A Comprehensive Review and Recent Trends in Thermal Insulation Materials for Energy Conservation in Buildings
Abstract
:1. Introduction
2. Types of Insulation Materials
2.1. Inorganic-Based Insulation
2.2. Organic-Based Insulation
2.3. Sustainable Natural and Recycled Materials
2.4. Novel Insulation Materials
2.4.1. Aerogel
2.4.2. Phase Change Material
2.4.3. Vacuum Insulation Panels (VIP’s)
2.4.4. Composite Insulation
3. Factors Affecting Insulation Performance
3.1. Thickness
3.2. Location of Insulation in Wall and Building
3.3. Temperature
3.4. Density
3.5. Moisture Content
3.6. Thermal Conductivity, Transmittance, and Resistance
3.7. Aging and Deterioration of Insulation Materials
4. Considerations for Choosing an Insulation System
5. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEA. World Energy Outlook 2023; IEA: Paris, France, 2023. [Google Scholar]
- Delmastro, C.; Chen, O.; D’Agrain, F.; De Bienassis, T.; Camarasa, C.; Le Marois, J.-B.; Petrichenko, K. IEA (2022), US International Energy Agency, Buildings, IEA, Paris. Available online: https://www.iea.org/energy-system/buildings (accessed on 22 December 2023).
- Palani, H.; Karatas, A. Innovative Environmental Chamber Construction for Accurate Thermal Performance Evaluation of Building Envelopes in Varied Climates. Buildings 2023, 13, 1259. [Google Scholar] [CrossRef]
- González-Torres, M.; Pérez-Lombard, L.; Coronel, J.F.; Maestre, I.R.; Yan, D. A Review on Buildings Energy Information: Trends, End-Uses, Fuels and Drivers. Energy Rep. 2022, 8, 626–637. [Google Scholar] [CrossRef]
- EIA. U.S. Energy Information Administration (EIA)—International Energy Data. Available online: https://www.eia.gov/opendata/bulkfiles.php (accessed on 29 December 2023).
- NRCan. Energy Fact Book 2023–2024; National Resource Canada: Ottawa, ON, Canada, 2023.
- Luqman, M.; Rayner, P.J.; Gurney, K.R. On the Impact of Urbanisation on CO2 Emissions. NPJ Urban Sustain. 2023, 3, 6. [Google Scholar] [CrossRef]
- Churkina, G. The Role of Urbanization in the Global Carbon Cycle. Front. Ecol. Evol. 2016, 3, 144. [Google Scholar] [CrossRef]
- NASA Earth Observatory World of Change: Global Temperatures. Available online: https://earthobservatory.nasa.gov/world-of-change/global-temperatures (accessed on 1 April 2024).
- The Science of Climate Change: The World is Warming. Available online: https://dnr.wisconsin.gov/climatechange/science (accessed on 1 April 2024).
- Shukla, P.R.; Skea, J.; Reisinger, A.; Slade, R.; Fradera, R.; Pathak, M.; Al Khourdajie, A.; Belkacemi, M.; van Diemen, R.; Hasija, A.; et al. IPCC, 2022: Summary for Policymakers. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- Mode, H.P. Our Planet Is Warming. Here’s What’s at Stake If We Don’t Act Now. Available online: https://www.worldwildlife.org/stories/our-planet-is-warming-here-s-what-s-at-stake-if-we-don-t-act-now (accessed on 15 October 2023).
- Hulley, M.E. 5—The Urban Heat Island Effect: Causes and Potential Solutions. In Woodhead Publishing Series in Energy; Zeman, F., Ed.; Woodhead Publishing: Cambridge, UK, 2012; pp. 79–98. ISBN 978-0-85709-046-1. [Google Scholar]
- Liu, P.; Zhang, Q.; Zhong, K.; Wei, Y.; Wang, Q. Climate Adaptation and Indoor Comfort Improvement Strategies for Buildings in High-Cold Regions: Empirical Study from Ganzi Region, China. Sustainability 2022, 14, 576. [Google Scholar] [CrossRef]
- ECCC (Environment and Climate Change Canada) Canada’s Top 10 Weather Stories of 2022. Available online: https://www.canada.ca/en/environment-climate-change/services/top-ten-weather-stories/2022.html#toc10 (accessed on 10 November 2023).
- NECB. National Energy Code of Canada for Buildings 2020, 2020th ed.; National Research Council of Canada: Ottawa, ON, Canada, 2022.
- Wati, E.; Meukam, P.; Nematchoua, M.K. Influence of External Shading on Optimum Insulation Thickness of Building Walls in a Tropical Region. Appl. Therm. Eng. 2015, 90, 754–762. [Google Scholar] [CrossRef]
- Jaouaf, S.; Bensaad, B.; Habib, M. Passive Strategies for Energy-Efficient Educational Facilities: Insights from a Mediterranean Primary School. Energy Rep. 2024, 11, 3653–3683. [Google Scholar] [CrossRef]
- Pavel, C.C.; Blagoeva, D.T. Competitive Landscape of the EUs Insulation Materials Industry for Energy-Efficient Buildings; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A Review of Unconventional Sustainable Building Insulation Materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, F.; Li, H.; Lu, C. An Environment-Friendly Thermal Insulation Material from Cotton Stalk Fibers. Energy Build. 2010, 42, 1070–1074. [Google Scholar] [CrossRef]
- Binici, H.; Eken, M.; Dolaz, M.; Aksogan, O.; Kara, M. An Environmentally Friendly Thermal Insulation Material from Sunflower Stalk, Textile Waste and Stubble Fibres. Constr. Build. Mater. 2014, 51, 24–33. [Google Scholar] [CrossRef]
- Cetiner, I.; Shea, A.D. Wood Waste as an Alternative Thermal Insulation for Buildings. Energy Build. 2018, 168, 374–384. [Google Scholar] [CrossRef]
- Panyakaew, S.; Fotios, S.A. Agricultural Waste Materials as Thermal Insulation for Dwellings in Thailand: Preliminary Results. In Proceedings of the 25th Conference on Passive and Low Energy Architecture, Dublin, Ireland, 22–24 October 2008. [Google Scholar]
- Hung Anh, L.D.; Pásztory, Z. An Overview of Factors Influencing Thermal Conductivity of Building Insulation Materials. J. Build. Eng. 2021, 44, 102604. [Google Scholar] [CrossRef]
- Rymar, T.; Tatarchenko, H.; Fomin, O.; Píštěk, V.; Kučera, P.; Beran, M.; Burlutskyy, O. The Study of Manufacturing Thermal Insulation Materials Based on Inorganic Polymers under Microwave Exposure. Polymers 2022, 14, 3202. [Google Scholar] [CrossRef]
- Berber, N. Industrial to Produce of Environmentally Friendly Insulation Material with Inorganic Resin. Fresenius Environ. Bull. 2020, 29, 332–338. [Google Scholar] [CrossRef]
- Gellert, R. 8—Inorganic Mineral Materials for Insulation in Buildings. In Woodhead Publishing Series in Energy; Hall, M.R., Ed.; Woodhead Publishing: Cambridge, UK, 2010; pp. 193–228. ISBN 978-1-84569-526-2. [Google Scholar]
- Chen, Z.; Wang, H.; Wang, M.; Liu, L.; Wang, X. Investigation of Cooling Processes of Molten Slags to Develop Multilevel Control Method for Cleaner Production in Mineral Wool. J. Clean. Prod. 2022, 339, 130548. [Google Scholar] [CrossRef]
- Nagy, B.; Simon, T.K.; Nemes, R. Effect of Built-in Mineral Wool Insulations Durability on Its Thermal and Mechanical Performance. J. Therm. Anal. Calorim. 2020, 139, 169–181. [Google Scholar] [CrossRef]
- The Pros and Cons of Rockwool (Mineral Wool) vs. Fiberglass vs. Cellulose Insulation. Available online: https://www.poulin.build/blog/rockwoll-mineral-wool-vs-fiberglass-insulation (accessed on 14 April 2023).
