | 2.14 | 12627 | 8.55 | 2.61 | 0.03 |
Year | 2020 | ||||||
---|---|---|---|---|---|---|---|
2000 | Cropland | Forest | Grassland | Water | Built-Up Land | Bare Land | Total |
Cropland | 62,577.16 | 3671.03 | 2150.30 | 322.11 | 3732.31 | 45.11 | 72,498.02 |
Forest | 1478.04 | 37,737.64 | 2330.04 | 39.39 | 154.43 | 1.54 | 41,741.07 |
Grassland | 1881.23 | 2442.02 | 15,950.19 | 62.63 | 326.75 | 16.87 | 20,679.70 |
Water | 276.48 | 55.43 | 87.15 | 2156.74 | 278.79 | 5.52 | 2860.11 |
Built-up land | 675.00 | 39.53 | 54.19 | 14.70 | 7945.60 | 0.45 | 8729.47 |
Bare land | 0.01 | 0.00 | 0.08 | 0.00 | 0.00 | 0.04 | 0.13 |
Total | 66,887.92 | 43,945.66 | 20,571.95 | 2595.57 | 12,437.88 | 69.52 | 146,508.50 |
2020 | 2030BAU | 2030UD | 2030CP | 2030EP | |
---|---|---|---|---|---|
Cropland | 67,004.91 | 62,647.56 | 62,071.12 | 64,389.95 | 62,403.12 |
Forest | 44,040.69 | 45,823.05 | 45,702.71 | 45,940.51 | 47,842.44 |
Grassland | 20,732.13 | 20,156.76 | 20,024.37 | 20,225.32 | 19,596.55 |
Water | 3167.01 | 2660.22 | 2640.32 | 2669.51 | 2657.17 |
Built-up land | 12,627 | 14,884.38 | 15,733.70 | 12,946.67 | 13,672.74 |
Bare land | 2.61 | 2.61 | 2.35 | 2.61 | 2.56 |
Area | 147,574.35 | 146,174.58 | 146,174.58 | 146,174.58 | 146,174.58 |
Year | Cropland | Forest | Grassland | Water | Built-Up Land | Bare Land | Total |
---|---|---|---|---|---|---|---|
2000 | 277.56 | 856.98 | 246.72 | 24.56 | 11.76 | 0.00 | 1417.59 |
2010 | 272.99 | 853.76 | 247.93 | 25.33 | 12.87 | 0.00 | 1412.87 |
2020 | 256.44 | 902.24 | 246.08 | 26.34 | 17.00 | 0.00 | 1448.11 |
2020 | 2030BAU | 2030UD | 2030CP | 2030EP | |
---|---|---|---|---|---|
Cropland | 256.44 | 247.79 | 252.53 | 256.77 | 253.13 |
Forest | 902.24 | 915.30 | 875.19 | 906.16 | 938.88 |
Grassland | 246.08 | 239.87 | 238.29 | 244.11 | 236.44 |
Water | 26.34 | 26.37 | 26.37 | 26.37 | 26.37 |
Built-up land | 17.00 | 20.02 | 21.16 | 16.98 | 16.98 |
Bare land | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Total | 1448.11 | 1449.35 | 1413.54 | 1450.39 | 1471.81 |
2030BAU | 2030UD | 2030CP | 2030EP | |
---|---|---|---|---|
Cropland | −8.65 | −3.91 | 0.33 | −3.30 |
Forest | 13.06 | −27.05 | 3.92 | 36.64 |
Grassland | −6.22 | −7.79 | −1.98 | −9.65 |
Water | 0.03 | 0.03 | 0.03 | 0.03 |
Built-up land | 3.02 | 4.16 | −0.02 | −0.02 |
Bare land | 0.00 | 0.00 | 0.00 | 0.00 |
Total | 1.24 | −34.57 | 2.28 | 23.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, H.; Li, J.; Wang, S. Multi-Scenario Simulation of Land Use/Cover Change and Terrestrial Ecosystem Carbon Reserve Response in Liaoning Province, China. Sustainability 2024, 16, 8244. https://doi.org/10.3390/su16188244
Gu H, Li J, Wang S. Multi-Scenario Simulation of Land Use/Cover Change and Terrestrial Ecosystem Carbon Reserve Response in Liaoning Province, China. Sustainability. 2024; 16(18):8244. https://doi.org/10.3390/su16188244
Chicago/Turabian StyleGu, Hanlong, Jiabin Li, and Shuai Wang. 2024. "Multi-Scenario Simulation of Land Use/Cover Change and Terrestrial Ecosystem Carbon Reserve Response in Liaoning Province, China" Sustainability 16, no. 18: 8244. https://doi.org/10.3390/su16188244
APA StyleGu, H., Li, J., & Wang, S. (2024). Multi-Scenario Simulation of Land Use/Cover Change and Terrestrial Ecosystem Carbon Reserve Response in Liaoning Province, China. Sustainability, 16(18), 8244. https://doi.org/10.3390/su16188244