Structural and Textural Characteristics of Municipal Solid Waste Incineration Bottom Ash Subjected to Periodic Seasoning
Abstract
:1. Introduction
2. Materials and Methods
2.1. MSWI Bottom Ash
2.2. Samples
2.3. Structural Characterization
2.3.1. NMR
2.3.2. XRD
2.3.3. FTIR
2.3.4. UV-Vis
2.4. Textural Characterization
2.5. Adsorption Models
2.5.1. Surface Area
2.5.2. Pore Volume
2.5.3. Micropores and Mesopores
3. Results and Discussion
3.1. SP4 Bottom Ash
3.2. Structural Characteristics
3.2.1. NMR Data
3.2.2. XRD Analysis
3.2.3. FTIR Analysis
3.2.4. UV-Vis Spectra and Gap Energy
3.3. Textural Characteristics
3.3.1. N2 Adsorption–Desorption Isotherms
3.3.2. Quantity Adsorbed
3.3.3. Surface Area
3.3.4. Pore Volume and Size
4. Conclusions
- The seasoning process contributed to changes in the bottom ash, as detected by the structural analysis methods. It was shown that the seasoning process resulted in the drying of material under closed storage conditions.
- Analyses of ASH 1, ASH 4, and ASH 6 revealed the presence of water and/or hydroxyl units in the samples. Studies of ASH 2, ASH 3, and ASH 5, on the other hand, showed lower hydroxyl or water contents in the samples. The presence of two crystalline phases, SiO2 and CaCO3, in the bottom ash suggests applications in the concrete industry, where CaCO3 provides long-term mechanical strength to concrete.
- The length of the seasoning process had an impact on the textural parameters of the samples. The seasoning of the material had a beneficial effect on the increase in the specific surface area (25% higher SBET (surface area) compared to the shortest-seasoned bottom ash, ASH 1), external surface area (a 28.5% increase in the case of ASH 4), and microporosity (13% increase).
- The seasoning process positively affected the textural parameters of the bottom ash, such as the transformation of a part of the mesopore area in favor of smaller pores, related to the moving of the maximum pore volume amplitude towards smaller pores. In the 21st week of seasoning, the growth of the pore volume in the pore size range from 20 to 40 nm stabilized.
- Studies on the bottom ash that was seasoned for 31 weeks showed that waste from an incineration plant could be used not only for road construction purposes but also in the concrete industry and for environmental purposes, which would enable its wider utilization and recycling. The oxide composition and textural features indicate the potential for modifying the surface of bottom ash to obtain a more developed texture that is similar to that of zeolites.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olejnik, D.; Krupa, M. Selected thermal was treatment plants in Europe, case study. Civ. Environ. Eng. Rep. CEER 2023, 33, 0001–0018. [Google Scholar] [CrossRef]
- Wielgosinski, G. Termiczne Przekształcanie Odpadów. Wydawnictwo Nowa Energia. 2020. Available online: https://nowaenergia.com.pl/wydawnictwa-ksiazkowe/ (accessed on 23 October 2022).
- Rosik-Dulewska, C. Podstawy Gospodarki Odpadami; Środowisko; Wydawnictwo Naukowe PWN: Stryków, Poland, 2023; pp. 10–250. (In Polish) [Google Scholar]
- Available online: https://khk.krakow.pl/pl/ekospalarnia/ (accessed on 30 October 2024).
- Rozporządzenie Ministra Klimatu z dnia 2 stycznia 2020 r. w sprawie katalogu odpadów (In Polish). Available online: https://isap.sejm.gov.pl (accessed on 10 June 2024).