- Yap, Z.S.; Khalid, N.H.A.; Haron, Z.; Mohamed, A.; Tahir, M.M.; Hasyim, S.; Saggaff, A. Waste Mineral Wool and Its Opportunities—A Review. Materials 2021, 14, 5777. [Google Scholar] [CrossRef] [PubMed]
- US Department of Energy. How Insulation Works. Available online: https://www.energy.gov/energysaver/insulation (accessed on 10 April 2023).
- Cao, X.; Liu, J.; Cao, X.; Li, Q.; Hu, E.; Fan, F. Study of the Thermal Insulation Properties of the Glass Fiber Board Used for Interior Building Envelope. Energy Build. 2015, 107, 49–58. [Google Scholar] [CrossRef]
- Cozzarini, L.; Marsich, L.; Ferluga, A. Innovative Thermal and Acoustic Insulation Foams from Recycled Fiberglass Waste. Adv. Mater. Technol. 2023, 8, 2201953. [Google Scholar] [CrossRef]
- Orentas, G.; Pelchen, L. Learn the Pros and Cons of Fiberglass Insulation. Available online: https://www.forbes.com/home-improvement/insulation/what-is-fiberglass-insulation/ (accessed on 22 February 2023).
- Rawpixel. Available online: https://www.rawpixel.com/search/insulation?page=1&path=_topics&sort=curated (accessed on 19 September 2024).
- Buy Insulation Online. Available online: https://www.buyinsulationonline.co.uk/ (accessed on 19 September 2024).
- Karaipekli, A.; Biçer, A.; Sarı, A.; Tyagi, V.V. Thermal Characteristics of Expanded Perlite/Paraffin Composite Phase Change Material with Enhanced Thermal Conductivity Using Carbon Nanotubes. Energy Convers. Manag. 2017, 134, 373–381. [Google Scholar] [CrossRef]
- Li, X.; Chen, H.; Liu, L.; Lu, Z.; Sanjayan, J.G.; Duan, W.H. Development of Granular Expanded Perlite/Paraffin Phase Change Material Composites and Prevention of Leakage. Sol. Energy 2016, 137, 179–188. [Google Scholar] [CrossRef]
- Rashad, A.M. A Synopsis about Perlite as Building Material—A Best Practice Guide for Civil Engineer. Constr. Build. Mater. 2016, 121, 338–353. [Google Scholar] [CrossRef]
- Erdogan, S.T. Properties of Ground Perlite Geopolymer Mortars. J. Mater. Civ. Eng. 2015, 27, 4014210. [Google Scholar] [CrossRef]
- Vaou, V.; Panias, D. Thermal Insulating Foamy Geopolymers from Perlite. Miner. Eng. 2010, 23, 1146–1151. [Google Scholar] [CrossRef]
- Gao, H.; Liu, H.; Liao, L.; Mei, L.; Shuai, P.; Xi, Z.; Lv, G. A Novel Inorganic Thermal Insulation Material Utilizing Perlite Tailings. Energy Build. 2019, 190, 25–33. [Google Scholar] [CrossRef]
- BSI BS EN 13501-1:2018; Fire Classification of Construction Products and Building Elements. Classification Using Data from Reaction to Fire Tests. British Standards Institution: London, UK, 2018.
- BS 476-1; Fire Tests on Building Materials and Structures. British Standards Institution: London, UK, 1953.
- Schiavoni, S.; D’Alessandro, F.; Bianchi, F.; Asdrubali, F. Insulation Materials for the Building Sector: A Review and Comparative Analysis. Renew. Sustain. Energy Rev. 2016, 62, 988–1011. [Google Scholar] [CrossRef]
- Kumar, D.; Alam, M.; Zou, P.X.W.; Sanjayan, J.G.; Memon, R.A. Comparative Analysis of Building Insulation Material Properties and Performance. Renew. Sustain. Energy Rev. 2020, 131, 110038. [Google Scholar] [CrossRef]
- Papadopoulos, A.M. State of the Art in Thermal Insulation Materials and Aims for Future Developments. Energy Build. 2005, 37, 77–86. [Google Scholar] [CrossRef]
- R-MAX a Look at Rockwool Comfortboard and a Fantastic Alternative. Available online: https://www.rmax.com/blog/rockwool-comfortboard-80 (accessed on 27 December 2023).
- Zhao, J.R.; Zheng, R.; Tang, J.; Sun, H.J.; Wang, J. A Mini-Review on Building Insulation Materials from Perspective of Plastic Pollution: Current Issues and Natural Fibres as a Possible Solution. J. Hazard. Mater. 2022, 438, 129449. [Google Scholar] [CrossRef]
- Aditya, L.; Mahlia, T.M.I.; Rismanchi, B.; Ng, H.M.; Hasan, M.H.; Metselaar, H.S.C.; Muraza, O.; Aditiya, H.B. A Review on Insulation Materials for Energy Conservation in Buildings. Renew. Sustain. Energy Rev. 2017, 73, 1352–1365. [Google Scholar] [CrossRef]
- Rashad, A.M. Vermiculite as a Construction Material—A Short Guide for Civil Engineer. Constr. Build. Mater. 2016, 125, 53–62. [Google Scholar] [CrossRef]
- Low, N.M.P. The Thermal Insulating Properties of Vermiculite. J. Therm. Insul. 1984, 8, 107–115. [Google Scholar] [CrossRef]
- König, J.; Nemanič, V.; Žumer, M.; Petersen, R.R.; Østergaard, M.B.; Yue, Y.; Suvorov, D. Evaluation of the Contributions to the Effective Thermal Conductivity of an Open-Porous-Type Foamed Glass. Constr. Build. Mater. 2019, 214, 337–343. [Google Scholar] [CrossRef]
- Al-Homoud, D.M.S. Performance Characteristics and Practical Applications of Common Building Thermal Insulation Materials. Build. Environ. 2005, 40, 353–366. [Google Scholar] [CrossRef]
- Ramli Sulong, N.H.; Mustapa, S.A.S.; Abdul Rashid, M.K. Application of Expanded Polystyrene (EPS) in Buildings and Constructions: A Review. J. Appl. Polym. Sci. 2019, 136, 47529. [Google Scholar] [CrossRef]
- EPS Industry Alliance. Available online: https://www.epsindustry.org/building-construction (accessed on 10 October 2023).
