AI-Aided Robotic Wide-Range Water Quality Monitoring System
Abstract
:1. Introduction
2. Literature Review
2.1. AI-Biodetection of Diseases
2.2. Airborne Water Samplers
3. Materials & Methods
3.1. Automated Aerial Sample Collection Mechanism
3.2. The Automated Sample Processor
3.3. Ethical and Environmental Concerns
3.4. Microscopic Images Dataset Preprocessing
4. AI-Based Risk Assessment
4.1. CNN Architecture
4.2. Results
5. Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joy, C.; Sundar, G.N.; Narmadha, D. Artificial intelligence-based test systems to resist waterborne diseases by early and rapid identification of pathogens: A Review. SN Comput. Sci. 2023, 4, 180. [Google Scholar] [CrossRef]
- Hall-Clifford, R.; Arzu, A.; Contreras, S.; Croissert Muguercia, M.G.; de Leon Figueroa, D.X.; Ochoa Elias, M.V.; Soto Fernández, A.Y.; Tariq, A.; Banerjee, I.; Pennington, P. Toward co-design of an AI solution for detection of diarrheal pathogens in drinking water within resource-constrained contexts. PLoS Glob. Public Health 2022, 2, e0000918. [Google Scholar] [CrossRef] [PubMed]
- Zielinski, B.; Plichta, A.; Misztal, K.; Spurek, P.; Brzychczy-Wloch, M.; Ochonska, D. “Digital Image of Bacterial Species (DIBaS),” Distributed by Jagiellonian University. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184554 (accessed on 1 March 2022).
- Ogore, M.M.; Nkurikiyeyezu, K.; Nsenga, J. Offline prediction of cholera in rural communal tap waters using edge ai inference. In Proceedings of the 2021 IEEE Globecom Workshops (GC Workshops), Madrid, Spain, 7–11 December 2021. [Google Scholar]
- Zhu, M.; Wang, J.; Yang, X.; Zhang, Y.; Zhang, L.; Ren, H.; Wu, B.; Ye, L. A review of the application of machine learning in water quality evaluation. Eco-Environ. Health 2022, 1, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, X.; Xiao, Y.; Feng, J. Attention neural network for water image classification under IOT Environment. Appl. Sci. 2020, 10, 909. [Google Scholar] [CrossRef]
- Zieliński, B.; Plichta, A.; Misztal, K.; Spurek, P.; Brzychczy-Włoch, M.; Ochońska, D. Deep learning approach to bacterial colony classification. PLoS ONE 2017, 12, e0184554. [Google Scholar] [CrossRef] [PubMed]
- Graham, C.T.; O’Connor, I.; Broderick, L.; Broderick, M.; Jensen, O.; Lally, H.T. Drones can reliably, accurately and with high levels of precision, collect large volume water samples and physio-chemical data from Lakes. Sci. Total Environ. 2022, 824, 153875. [Google Scholar] [CrossRef] [PubMed]
- Koparan, C.; Koc, A.B.; Privette, C.V.; Sawyer, C.B. Adaptive water sampling device for aerial robots. Drones 2020, 4, 5. [Google Scholar] [CrossRef]
- Singh, D.; Singh, R.; Ajmeria, R.; Gupta, M.; Ponnalagu, R.N. DAWSSM: A plug-and-play drone assisted water sampling and sensing module. In Proceedings of the IECON 2021—47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13–16 October 2021. [Google Scholar]
- Ritchie, H.; Roser, M. Clean Water, Our World in Data. Available online: https://ourworldindata.org/water-access (accessed on 4 June 2023).
- Septiyana, A.; Ramadiansyah, M.L.; Jayanti, E.B.; Hidayat, K.; Rizaldi, A.; Atmasari, N.; Suseno, P.A. Static stability analysis on twin tail boom UAV using numerical method. In Proceedings of the 8th International Seminar on Aerospace Science and Technology—ISAST 2020, Bogor, Indonesia, 17 November 2020. [Google Scholar]
- Stewart, M.P.; Martin, S.T. Unmanned Aerial Vehicles: Fundamentals, Components, Mechanics, and Regulations; Nova Science Publishers: New York, NY, USA, 2021; Chapter 1; p. 53. [Google Scholar]
- Hussen Hajjaj, S.S.; Hameed Sultan, M.T.; Moktar, M.H.; Lee, S.H. Utilizing the internet of things (IOT) to develop a remotely monitored autonomous floodgate for water management and Control. Water 2020, 12, 502. [Google Scholar] [CrossRef]
- Djalilov, A.; Sobirov, E.; Nazarov, O.; Urolov, S.; Gayipov, I. Study on automatic water level detection process using ultrasonic sensor. IOP Conf. Ser. Earth Environ. Sci. 2023, 1142, 012020. [Google Scholar] [CrossRef]
- Jiang, Z.; Ponniah, J.; Cascante, G. Innovative nondestructive test method for condition assessment of longitudinal joints in asphalt pavements. In Proceedings of the 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Toronto, ON, Canada, 2–6 October 2011. [Google Scholar]
- Jiménez López, J.; Mulero-Pázmány, M. Drones for Conservation in Protected Areas: Present and Future. Drones 2019, 3, 10. [Google Scholar] [CrossRef]
- Pomeroy, P.; O’Connor, L.; Davies, P. Assessing use of and reaction to unmanned aerial systems in gray and harbor seals during breeding and molt in the UK. J. Unmanned Veh. Syst. 2015, 3, 102–113. [Google Scholar] [CrossRef]
- Sauls, L.A.; Paneque-Gálvez, J.; Amador-Jiménez, M.; Vargas-Ramírez, N.; Laumonier, Y. Drones, Communities and Nature: Pitfalls and Possibilities for Conservation and Territorial Rights. Glob. Soc. Chall. J. 2023, 2, 24–46. [Google Scholar] [CrossRef]
- Flachot, A.; Gegenfurtner, K.R. Color for object recognition: Hue and chroma sensitivity in the deep features of Convolutional Neural Networks. Vis. Res. 2021, 182, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Guo, C. City architectural color recognition based on deep learning and pattern recognition. Appl. Sci. 2023, 13, 11575. [Google Scholar] [CrossRef]
- Isgró, M.A.; Basallote, M.D.; Caballero, I.; Barbero, L. Comparison of UAS and sentinel-2 multispectral imagery for water quality monitoring: A case study for acid mine drainage affected areas (SW Spain). Remote Sens. 2022, 14, 4053. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awwad, A.; Husseini, G.A.; Albasha, L. AI-Aided Robotic Wide-Range Water Quality Monitoring System. Sustainability 2024, 16, 9499. https://doi.org/10.3390/su16219499
Awwad A, Husseini GA, Albasha L. AI-Aided Robotic Wide-Range Water Quality Monitoring System. Sustainability. 2024; 16(21):9499. https://doi.org/10.3390/su16219499
Chicago/Turabian StyleAwwad, Ameen, Ghaleb A. Husseini, and Lutfi Albasha. 2024. "AI-Aided Robotic Wide-Range Water Quality Monitoring System" Sustainability 16, no. 21: 9499. https://doi.org/10.3390/su16219499
APA StyleAwwad, A., Husseini, G. A., & Albasha, L. (2024). AI-Aided Robotic Wide-Range Water Quality Monitoring System. Sustainability, 16(21), 9499. https://doi.org/10.3390/su16219499