- Wang, J.; Feng, Y.; He, Y. Advancements in recycling technologies for waste CIGS photovoltaic modules. Nano Energy 2024, 128 Pt A, 109847. [Google Scholar] [CrossRef]
- Bayuseno, A.P.; Schmahl, W.W. Understanding the chemical and mineralogical properties of the inorganic portion of MSWI bottom ash. Waste Manag. 2010, 30, 1509–1520. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Wu, S.; Zhu, W.; Liang, B.; Zhang, X.; Yang, J. Enhanced geopolymerization of MSWI fly ash through combined activator pretreatment: A sustainable approach to heavy metal encapsulation and resource recovery. J. Environ. Manag. 2024, 370, 122870. [Google Scholar] [CrossRef]
- Murray, A.; Skene, K.; Haynes, K. The Circular Economy: An Interdisciplinary Exploration of the Concept and Application in a Global Context. J. Bus. Ethics 2017, 140, 369–380. [Google Scholar] [CrossRef]
- Tang, P. Municipal Solid Waste Incineration (MSWI) Bottom Ash—From Waste to Value: Characterization, Treatments and Application. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2017. [Google Scholar]
- del Valle-Zermeño, R.; Formosa, J.; Chimenos, J.M.; Martínez, M.; Fernández, A.I. Aggregate Material Formulated with MSWI bottom Ash and APC Fly ash for Use as Secondary Building Material. Waste Manag. 2013, 33, 621–627. [Google Scholar] [CrossRef]
- Cho, B.H.; Nam, B.H.; An, J.; Youn, H. Municipal Solid Waste Incineration (MSWI) Ashes as Construction Materials—A Review. Materials 2020, 13, 3143. [Google Scholar] [CrossRef] [PubMed]
- Aubert, J.E.; Husson, B.; Sarramone, N. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement. J. Hazard. Mater. 2007, 146, 12–19. [Google Scholar] [CrossRef]
- Qiao, X.C.; Tyrer, M.; Poon, C.S.; Cheeseman, C.R. Novel cementitious materials produced from incinerator bottom ash. Resour. Conserv. Recycl. 2008, 52, 496–510. [Google Scholar] [CrossRef]
- Wang, L.; Jin, Y.; Nie, Y.; Li, R. Recycling of municipal solid waste incineration fly ash for ordinary Portland cement production: A real-scale test. Resour. Conserv. Recycl. 2010, 54, 1428–1435. [Google Scholar] [CrossRef]
- Kim, J.; An, J.; Nam, B.H.; Tasneem, K.M. Investigation on the side effects of municipal solid waste incineration ashes when used as mineral addition in cement-based material. Road Mater. Pavement Des. 2015, 17, 345–364. [Google Scholar] [CrossRef]
- Yang, Z.; Ji, R.; Liu, L.; Wang, X.; Zhang, Z. Recycling of municipal solid waste incineration by-product for cement composites preparation. Constr. Build. Mater. 2018, 162, 794–801. [Google Scholar] [CrossRef]
- Czuma, N.; Casanova, I.; Baran, P.; Szczurowski, J.; Zarębska, K. CO2 sorption and regeneration properties of fly ash zeolites synthesized with the use of differentiated methods. Sci. Rep. 2020, 10, 1825. [Google Scholar] [CrossRef] [PubMed]
- Franus, W. Materiał zeolitowy typu X otrzymany z popiołu lotnego w wyniku syntezy hydrotermalnej i niskotemperaturowej. Bud. I Archit. 2010, 7, 25–34. (In Polish) [Google Scholar] [CrossRef]
- Ashraf, M.S.; Ghouleh, Z.; Shao, Y. Production of eco-cement exclusively from municipal solid waste incineration residues. Resour. Conserv. Recycl. 2019, 149, 332–342. [Google Scholar] [CrossRef]
- Chuang, C.-W.; Chen, T.-A.; Huang, R. Effect of Finely Ground Coal Bottom Ash as Replacement for Portland Cement on the Properties of Ordinary Concrete. Appl. Sci. 2023, 13, 13212. [Google Scholar] [CrossRef]
- Chindasiriphan, P.; Meenyut, B.; Orasutthikul, S.; Jongvivatsakul, P.; Tangchirapat, W. Influences of high-volume coal bottom ash as cement and fine aggregate replacements on strength and heat evolution of eco-friendly high-strength concrete. J. Build. Eng. 2023, 65, 105791. [Google Scholar] [CrossRef]