- Asan, H. Effects of Wall’s Insulation Thickness and Position on Time Lag and Decrement Factor. Energy Build. 1998, 28, 299–305. [Google Scholar] [CrossRef]
- Abu-Jdayil, B.; Mourad, A.-H.; Hittini, W.; Hassan, M.; Hameedi, S. Traditional, State-of-the-Art and Renewable Thermal Building Insulation Materials: An Overview. Constr. Build. Mater. 2019, 214, 709–735. [Google Scholar] [CrossRef]
- Vo, C.V.; Bunge, F.; Duffy, J.; Hood, L. Advances in Thermal Insulation of Extruded Polystyrene Foams. Cell. Polym. 2011, 30, 137–156. [Google Scholar] [CrossRef]
- Wu, J.-W.; Sung, W.-F.; Chu, H.-S. Thermal Conductivity of Polyurethane Foams. Int. J. Heat Mass Transf. 1999, 42, 2211–2217. [Google Scholar] [CrossRef]
- Somarathna, H.M.C.C.; Raman, S.N.; Mohotti, D.; Mutalib, A.A.; Badri, K.H. The Use of Polyurethane for Structural and Infrastructural Engineering Applications: A State-of-the-Art Review. Constr. Build. Mater. 2018, 190, 995–1014. [Google Scholar] [CrossRef]
- Makaveckas, T.; Bliūdžius, R.; Burlingis, A. Determination of the Impact of Environmental Temperature on the Thermal Conductivity of Polyisocyanurate (PIR) Foam Products. J. Build. Eng. 2021, 41, 102447. [Google Scholar] [CrossRef]
- Singh, J.G.; Phalguni, M. Temperature-Dependent Thermal Performance of Closed-Cell Foam Insulation Board in Roof Constructions. J. Cold Reg. Eng. 2020, 34, 4020016. [Google Scholar] [CrossRef]
- Zeng, X.; Deng, K.; Wang, Y.; Yan, G.; Zhao, C. Field Investigation and Numerical Analysis of Damage to a High-Pier Long-Span Continuous Rigid Frame Bridge in the 2008 Wenchuan Earthquake. J. Earthq. Eng. 2022, 26, 5204–5220. [Google Scholar] [CrossRef]
- Sarika, P.R.; Nancarrow, P.; Khansaheb, A.; Ibrahim, T. Progress in Bio-Based Phenolic Foams: Synthesis, Properties, and Applications. ChemBioEng Rev. 2021, 8, 612–632. [Google Scholar] [CrossRef]
- Zhou, Y.; Trabelsi, A.; El Mankibi, M. A Review on the Properties of Straw Insulation for Buildings. Constr. Build. Mater. 2022, 330, 127215. [Google Scholar] [CrossRef]
- Marques, B.; Tadeu, A.; Almeida, J.; António, J.; de Brito, J. Characterisation of Sustainable Building Walls Made from Rice Straw Bales. J. Build. Eng. 2020, 28, 101041. [Google Scholar] [CrossRef]
- Liuzzi, S.; Rubino, C.; Martellotta, F.; Stefanizzi, P. Sustainable Materials from Waste Paper: Thermal and Acoustical Characterization. Appl. Sci. 2023, 13, 4710. [Google Scholar] [CrossRef]
- Fedorik, F.; Zach, J.; Lehto, M.; Kymäläinen, H.-R.; Kuisma, R.; Jallinoja, M.; Illikainen, K.; Alitalo, S. Hygrothermal Properties of Advanced Bio-Based Insulation Materials. Energy Build. 2021, 253, 111528. [Google Scholar] [CrossRef]
- Cork Flammability Classification. Available online: https://cork-shop.co.uk/2023/02/17/cork-flammability-classification/ (accessed on 29 September 2023).
- Fu, H.; Ding, Y.; Li, M.; Li, H.; Huang, X.; Wang, Z. Research on Thermal Performance and Hygrothermal Behavior of Timber-Framed Walls with Different External Insulation Layer: Insulation Cork Board and Anti-Corrosion Pine Plate. J. Build. Eng. 2020, 28, 101069. [Google Scholar] [CrossRef]
- Reynoso, L.E.; Carrizo Romero, Á.B.; Viegas, G.M.; San Juan, G.A. Characterization of an Alternative Thermal Insulation Material Using Recycled Expanded Polystyrene. Constr. Build. Mater. 2021, 301, 124058. [Google Scholar] [CrossRef]
- Li, X.; Peng, C.; Liu, L. Experimental Study of the Thermal Performance of a Building Wall with Vacuum Insulation Panels and Extruded Polystyrene Foams. Appl. Therm. Eng. 2020, 180, 115801. [Google Scholar] [CrossRef]
- Panjehpour, M.; Ali, A.A.A.; Voo, Y.L. Structural Insulated Panels: Past, Present, and Future. J. Eng. Proj. Prod. Manag. 2013, 3, 2–8. [Google Scholar] [CrossRef]
- Knauf Fire Panel. Available online: https://www.buyinsulationonline.co.uk/product/knauf-fire-panel-square-edge-foil-backed-plasterboard (accessed on 25 September 2024).
- Slamto Basement Renovation. Available online: https://www.flickr.com/photos/slamto/3773552053/in/album-72157621900720356/ (accessed on 25 September 2024).
- Alsuhaibani, A.M.; Refat, M.S.; Qaisrani, S.A.; Jamil, F.; Abbas, Z.; Zehra, A.; Baluch, K.; Kim, J.-G.; Mubeen, M. Green Buildings Model: Impact of Rigid Polyurethane Foam on Indoor Environment and Sustainable Development in Energy Sector. Heliyon 2023, 9, e14451. [Google Scholar] [CrossRef] [PubMed]
- Cui, G.; Wang, X. Engineering Application and Study on Polyurethane-Corrugated Steel Plate Insulation Lining of Existing Railway Tunnel in Seasonal Frozen Area. Sci. Prog. 2021, 104, 0036850420987043. [Google Scholar] [CrossRef]
- Samali, B.; Nemati, S.; Sharafi, P.; Tahmoorian, F.; Sanati, F. Structural Performance of Polyurethane Foam-Filled Building Composite Panels: A State-Of-The-Art. J. Compos. Sci. 2019, 3, 40. [Google Scholar] [CrossRef]
- Kairytė, A.; Kremensas, A.; Balčiūnas, G.; Członka, S.; Strąkowska, A. Closed Cell Rigid Polyurethane Foams Based on Low Functionality Polyols: Research of Dimensional Stability and Standardised Performance Properties. Materials 2020, 13, 1438. [Google Scholar] [CrossRef]
- Iffa, E.; Tariku, F.; Simpson, W.Y. Highly Insulated Wall Systems with Exterior Insulation of Polyisocyanurate under Different Facer Materials: Material Characterization and Long-Term Hygrothermal Performance Assessment. Materials 2020, 13, 3373. [Google Scholar] [CrossRef]
- Tseng, C.; Kuo, K. Thermal Radiative Properties of Phenolic Foam Insulation. J. Quant. Spectrosc. Radiat. Transf. 2002, 72, 349–359. [Google Scholar] [CrossRef]
- Ter-Zakaryan, K.A.; Zhukov, A.D.; Bessonov, I.V.; Bobrova, E.Y.; Pshunov, T.A.; Dotkulov, K.T. Modified Polyethylene Foam for Critical Environments. Polymers 2022, 14, 4688. [Google Scholar] [CrossRef]
- Zhukov, A.; Stepina, I.; Bazhenova, S. Ensuring the Durability of Buildings through the Use of Insulation Systems Based on Polyethylene Foam. Buildings 2022, 12, 1937. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, X.; Luo, S.; Li, S. Preparation and Property Analysis of Melamine Formaldehyde Foam. Adv. Mater. Phys. Chem. 2012, 2, 63–67. [Google Scholar] [CrossRef]
- Li, C.; Ma, H.; Song, C.; Zhou, Z.; Xu, W.; Song, Q.; Ren, F. Preparation and Performance of Melamine-Formaldehyde Rigid Foams with High Closed Cell Content. Cell. Polym. 2021, 40, 183–197. [Google Scholar] [CrossRef]
- Shi, Y.; Zhou, B. Melamine Foam Impregnated with Paraffin as Thermal Regulation Materials for Obtaining Stable Indoor Temperature. Energy Build. 2019, 183, 650–658. [Google Scholar] [CrossRef]
- Hussien, A.; Maksoud, A.; Abdeen, A.; Nofal, E. Exploring the Use of Wood Pellets as a Sustainable Alternative for Indoor Insulation. Sustainability 2024, 16, 25. [Google Scholar] [CrossRef]
- Popescu, C.; Stanescu, M.D. Eco-Friendly Processing of Wool and Sustainable Valorization of This Natural Bioresource. Sustainability 2024, 16, 4661. [Google Scholar] [CrossRef]
- Magwood, C.; Bowden, E.; Trottier, M. Emissions of Materials Benchmark Assessment for Residential Construction Report (2022); Passive Buildings Canada and Builders for Climate Action: Ottawa, ON, Canada, 2022. [Google Scholar]
- Huang, H.; Zhou, Y.; Huang, R.; Wu, H.; Sun, Y.; Huang, G.; Xu, T. Optimum Insulation Thicknesses and Energy Conservation of Building Thermal Insulation Materials in Chinese Zone of Humid Subtropical Climate. Sustain. Cities Soc. 2020, 52, 101840. [Google Scholar] [CrossRef]
- Binici, H.; Aksogan, O. Engineering Properties of Insulation Material Made with Cotton Waste and Fly Ash. J. Mater. Cycles Waste Manag. 2015, 17, 157–162. [Google Scholar] [CrossRef]
- Corscadden, K.W.; Biggs, J.N.; Stiles, D.K. Sheep’s Wool Insulation: A Sustainable Alternative Use for a Renewable Resource? Resour. Conserv. Recycl. 2014, 86, 9–15. [Google Scholar] [CrossRef]
- Korjenic, A.; Klarić, S.; Hadžić, A.; Korjenic, S. Sheep Wool as a Construction Material for Energy Efficiency Improvement. Energies 2015, 8, 5765–5781. [Google Scholar] [CrossRef]
- Dénes, T.-O.; Iştoan, R.; Tǎmaş-Gavrea, D.R.; Manea, D.L.; Hegyi, A.; Popa, F.; Vasile, O. Analysis of Sheep Wool-Based Composites for Building Insulation. Polymers 2022, 14, 109. [Google Scholar] [CrossRef]
- Pal, R.K.; Goyal, P.; Sehgal, S. Effect of Cellulose Fibre Based Insulation on Thermal Performance of Buildings. Mater. Today Proc. 2021, 45, 5778–5781. [Google Scholar] [CrossRef]
- Lopez Hurtado, P.; Rouilly, A.; Vandenbossche, V.; Raynaud, C. A Review on the Properties of Cellulose Fibre Insulation. Build. Environ. 2016, 96, 170–177. [Google Scholar] [CrossRef]
- Cosentino, L.; Fernandes, J.; Mateus, R. A Review of Natural Bio-Based Insulation Materials. Energies 2023, 16, 4676. [Google Scholar] [CrossRef]
- Asdrubali, F.; Evangelisti, L.; Guattari, C.; Roncone, M.; Milone, D. Experimental Analysis of the Thermal Performance of Wood Fiber Insulating Panels. Sustainability 2023, 15, 1963. [Google Scholar] [CrossRef]
- Bruno, R.; Bevilacqua, P.; Cuconati, T.; Arcuri, N. Energy Evaluations of an Innovative Multi-Storey Wooden near Zero Energy Building Designed for Mediterranean Areas. Appl. Energy 2019, 238, 929–941. [Google Scholar] [CrossRef]
- Bourbia, S.; Kazeoui, H.; Belarbi, R. A Review on Recent Research on Bio-Based Building Materials and Their Applications. Mater. Renew. Sustain. Energy 2023, 12, 117–139. [Google Scholar] [CrossRef]
- Silvestre, J.D.; Pargana, N.; De Brito, J.; Pinheiro, M.D.; Durão, V. Insulation Cork Boards—Environmental Life Cycle Assessment of an Organic Construction Material. Materials 2016, 9, 394. [Google Scholar] [CrossRef]
- Simões, N.; Fino, R.; Tadeu, A. Uncoated Medium Density Expanded Cork Boards for Building Façades and Roofs: Mechanical, Hygrothermal and Durability Characterization. Constr. Build. Mater. 2019, 200, 447–464. [Google Scholar] [CrossRef]
- Malanho, S.; Veiga, R.; Farinha, C.B. Global Performance of Sustainable Thermal Insulating Systems with Cork for Building Facades. Buildings 2021, 11, 83. [Google Scholar] [CrossRef]
- Wilson, A. Installing Cork Insulation. Available online: https://www.greenbuildingadvisor.com/article/installing-cork-insulation (accessed on 21 November 2023).
- Georgescu, S.-V.; Coşereanu, C.; Fotin, A.; Brenci, L.-M.; Costiuc, L. Experimental Thermal Characterization of Timber Frame Exterior Wall Using Reed Straws as Heat Insulation Materials. J. Therm. Anal. Calorim. 2019, 138, 2505–2513. [Google Scholar] [CrossRef]
- Manohar, K. Experimental Investigation of Building Thermal Insulation from Agricultural By-Products. Br. J. Appl. Sci. Technol. 2012, 2, 227–239. [Google Scholar] [CrossRef]
- Luamkanchanaphan, T.; Chotikaprakhan, S.; Jarusombati, S. A Study of Physical, Mechanical and Thermal Properties for Thermal Insulation from Narrow-Leaved Cattail Fibers. APCBEE Procedia 2012, 1, 46–52. [Google Scholar] [CrossRef]
- Chikhi, M.; Agoudjil, B.; Boudenne, A.; Gherabli, A. Experimental Investigation of New Biocomposite with Low Cost for Thermal Insulation. Energy Build. 2013, 66, 267–273. [Google Scholar] [CrossRef]
- Khedari, J.; Nankongnab, N.; Hirunlabh, J.; Teekasap, S. New Low-Cost Insulation Particleboards from Mixture of Durian Peel and Coconut Coir. Build. Environ. 2004, 39, 59–65. [Google Scholar] [CrossRef]
- Shinoj, S.; Visvanathan, R.; Panigrahi, S.; Kochubabu, M. Oil Palm Fiber (OPF) and its Composites: A Review. Ind. Crops Prod. 2011, 33, 7–22. [Google Scholar] [CrossRef]
- Tangjuank, S. Thermal Insulation and Physical Properties of Particleboards from Pineapple Leaves. Int. J. Phys. Sci. 2011, 6, 4528–4532. [Google Scholar] [CrossRef]
- Yarbrough, D.W.; Wilkes, K.E.; Olivier, P.A.; Graves, R.S.; Vohra, A. Apparent Thermal Conductivity Data and Related Information for Rice Hulls and Crushed Pecan Shells. Therm. Conduct. 2005, 27, 222–230. [Google Scholar]
- Ramanaiah, K.; Ratna Prasad, A.V.; Hema Chandra Reddy, K. Mechanical, Thermophysical and Fire Properties of Sansevieria Fiber-Reinforced Polyester Composites. Mater. Des. 2013, 49, 986–991. [Google Scholar] [CrossRef]
- Pruteanu, M. Investigations Regarding the Thermal Conductivity of Straw. Bull. Polytech. Inst. Jassy Construction. Archit. Sect. 2010, 56, 9–16. [Google Scholar]
- Rabbat, C.; Awad, S.; Villot, A.; Rollet, D.; Andrès, Y. Sustainability of Biomass-Based Insulation Materials in Buildings: Current Status in France, End-of-Life Projections and Energy Recovery Potentials. Renew. Sustain. Energy Rev. 2022, 156, 111962. [Google Scholar] [CrossRef]
- Ayadi, A.; Stiti, N.; Boumchedda, K.; Rennai, H.; Lerari, Y. Elaboration and Characterization of Porous Granules Based on Waste Glass. Powder Technol. 2011, 208, 423–426. [Google Scholar] [CrossRef]
- Intini, F.; Kühtz, S. Recycling in Buildings: An LCA Case Study of a Thermal Insulation Panel Made of Polyester Fiber, Recycled from Post-Consumer PET Bottles. Int. J. Life Cycle Assess. 2011, 16, 306–315. [Google Scholar] [CrossRef]
- Ingrao, C.; Lo Giudice, A.; Tricase, C.; Rana, R.; Mbohwa, C.; Siracusa, V. Recycled-PET Fibre Based Panels for Building Thermal Insulation: Environmental Impact and Improvement Potential Assessment for a Greener Production. Sci. Total Environ. 2014, 493, 914–929. [Google Scholar] [CrossRef]
- Valverde, I.C.; Castilla, L.H.; Nuñez, D.F.; Rodriguez-Senín, E.; de la Mano Ferreira, R. Development of New Insulation Panels Based on Textile Recycled Fibers. Waste Biomass Valorization 2013, 4, 139–146. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Aerogel Insulation for Building Applications: A State-of-the-Art Review. Energy Build. 2011, 43, 761–769. [Google Scholar] [CrossRef]
- Nair, A.M.; Wilson, C.; Huang, M.J.; Griffiths, P.; Hewitt, N. Phase Change Materials in Building Integrated Space Heating and Domestic Hot Water Applications: A Review. J. Energy Storage 2022, 54, 105227. [Google Scholar] [CrossRef]
- Hasan, M.I.; Basher, H.O.; Shdhan, A.O. Experimental Investigation of Phase Change Materials for Insulation of Residential Buildings. Sustain. Cities Soc. 2018, 36, 42–58. [Google Scholar] [CrossRef]
- Abden, M.J.; Tao, Z.; Alim, M.A.; Pan, Z.; George, L.; Wuhrer, R. Combined Use of Phase Change Material and Thermal Insulation to Improve Energy Efficiency of Residential Buildings. J. Energy Storage 2022, 56, 105880. [Google Scholar] [CrossRef]
- McLaggan, M.S.; Hadden, R.M.; Gillie, M. Flammability Assessment of Phase Change Material Wall Lining and Insulation Materials with Different Weight Fractions. Energy Build. 2017, 153, 439–447. [Google Scholar] [CrossRef]
- De Meersman, G.; Van Den Bossche, N.; Janssens, A. Long Term Durability of Vacuum Insulation Panels: Determination of the Sd-Value of MF-2 Foils. Energy Procedia 2015, 78, 1574–1580. [Google Scholar] [CrossRef]
- FI-FOIL. GFP Insulation; FI-FOIL: Auburndale, FL, USA, 2016; Volume 22. [Google Scholar]
- Griffith, B.T.; Arasteh, D.; Selkowitz, S.E. Gas-Filled Panel High-Performance Thermal Insulation; ASTM International: West Conshohocken, PA, USA, 1991. [Google Scholar]
- Griffith, B.T.; Arasteh, D. Gas Filled Panels: A Thermally Improved Building Insulation; Oak Ridge: Oak Ridge, TN, USA, 1991; Volume 1990. [Google Scholar]
- Kistler, S.S. Coherent Expanded Aerogels and Jellies. Nature 1931, 127, 741. [Google Scholar] [CrossRef]
- NASA Aerogels Insulate Against Extreme Temperatures. Available online: https://spinoff.nasa.gov/Spinoff2010/cg_2.html (accessed on 3 July 2024).