- Tian, A.; Zhou, Y.; Chen, Y.; Kan, D.; Lu, Y.; Tang, Q. Use of municipal solid waste incineration (MSWI) bottom ash as a permeable subgrade material: An experimental and mechanism study. J. Air Waste Manag. Assoc. 2024, 74, 291–303. [Google Scholar] [CrossRef]
- Czuma, N.; Zarębska, K.; Baran, P.; Gauden, P. The use of mathematical models for modelling sulphur dioxide sorption on materials produced from fly ashes. Energetika 2018, 64, 105–112. [Google Scholar] [CrossRef]
- Parzentny, H.R.; Róg, L. Initial assessment of variability in the modes of occurrence of some trace elements in coal seams with vertical profiles in the Upper Silesian Coal Basin in Poland. Arch. Min. Sci. 2020, 65, 723–736. [Google Scholar] [CrossRef]
- Fechete, R.; Demco, D.E.; Zhu, X.; Tillmann, W.; Möller, M. Water States and Dynamics in Perfluorinated Ionomer Membranes by 1H One- and Two-Dimensional NMR Spectroscopy, Relaxometry, and Diffusometry. Chem. Phys. Lett. 2014, 597, 6–15. [Google Scholar] [CrossRef]
- Fechete, R.; Demco, D.E.; Blümich, B. Enhanced sensitivity to residual dipolar couplings by high-order multiple-quantum NMR. J. Magn. Reson. 2004, 169, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, D.; Fechete, R. Bimodal 1H double quantum build-up curves by Fourier and Laplace-like transforms on aged cross-linked natural rubber. Polymers 2021, 13, 3523. [Google Scholar] [CrossRef] [PubMed]
- Rondeau-Mouro, C.; Kovrlija, R.; Van Steenberge, E.; Moussaoui, S. Two dimensional IR-FID-CPMG acquisition and adaptation of a maximum entropy reconstruction. J. Magn. Reson. 2016, 265, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tian, L.; Zhang, K.; Liu, Z.; Huang, C.; Jiang, L.; Chai, X. How Is Ultrasonic-Assisted CO2 EOR to Unlock Oils from Unconventional Reservoirs? Sustainability 2021, 13, 10010. [Google Scholar] [CrossRef]
- Rada, R.; Manea, D.L.; Chelcea, R.; Rada, S. Nanocomposites as Substituent of Cement: Structure and Mechanical Properties. Materials 2023, 16, 2398. [Google Scholar] [CrossRef]
- Chelcea, R.I.; Daniș, D.; Fechete, R. Structural and Kinetic Characterization of Unexpired and Expired Drugs by Proton Nuclear Magnetic Resonance (1H NMR) Relaxometry and Fourier Transform Infrared (FT-IR) Spectroscopy. Anal. Lett. 2022, 56, 372–389. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Livingston, H. The cross-sectional areas of molecules adsorbed on solid surfaces. J. Colloid Sci. 1949, 4, 447–458. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Proksa, J.; Łączny, M.J.; Bzowski, Z. Evaluation of the possibility of using granulated carbonated volatile fly ash from fluidized beds (G-CVFA) in underground mining techniques. Arch. Min. Sci. 2020, 65, 737–750. [Google Scholar] [CrossRef]
- Godyń, K.; Dutka, B.; Tram, M. Application of Petrographic and Stereological Analyses to Describe the Pore Space of Rocks as a Standard for the Characterization of Pores in Slags and Ashes Generated after the Combustion of Municipal Waste. Materials 2023, 16, 7706. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak-Kucęba, I.; Nowak, W. A thermogravimetric study of the adsorption of CO2 on zeolites synthesized from fly ash. Thermochim. Acta 2005, 437, 67–74. [Google Scholar] [CrossRef]
- Dutka, B.; Godyń, K. Predicting variability of methane pressure with depth of coal seam. Przemysł Chem. 2018, 97, 1344–1348. [Google Scholar] [CrossRef]
- Qi, L.; Tang, X.; Wang, Z.; Peng, X. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. Int. J. Min. Sci. Technol. 2017, 27, 371–377. [Google Scholar] [CrossRef]
- Nie, B.; Liu, X.; Yang, L.; Meng, J.; Li, X. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy. Fuel 2015, 158, 908–917. [Google Scholar] [CrossRef]