- Michel, A.A.; Nicholas Leventis, M.M.K. Aerogels Handbook, 1st ed.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Kotov, E.V.; Nemova, D.; Sergeev, V.; Dontsova, A.; Koriakovtseva, T.; Andreeva, D. Thermal Performance Assessment of Aerogel Application in Additive Construction of Energy-Efficient Buildings. Sustainability 2024, 16, 2398. [Google Scholar] [CrossRef]
- Cuce, E.; Cuce, P.M.; Wood, C.J.; Riffat, S.B. Toward Aerogel Based Thermal Superinsulation in Buildings: A Comprehensive Review. Renew. Sustain. Energy Rev. 2014, 34, 273–299. [Google Scholar] [CrossRef]
- Ibrahim, M.; Nocentini, K.; Stipetic, M.; Dantz, S.; Caiazzo, F.G.; Sayegh, H.; Bianco, L. Multi-Field and Multi-Scale Characterization of Novel Super Insulating Panels/Systems Based on Silica Aerogels: Thermal, Hydric, Mechanical, Acoustic, and Fire Performance. Build. Environ. 2019, 151, 30–42. [Google Scholar] [CrossRef]
- Lakatos, Á.; Trník, A. Thermal Diffusion in Fibrous Aerogel Blankets. Energies 2020, 13, 823. [Google Scholar] [CrossRef]
- Yuan, J.; Farnham, C.; Emura, K. Optimal Combination of Thermal Resistance of Insulation Materials and Primary Fuel Sources for Six Climate Zones of Japan. Energy Build. 2017, 153, 403–411. [Google Scholar] [CrossRef]
- Kossecka, E.; Kosny, J. Influence of Insulation Configuration on Heating and Cooling Loads in a Continuously Used Building. Energy Build. 2002, 34, 321–331. [Google Scholar] [CrossRef]
- Sáez de Guinoa, A.; Zambrana-Vasquez, D.; Alcalde, A.; Corradini, M.; Zabalza-Bribián, I. Environmental Assessment of a Nano-Technological Aerogel-Based Panel for Building Insulation. J. Clean. Prod. 2017, 161, 1404–1415. [Google Scholar] [CrossRef]
- Madyan, O.A.; Fan, M.; Feo, L.; Hui, D. Enhancing Mechanical Properties of Clay Aerogel Composites: An Overview. Compos. Part B Eng. 2016, 98, 314–329. [Google Scholar] [CrossRef]
- Fedyukhin, A.V.; Strogonov, K.V.; Soloveva, O.V.; Solovev, S.A.; Akhmetova, I.G.; Berardi, U.; Zaitsev, M.D.; Grigorev, D.V. Aerogel Product Applications for High-Temperature Thermal Insulation. Energies 2022, 15, 7792. [Google Scholar] [CrossRef]
- Soares, N.; Costa, J.J.; Gaspar, A.R.; Santos, P. Review of Passive PCM Latent Heat Thermal Energy Storage Systems towards Buildings’ Energy Efficiency. Energy Build. 2013, 59, 82–103. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Phase Change Materials for Building Applications: A State-of-the-Art Review. Energy Build. 2010, 42, 1361–1368. [Google Scholar] [CrossRef]
- Kuznik, F.; David, D.; Johannes, K.; Roux, J.-J. A Review on Phase Change Materials Integrated in Building Walls. Renew. Sustain. Energy Rev. 2011, 15, 379–391. [Google Scholar] [CrossRef]
- Oró, E.; de Gracia, A.; Castell, A.; Farid, M.M.; Cabeza, L.F. Review on Phase Change Materials (PCMs) for Cold Thermal Energy Storage Applications. Appl. Energy 2012, 99, 513–533. [Google Scholar] [CrossRef]
- Kurdi, A.; Almoatham, N.; Mirza, M.; Ballweg, T.; Alkahlan, B. Potential Phase Change Materials in Building Wall Construction—A Review. Materials 2021, 14, 5328. [Google Scholar] [CrossRef]
- Passive Design Thermal Mass. Available online: https://fairconditioning.org/knowledge/passive-design/thermal-mass/#1512471001088-ff3233d1-ff56 (accessed on 18 August 2023).
- Staszczuk, A.; Kuczyński, T. The Impact of Wall and Roof Material on the Summer Thermal Performance of Building in a Temperate Climate. Energy 2021, 228, 120482. [Google Scholar] [CrossRef]
- Memon, S.A. Phase Change Materials Integrated in Building Walls: A State of the Art Review. Renew. Sustain. Energy Rev. 2014, 31, 870–906. [Google Scholar] [CrossRef]
- Al-Yasiri, Q.; Szabó, M. Incorporation of Phase Change Materials into Building Envelope for Thermal Comfort and Energy Saving: A Comprehensive Analysis. J. Build. Eng. 2021, 36, 102122. [Google Scholar] [CrossRef]
- Gibson, S. The Potential of Phase Change Materials. Available online: https://www.greenbuildingadvisor.com/article/phase-change-materials-a-promising-building-technology (accessed on 10 June 2022).
- Sokola, L.; Žižková, N.; Novák, V.; Jakubík, A. Phase Change Materials and Their Benefits in ETICS. Appl. Sci. 2020, 10, 8549. [Google Scholar] [CrossRef]
- Zach, J.; Novák, V.; Peterková, J.; Bubeník, J.; Košir, M.; Božiček, D.; Krejza, Z. The Use of Advanced Environmentally Friendly Systems in the Insulation and Reconstruction of Buildings. Buildings 2023, 13, 404. [Google Scholar] [CrossRef]
- Conley, B. Thermal Evaluation of Vacuum Insulation Panels within Residential Building Envelopes by Partial Fulfillment of the Requirements for the Degree of. Master of Applied Science. Master’s Thesis, Carleton University, Ottawa, ON, Canada, 2017. [Google Scholar]
- Chan, V.T.T.; Ooms, M.D.; Korn, J.; MacLean, D.; Mooney, S.; Andre, S.; Mukhopadhyaya, P. Critical Analysis of in Situ Performance of Glass Fiber Core VIPs in Extreme Cold Climate. Front. Energy Res. 2019, 7, 45. [Google Scholar] [CrossRef]
- Maclean, D.; Mukhopadhyaya, P.; Korn, J.; Mooney, S. Design Details and Long-Term Performance of VIPs in Canada’s North. In Proceedings of the 8th International Conference on Sustainability in Energy and Buildings: SEB-16, Turin, Italy, 11–13 September 2016; Elsevier B.V.: Turin, Italy, 2016; Volume 111, pp. 481–489. [Google Scholar]
- Thomson, A. Lowest Temperature in Canada. Mon. Weather. Rev. 1958, 86, 298. [Google Scholar] [CrossRef]
- ASU. WMO Region IV (North America): Lowest Temperature; World Metrological Organization: Geneva, Switzerland; Available online: https://wmo.asu.edu/content/wmo-region-iv-north-america-lowest-temperature (accessed on 26 September 2024).
- Mukhopadhyaya, P.; MacLean, D.; Korn, J.; van Reenen, D.; Molleti, S. Building Application and Thermal Performance of Vacuum Insulation Panels (VIPs) in Canadian Subarctic Climate. Energy Build. 2014, 85, 672–680. [Google Scholar] [CrossRef]
- van de Lindt, J.W.; Carraro, J.A.H.; Heyliger, P.R.; Choi, C. Application and Feasibility of Coal Fly Ash and Scrap Tire Fiber as Wood Wall Insulation Supplements in Residential Buildings. Resour. Conserv. Recycl. 2008, 52, 1235–1240. [Google Scholar] [CrossRef]
- Ali, A.; Zhang, C.; Bibi, T.; Sun, L. Experimental Investigation of Sliding-Based Isolation System with Re-Centering Functions for Seismic Protection of Masonry Structures. Structures 2024, 60, 105871. [Google Scholar] [CrossRef]
- Ali, A.; Bibi, T.; Elshaer, A. Improving the Efficiency of a Novel Controlled-Sliding-Based Isolation System for Brick Masonry Structures. J. Struct. Eng. 2024, 150, 4023230. [Google Scholar] [CrossRef]
- Annie Paul, S.; Boudenne, A.; Ibos, L.; Candau, Y.; Joseph, K.; Thomas, S. Effect of Fiber Loading and Chemical Treatments on Thermophysical Properties of Banana Fiber/Polypropylene Commingled Composite Materials. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1582–1588. [Google Scholar] [CrossRef]
- Sezgin, H.; Kucukali-Ozturk, M.; Berkalp, O.B.; Yalcin-Enis, I. Design of Composite Insulation Panels Containing 100% Recycled Cotton Fibers and Polyethylene/Polypropylene Packaging Wastes. J. Clean. Prod. 2021, 304, 127132. [Google Scholar] [CrossRef]
- Nemanič, V.; Žumer, M. New Organic Fiber-Based Core Material for Vacuum Thermal Insulation. Energy Build. 2015, 90, 137–141. [Google Scholar] [CrossRef]
- Zhao, W.; Yan, W.; Zhang, Z.; Gao, H.; Zeng, Q.; Du, G.; Fan, M. Development and Performance Evaluation of Wood-Pulp/Glass Fibre Hybrid Composites as Core Materials for Vacuum Insulation Panels. J. Clean. Prod. 2022, 357, 131957. [Google Scholar] [CrossRef]
- Hsu, M.W.; Chen, Y.S.; Chen, Y.S.; Horng, R.S.S.; Wu, C.M.; Lee, S.K. To Improve the Thermal Properties of Mineral Wool by Adding Aerogel. Sens. Mater. 2017, 29, 445–452. [Google Scholar] [CrossRef]
- Hussain, A.; Calabria-Holley, J.; Lawrence, M.; Jiang, Y. Hygrothermal and Mechanical Characterisation of Novel Hemp Shiv Based Thermal Insulation Composites. Constr. Build. Mater. 2019, 212, 561–568. [Google Scholar] [CrossRef]
- Marques, B.; Tadeu, A.; António, J.; Almeida, J.; de Brito, J. Mechanical, Thermal and Acoustic Behaviour of Polymer-Based Composite Materials Produced with Rice Husk and Expanded Cork by-Products. Constr. Build. Mater. 2020, 239, 117851. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Hou, C.; Hou, J.; Wei, D.; Hou, Y. Optimization Analysis of Thermal Insulation Layer Attributes of Building Envelope Exterior Wall Based on DeST and Life Cycle Economic Evaluation. Case Stud. Therm. Eng. 2019, 14, 100410. [Google Scholar] [CrossRef]
- Daouas, N. A Study on Optimum Insulation Thickness in Walls and Energy Savings in Tunisian Buildings Based on Analytical Calculation of Cooling and Heating Transmission Loads. Appl. Energy 2011, 88, 156–164. [Google Scholar] [CrossRef]
- Ozel, M. Determination of Optimum Insulation Thickness Based on Cooling Transmission Load for Building Walls in a Hot Climate. Energy Convers. Manag. 2013, 66, 106–114. [Google Scholar] [CrossRef]
- Ozel, M. Effect of Wall Orientation on the Optimum Insulation Thickness by Using a Dynamic Method. Appl. Energy 2011, 88, 2429–2435. [Google Scholar] [CrossRef]
- Yu, J.; Yang, C.; Tian, L.; Liao, D. A Study on Optimum Insulation Thicknesses of External Walls in Hot Summer and Cold Winter Zone of China. Appl. Energy 2009, 86, 2520–2529. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Jin, L.W.; Wang, Z.N.; Zhang, J.Y.; Liu, X.; Zhang, L.H. Effects of Wall Configuration on Building Energy Performance Subject to Different Climatic Zones of China. Appl. Energy 2017, 185, 1565–1573. [Google Scholar] [CrossRef]
- Sisman, N.; Kahya, E.; Aras, N.; Aras, H. Determination of Optimum Insulation Thicknesses of the External Walls and Roof (Ceiling) for Turkey’s Different Degree-Day Regions. Energy Policy 2007, 35, 5151–5155. [Google Scholar] [CrossRef]
- Kurekci, N.A. Determination of Optimum Insulation Thickness for Building Walls by Using Heating and Cooling Degree-Day Values of All Turkey’s Provincial Centers. Energy Build. 2016, 118, 197–213. [Google Scholar] [CrossRef]
- Lakatos, Á.; Kalmár, F. Investigation of Thickness and Density Dependence of Thermal Conductivity of Expanded Polystyrene Insulation Materials. Mater. Struct. 2013, 46, 1101–1105. [Google Scholar] [CrossRef]
- Bojić, M.L.; Loveday, D.L. The Influence on Building Thermal Behavior of the Insulation/Masonry Distribution in a Three-Layered Construction. Energy Build. 1997, 26, 153–157. [Google Scholar] [CrossRef]
- Asan, H. Investigation of Wall’s Optimum Insulation Position from Maximum Time Lag and Minimum Decrement Factor Point of View. Energy Build. 2000, 32, 197–203. [Google Scholar] [CrossRef]
- Al-Sanea, S.A.; Zedan, M.F. Effect of Insulation Location on Initial Transient Thermal Response of Building Walls. J. Therm. Envel. Build. Sci. 2001, 24, 275–300. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, T.; Meng, X.; Wang, Y.; Hou, C.; Long, E. Effect of the Thermal Insulation Layer Location on Wall Dynamic Thermal Response Rate under the Air-Conditioning Intermittent Operation. Case Stud. Therm. Eng. 2017, 10, 79–85. [Google Scholar] [CrossRef]
- Ozel, M. Effect of Insulation Location on Dynamic Heat-Transfer Characteristics of Building External Walls and Optimization of Insulation Thickness. Energy Build. 2014, 72, 288–295. [Google Scholar] [CrossRef]
- Yang, W.; Liu, J.; Wang, Y.; Gao, S. Experimental Study on the Thermal Conductivity of Aerogel-Enhanced Insulating Materials under Various Hygrothermal Environments. Energy Build. 2020, 206, 109583. [Google Scholar] [CrossRef]
- ASTM C518-21; Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. ASTM: West Conshohocken, PA, USA, 2021.