- Ściubidło, A.; Majchrzak-Kucęba, I. Exhaust gas purification process using fly ash-based sorbents. Fuel 2019, 258, 116126. [Google Scholar] [CrossRef]
- Chiang, Y.W.; Ghyselbrecht, K.; Santos, R.M.; Meesschaert, B.M.; Martens, J.A. Synthesis of zeolitic-type adsorbent material from municipal solid waste incinerator bottom ash and its application in heavy metal adsorption. Catal. Today 2012, 190, 23–30. [Google Scholar] [CrossRef]
Sampling Number | Date of Collection from the Landfill | Seasoning Time (Week) | Collected Bottom Ash Designation | Mass of Collected Bottom Ash (g) | Sample Designation (0.063–0.1 mm) |
---|---|---|---|---|---|
1 | 14 November 2022 | 6 | SP4.1 | 2975.9 | ASH 1 |
2 | 19 December 2023 | 11 | SP4.2 | 1447.0 | ASH 2 |
3 | 20 January 2023 | 16 | SP4.3 | 1345.8 | ASH 3 |
4 | 21 February 2023 | 21 | SP4.4 | 1905.2 | ASH 4 |
5 | 17 March 2023 | 26 | SP4.5 | 1387.1 | ASH 5 |
6 | 21 April 2023 | 31 | SP4.6 | 1641.3 | ASH 6 |
Concentration of component % (m/m) | CaO | SiO2 | Fe2O3 | Al2O3 | SO3 | TiO2 | ZnO | Na2O |
66.65–69.01 | 12.44–14.77 | 4.55–5.84 | 4.02–4.78 | 1.68–2.53 | 1.25–1.55 | 0.75–0.94 | 0.79–0.89 | |
P2O5 | Cl | K2O | MgO | CuO | MnO | PbO | ZrO2 | |
0.73–0.86 | 0.71–1.26 | 0.70–0.74 | 0.60–0.88 | 0.29–0.51 | 0.12–0.16 | 0.06–0.10 | 0.03–0.04 |
ASH 1 | ASH 2 | ASH 3 | ASH 4 | ASH 5 | ASH 6 | ||
---|---|---|---|---|---|---|---|
Quantity Adsorbed at p/p0 = 0.98 | cm3/g (STP) | 34.30 | 41.98 | 44.84 | 48.42 | 49.49 | 47.63 |
Surface Area | |||||||
BET Surface Area: SBET | m2/g | 15.2 | 15.9 | 16.6 | 20.5 | 18.9 | 18.0 |
Single Point Surface Area: SsBET | m2/g | 14.8 | 15.5 | 16.2 | 19.9 | 18.4 | 17.6 |
T-Plot Micropore Surface Area: | m2/g | 1.15 | 1.02 | 0.93 | 0.87 | 1.36 | 1.27 |
T-Plot External Surface Area: | m2/g | 14.02 | 14.87 | 15.67 | 19.62 | 17.50 | 16.78 |
BJH Cumulative Surface Area: | m2/g | 15.98 | 15.86 | 16.75 | 20.82 | 19.07 | 18.30 |
Pore Volume | |||||||
BJH Cumulative Volume Of Pores: Vp | cm3/g | 0.05215 | 0.06353 | 0.06772 | 0.07334 | 0.07478 | 0.07191 |
T-Plot Micropore Volume: Vmicro | cm3/g | 0.00054 | 0.00044 | 0.00040 | 0.00034 | 0.00061 | 0.00058 |
Vmeso | cm3/g | 0.05161 | 0.06309 | 0.06732 | 0.073 | 0.07417 | 0.07133 |
Vmicro Content | % | 1.04 | 0.69 | 0.59 | 0.46 | 0.82 | 0.81 |
Vmeso Content | % | 98.96 | 99.31 | 99.41 | 99.54 | 99.18 | 99.19 |
Pore Size | |||||||
Average Pore Width (by BET): dav | nm | 12.00 | 13.96 | 14.42 | 13.18 | 14.54 | 14.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dutka, B.; Rada, S.; Godyń, K.; Moldovan, D.; Chelcea, R.I.; Tram, M. Structural and Textural Characteristics of Municipal Solid Waste Incineration Bottom Ash Subjected to Periodic Seasoning. Sustainability 2024, 16, 9597. https://doi.org/10.3390/su16219597
Dutka B, Rada S, Godyń K, Moldovan D, Chelcea RI, Tram M. Structural and Textural Characteristics of Municipal Solid Waste Incineration Bottom Ash Subjected to Periodic Seasoning. Sustainability. 2024; 16(21):9597. https://doi.org/10.3390/su16219597
Chicago/Turabian StyleDutka, Barbara, Simona Rada, Katarzyna Godyń, Dumitrita Moldovan, Ramona Ioana Chelcea, and Maciej Tram. 2024. "Structural and Textural Characteristics of Municipal Solid Waste Incineration Bottom Ash Subjected to Periodic Seasoning" Sustainability 16, no. 21: 9597. https://doi.org/10.3390/su16219597
APA StyleDutka, B., Rada, S., Godyń, K., Moldovan, D., Chelcea, R. I., & Tram, M. (2024). Structural and Textural Characteristics of Municipal Solid Waste Incineration Bottom Ash Subjected to Periodic Seasoning. Sustainability, 16(21), 9597. https://doi.org/10.3390/su16219597