- Koru, M. Determination of Thermal Conductivity of Closed-Cell Insulation Materials That Depend on Temperature and Density. Arab. J. Sci. Eng. 2016, 41, 4337–4346. [Google Scholar] [CrossRef]
- Berardi, U.; Naldi, M. The Impact of the Temperature Dependent Thermal Conductivity of Insulating Materials on the Effective Building Envelope Performance. Energy Build. 2017, 144, 262–275. [Google Scholar] [CrossRef]
- Petcu, C.; Hegyi, A.; Stoian, V.; Dragomir, C.S.; Ciobanu, A.A.; Lăzărescu, A.-V.; Florean, C. Research on Thermal Insulation Performance and Impact on Indoor Air Quality of Cellulose-Based Thermal Insulation Materials. Materials 2023, 16, 5458. [Google Scholar] [CrossRef] [PubMed]
- Gnip, I.; Vėjelis, S.; Vaitkus, S. Thermal Conductivity of Expanded Polystyrene (EPS) at 10 °C and Its Conversion to Temperatures within Interval from 0 to 50 °C. Energy Build. 2012, 52, 107–111. [Google Scholar] [CrossRef]
- Khoukhi, M.; Tahat, M. Effect of Operating Temperatures on Thermal Conductivity of Polystyrene Insulation Material: Impact on Envelope-Induced Cooling Load. Appl. Mech. Mater. 2014, 564, 315–320. [Google Scholar] [CrossRef]
- Khan, S.; Ali, A.; Bibi, T.; Wadood, F. Improving the Durability and Mechanical Performance of Self-Compacting Mortar Utilizing Natural and Synthetic Fibers. Innov. Infrastruct. Solut. 2024, 9, 329. [Google Scholar] [CrossRef]
- Khan, S.; Ali, A.; Bibi, T.; Wadood, F. Mechanical Investigations of the Durability Performance of Sustainable Self-Compacting and Anti-Spalling Composite Mortars. J. Build. Eng. 2024, 82, 108319. [Google Scholar] [CrossRef]
- CAN/ULC-S701-11, Type 4. Standard for Thermal Insulation, Polystyrene, Boards and Pipe Covering. Available online: https://nrc.canada.ca/en/certifications-evaluations-standards/canadian-construction-materials-centre/ccmc-publications/document.html?type=techcrit&id=CAN_ULC-S701.1%3A2017-4 (accessed on 14 June 2023).
- Tariku, F.; Shang, Y.; Molleti, S. Thermal Performance of Flat Roof Insulation Materials: A Review of Temperature, Moisture and Aging Effects. J. Build. Eng. 2023, 76, 107142. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, K.; Liu, Y.; Wang, D.; Liu, J. The Impact of Temperature and Relative Humidity Dependent Thermal Conductivity of Insulation Materials on Heat Transfer through the Building Envelope. J. Build. Eng. 2022, 46, 103700. [Google Scholar] [CrossRef]
- Pei, W.; Ming, F.; Zhang, M.; Wan, X. A Thermal Conductivity Model for Insulation Materials Considering the Effect of Moisture in Cold Regions. Cold Reg. Sci. Technol. 2023, 207, 103770. [Google Scholar] [CrossRef]
- Karaaslan, M.A.; Kadla, J.F.; Ko, F.K. 5—Lignin-Based Aerogels. In Lignin in Polymer Composites; Faruk, O., Sain, M.B.T.-L., Eds.; William Andrew Publishing: Norwich, NY, USA, 2016; pp. 67–93. ISBN 978-0-323-35565-0. [Google Scholar]
- ISO 8990:1994; Thermal Insulation Determination of Steady-State Thermal Transmission Properties Calibrated and Guarded Hot Box, 1st ed. International Organization for Standardization: Geneva, Switzerland, 1994.
- Bruno, R.; Bevilacqua, P. Heat and Mass Transfer for the U-Value Assessment of Opaque Walls in the Mediterranean Climate: Energy Implications. Energy 2022, 261, 124894. [Google Scholar] [CrossRef]
- Guizzardi, M.; Derome, D.; Vonbank, R.; Carmeliet, J. Hygrothermal Behavior of a Massive Wall with Interior Insulation during Wetting. Build. Environ. 2015, 89, 59–71. [Google Scholar] [CrossRef]
- Ficco, G.; Iannetta, F.; Ianniello, E.; d’Ambrosio Alfano, F.R.; Dell’Isola, M. U-Value in Situ Measurement for Energy Diagnosis of Existing Buildings. Energy Build. 2015, 104, 108–121. [Google Scholar] [CrossRef]
- Scarpa, M.; Ruggeri, P.; Peron, F.; Celebrin, M.; De Bei, M. New Measurement Procedure for U-value Assessment via Heat Flow Meter. Energy Procedia 2017, 113, 174–181. [Google Scholar] [CrossRef]
- ISO 22007-2:2022; Plastics Determination of Thermal Conductivity and Thermal Diffusivity Part 2: Transient Plane Heat Source (Hot Disc) Method, 3rd ed. International Organization for Standardization: Geneva, Switzerland, 2022.
- ASTM-C177; Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus. ASTM International: West Conshohocken, PA, USA, 2023.
- BS EN 12664:2001; Thermal Performance of Building Materials and Products. Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods. Dry and Moist Products of Medium and Low Thermal Resistance. British Standards Institution: London, UK, 2001.
- BS EN 12667:2001; Thermal Performance of Building Materials and Products. Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods. Products of High and Medium Thermal Resistance. British Standards Institution: London, UK, 2001; ISBN 0580365123.
- BS EN 12939:2001; Thermal Performance of Building Materials and Products—Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods—Thick Products of High and Medium Thermal Resistance. British Standards Institution: London, UK, 2001.
- Bruno, R.; Bevilacqua, P.; Cuconati, G.; Arcuri, N. An Innovative Compact Facility for the Measurement of the Thermal Properties of Building Materials: First Experimental Results. Appl. Therm. Eng. 2018, 143, 947–954. [Google Scholar] [CrossRef]
- Nardi, I.; Paoletti, D.; Ambrosini, D.; de Rubeis, T.; Sfarra, S. U-Value Assessment by Infrared Thermography: A Comparison of Different Calculation Methods in a Guarded Hot Box. Energy Build. 2016, 122, 211–221. [Google Scholar] [CrossRef]
- Basak, C.K.; Sarkar, G.; Neogi, S. Performance Evaluation of Material and Comparison of Different Temperature Control Strategies of a Guarded Hot Box U-value Test Facility. Energy Build. 2015, 105, 258–262. [Google Scholar] [CrossRef]
- Berardi, U. The Impact of Aging and Environmental Conditions on the Effective Thermal Conductivity of Several Foam Materials. Energy 2019, 182, 777–794. [Google Scholar] [CrossRef]
- Pontinha, A.D.; Mäntyneva, J.; Santos, P.; Durães, L. Thermomechanical Performance Assessment of Sustainable Buildings’ Insulating Materials under Accelerated Ageing Conditions. Gels 2023, 9, 241. [Google Scholar] [CrossRef]
- Lakatos, Á.; Csík, A.; Trník, A.; Budai, I. Effects of the Heat Treatment in the Properties of Fibrous Aerogel Thermal Insulation. Energies 2019, 12, 2001. [Google Scholar] [CrossRef]
- Cai, H.; Jiang, Y.; Feng, J.; Zhang, S.; Peng, F.; Xiao, Y.; Li, L.; Feng, J. Preparation of Silica Aerogels with High Temperature Resistance and Low Thermal Conductivity by Monodispersed Silica Sol. Mater. Des. 2020, 191, 108640. [Google Scholar] [CrossRef]
- Omranpour, H.; Motahari, S. Effects of Processing Conditions on Silica Aerogel during Aging: Role of Solvent, Time and Temperature. J. Non. Cryst. Solids 2013, 379, 7–11. [Google Scholar] [CrossRef]
- Iswar, S.; Malfait, W.J.; Balog, S.; Winnefeld, F.; Lattuada, M.; Koebel, M.M. Effect of Aging on Silica Aerogel Properties. Microporous Mesoporous Mater. 2017, 241, 293–302. [Google Scholar] [CrossRef]
Class | Description |
---|---|
A1 | No contribution to fire |
A2 | Very limited contribution to fire |
B | Limited contribution to fire |
C | Minor contribution to fire |
D | Medium contribution to fire |
E | High contribution to fire |
F | Easily flammable |
Material Category | Material Type | Thermal Conductivity | Thermal Resistance R/inch ft2·°F·h/BTU | Density | Specific Heat | Fire Class | u-Value | Refs. |
---|---|---|---|---|---|---|---|---|
Fibrous | Rock Wool | 0.029–0.042 | 3.0–3.3 | 40–200 | 0.8–1.0 | A1–A2 | 1.0–1.3 | [47,48] |
Glass Wool | 0.031–0.037 | 2.2–2.7 | 13–100 | 0.9–1.0 | A1 | 1.0–1.1 | [49] | |
Slag Wool | 0.04 | 4.0–4.2 | 50 | 0.7 | A1 | 0.5 | [48,50] | |
Fiberglass | 0.030–0.050 | 2.2–5.0 | 10–100 | 0.8–1.0 | A1 | 1.0–1.3 | [51,52] | |
Cellular | Perlite | 0.04–0.06 | 2.7 | 32–176 | 0.2 | A1 | 3.5 | [48] |
Vermiculite | 0.04–0.064 | 2.1–2.3 | 64–130 | 0.84–1.08 | A1 | 3–5 | [53,54] | |
Foam Glass | 0.038–0.045 | 3.1–4.2 | 100–120 | 0.21 | A1 | – | [55,56] | |
Calcium Silicate | 0.045–0.065 | 2.63 | 115–300 | 1.3 | A1 | 6–20 | [51] |
Advantages | Disadvantages |
---|---|
|
|
Material Category | Material Type | Thermal Conductivity | Thermal Resistance R/inch ft2·°F·h/BTU | Density | Specific Heat | Fire Class | u-Value | Refs. |
---|---|---|---|---|---|---|---|---|
Petro-chemical | EPS | 0.029–0.041 | 3.8–4.4 | 18–50 | 1.25 | E | 20–70 | [57,58,59] |
XPS | 0.030–0.040 | 5.0 | 25–45 | 1.45–1.70 | E | 80–150 | [51,60,61] | |
PUR | 0.022–0.046 | 3.6–6.8 | 30–100 | 1.30–1.45 | D–F | 50–100 | [47,62,63] | |
PIR | 0.018–0.028 | 4.8–8.3 | 30–45 | 1.40–1.50 | B | 55–150 | [59,64,65] | |
Phenolic Foam | 0.018–0.024 | 6.7–7.5 | 40–160 | 1.30–1.40 | B–C | 35 | [51,66,67] | |
Renewable | Cotton | 0.058–0.082 | 3.8 | 150–450 | 0.13 | E | - | [48] |
Sheep Wool | 0.038–0.054 | 3.5–3.8 | 10–20 | 1.3–1.7 | E | 4–5 | [47] | |
Hemp | 0.038–0.123 | 3.5 | 25–100 | 1.7–1.8 | E | 1–10 | [48] | |
Flax | 0.030–0.045 | 3.5 | 20–80 | 1.6 | C | 1–5.28 | [51] | |
Jute | 0.038–0.055 | 3.91 | 35–100 | 2.4 | - | 0.2–0.56 | [25] | |
Rice Straw | 0.039 | 1.3–1.6 | 80–100 | 0.6 | E | 3.2–5.47 | [68,69] | |
Coconut Fiber | 0.042–0.086 | - | 174–664 | 2.6 | E | 1–10 | [48] | |
Paper waste | 0.04–0.093 | 3.2–3.8 | 200–348 | 0.37–1.4 | - | 2.3–3.9 | [70,71] | |
Cork | 0.036–0.065 | 3.6–4.2 | 65–240 | 1.5–1.7 | E | 5–54.61 | [72,73] |
Advantages | Disadvantages |
---|---|
|
|
Advantages | Disadvantages |
---|---|
|
|
Material | Thermal Conductivity | Thermal Resistance R/inch ft2·°F·h/BTU | Density | Specific Heat | Fire Category | u-Value | Refs. |
---|---|---|---|---|---|---|---|
Aerogel | 0.01–0.02 | 10.3 | 70–150 | 1.05 | A1–A2 | 5.0–5.5 | [123] |
PCM | 0.1–0.54 | - | 530–830 | 1.9–2.22 | A, B, E | 3.26–4.29 | [124,125,126,127] |
VIP | 0.002–0.008 | 25 | 150–300 | 0.8 | A1 | 2.66–7.03 | [128] |
GFP | 0.010–0.035 | 5.5–11 | 32–38 | - | A | - | [129,130,131] |
Advantages | Disadvantages |
---|---|
|
|
Thermal conductivity | Thermal conductivity and transmittance are the primary properties of the insulation system and need to be analyzed first to decide whether a typical material can be used as an insulator. To qualify as a thermal insulator, a material’s thermal conductivity (λ) should be below 0.1 W.m−1.K−1. |
Cost | The upfront cost and long-term savings associated with the insulation material are essential, as the insulation needs to be affordable. The life cycle cost analysis (LCCA) could be a suitable approach to monitor the efficiency and cost of the insulation material. |
R-Value | The measure of thermal resistance provided by the insulation material is termed as R-value. A higher R-value signifies better insulation effectiveness. The materials available in the market are provided with the specific R-value. |
Moisture Resistance | The insulation material needs to resist moisture absorption or prevent water vapor transmission. Insulation should maintain its thermal performance even in humid or higher-moisture environments. Therefore, some hydrophobic materials, such as aerogel, could be suitable options in humid regions. |
Fire Resistance | Fire-resistant insulation material is crucial for safety in buildings. Building codes indicate some specific fire resistance category for the material to be used as insulation. |
Environmental Impact | The insulation material’s sustainability, recyclability, and ecological footprint are significant. Choosing environmentally friendly options is essential for long-term sustainability. As such, cellulose is environmentally friendly compared to polystyrene foams. |
Durability and Longevity | The insulation material’s expected lifespan and ability to retain its performance over time must be considered. Durable insulation ensures long-term energy efficiency. |
Compatibility and Application | Insulation materials should be suitable for the specific application and building requirements and accessible in installation. Insulation materials need to have sufficient rigidity to install them easily. |
Health and Safety | Consider the material’s potential for off-gassing, emissions, or adverse health effects. Insulation should meet health and safety standards, as there are materials such as fiberglass which have health concerns. |
Quality Control | Quality control during the construction stage is another important aspect that can vary the performance of the insulation material. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Issa, A.; Elshaer, A. A Comprehensive Review and Recent Trends in Thermal Insulation Materials for Energy Conservation in Buildings. Sustainability 2024, 16, 8782. https://doi.org/10.3390/su16208782
Ali A, Issa A, Elshaer A. A Comprehensive Review and Recent Trends in Thermal Insulation Materials for Energy Conservation in Buildings. Sustainability. 2024; 16(20):8782. https://doi.org/10.3390/su16208782
Chicago/Turabian StyleAli, Amir, Anas Issa, and Ahmed Elshaer. 2024. "A Comprehensive Review and Recent Trends in Thermal Insulation Materials for Energy Conservation in Buildings" Sustainability 16, no. 20: 8782. https://doi.org/10.3390/su16208782
APA StyleAli, A., Issa, A., & Elshaer, A. (2024). A Comprehensive Review and Recent Trends in Thermal Insulation Materials for Energy Conservation in Buildings. Sustainability, 16(20), 8782. https://doi.org/10.3390/su16208782