Early Front-End Innovation Decisions for Self-Organized Industrial Symbiosis Dynamics—A Case Study on Lignin Utilization
Abstract
:1. Introduction
2. The Front-End of the By-Product Innovation Process
3. Methods
4. Results: The Case of Product/Market Match of FEI in Lignin Utilization
4.1. By-Product Innovation Potential
4.2. By-Product Properties
4.3. Identification of Application Fields
4.4. Initial Market Screening
4.5. Product/Market Evaluation
5. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Chertow, M.R. Industrial Symbiosis: Literature and Taxonomy. Annu. Rev. Energ. Environ. 2000, 25, 313–337. [Google Scholar]
- Mirata, M.; Emtairah, T. Industrial Symbiosis Networks and the Contribution to Environmental Innovation. J. Clean Prod. 2005, 13, 993–1002. [Google Scholar] [CrossRef]
- Chertow, M.R. ‘Uncovering’ Industrial Symbiosis. J. Ind. Ecol. 2007, 11, 11–30. [Google Scholar] [CrossRef]
- Costa, I.D.S.; Ferrão, P. Crossroads between Resource Recovery and Industrial Symbiosis Networks: Evidences from Case Studies. Reg. Dev. Dialogue 2010, 31, 1–18. [Google Scholar]
- Sokka, L.; Lehtoranta, S.; Nissinen, A.; Melanen, M. Analyzing the Environmental Benefits of Industrial Symbiosis Life Cycle Assessment Applied to a Finnish Forest Industry Complex. J. Ind. Ecol. 2010, 15, 137–155. [Google Scholar] [CrossRef]
- Lee, D. Turning Waste into By-Product. Working Paper 07-098. Havard Business School, 2011. Available online: http://www.hbs.edu/faculty/Publication Files/07-098_19d21484-f98a-4cf4-b6d4-ae9af78a1c86.pdf (accessed on 30 January 2017).
- Boons, F.; Chertow, M.R.; Park, J.; Spekkink, W.; Shi, H. Industrial Symbiosis Dynamics and the Problem of Equivalence. J. Ind. Ecol. 2016. [Google Scholar] [CrossRef]
- Schwarz, E.J.; Steininger, K.W. Implementing Nature’s Lesson: The Industrial Recycling Network Enhancing Regional Development. J. Clean Prod. 1997, 5, 47–56. [Google Scholar] [CrossRef]
- Ruohonen, P.; Hippinen, I.; Tuomaala, M.; Ahtila, P. Analysis of Alternative Secondary Heat Uses to Improve Energy Efficiency-Case: A Finnish Mechanical Pulp and Paper Mill. Resour. Conserv. Recy. 2010, 54, 326–335. [Google Scholar] [CrossRef]
- Chen, P.-C.; Ma, H.-W. Using an Industrial Waste Account to Facilitate National Level Industrial Symbioses by Uncovering the Waste Exchange Potential. J. Ind. Ecol. 2015. [Google Scholar] [CrossRef]
- Boons, F.; Janssen, M.A. The myth of Kalundborg: Social dilemmas in stimulating eco-industrial parks. In Economics of Industrial Ecology: Materials, Structural Change, and Spatial Scales; Jeroen, C.J.M., Janssen, M.A., Eds.; The MIT Press: Cambridge, MA, USA, 2004; pp. 235–247. [Google Scholar]
- Herstatt, C.; Verworn, B. The Fuzzy Front End of Innovation; Working Paper; Department for Technology and Innovation Management, Technical University of Hamburg: Hamburg, Germany, 2001; Available online: https://www.researchgate.net/publication/304698952_The_'Fuzzy_Front_End'_of_Innovation (accessed on 30 January 2017).
- Prammer, H.K. Integriertes Umweltkostenmanagement—Bezugsrahmen Und Konzeption Für Eine Ökologisch Nachhaltige Unternehmensführung; Springer: Wiesbaden, Germany, 2009. [Google Scholar]
- Schild, U. Lebenszyklusrechnung Und Lebenszyklusbezogenes Zielkostenmanagement—Stellung Im Internen Rechnungswesen, Rechnungsausgestaltung Und Modellgestützte Optimierung der Intertemporalen Kostenstruktur; Gabler: Wiesbaden, Germany, 2005. [Google Scholar]
- Ehrenfeld, J.; Gertler, N. Industrial Ecology in Practice: The Evolution of Interdependence at Kalundborg. J. Ind. Ecol. 1997, 1, 67–79. [Google Scholar] [CrossRef]
- Thomas, V.; Theis, T.; Lifset, R.; Grasso, D.; Kim, B.; Koshland, C.; Pfahl, R.; Thomas, E.T. Industrial Ecology : Policy Potential and Research Needs. Environ. Eng. Sci. 2003, 20, 1–9. [Google Scholar] [CrossRef]
- Mangan, A.; Olivetti, E. By-product synergy networks: Driving innovation through waste reduction and carbon mitigation. In Sustainable Development in the Process Industries: Cases and Impact; Harmsen, J., Powell, J.B., Eds.; John Wiley & Sons: New Jersey, NJ, USA, 2010; pp. 81–108. [Google Scholar]
- Park, J.Y. The Evolution of Waste into a Resource: Examining Innovation in Technologies Reusing Coal Combustion By-products Using Patent Data. Res. Policy 2014, 43, 1816–1826. [Google Scholar] [CrossRef]
- Cooper, R.G. Stage-Gate Systems: A New Tool for Managing New Products. Bus. Horiz. 1990, 33, 44–54. [Google Scholar] [CrossRef]
- Cooper, R.G. Third-Generation New Product Processes. J. Prod. Innov. Manag. 1994, 11, 3–14. [Google Scholar]
- Brem, A.; Voigt, K.-I. Integration of Market Pull and Technology Push in the Corporate Front End and Innovation management—Insights from the German Software Industry. Technovation 2009, 29, 351–367. [Google Scholar] [CrossRef]
- Kim, J.; Wilemon, D. Strategic Issues in Managing Innovation’s Fuzzy Front-end. Eur. J. Innov. Manag. 2002, 5, 27–39. [Google Scholar]
- Koen, P.; Ajamian, G.; Burkart, R.; Clamen, A.; Davidson, J.; D’Amore, R.; Elkins, C.; Herald, K.; Incorvia, M.; Johnson, A.; et al. Providing Clarity and a Common Language to the ‘Fuzzy Front End’. Res. Technol. Manag. 2001, 44, 46–55. [Google Scholar]
- Khurana, A.; Rosenthal, S.R. Towards Holistic “Front Ends” in New Product Development. J. Prod. Innov. Manag. 1998, 15, 57–74. [Google Scholar] [CrossRef]
- Murphy, S.A.; Kumar, V. The Front End of New Product Development : A Canadian Survey. R&D Manag. 1997, 27, 5–15. [Google Scholar]
- Reid, S.E.; Brentani, U. The Fuzzy Front End of New Product Development for Discontinuous Innovations: A Theoretical Model. J. Prod. Innov. Manag. 2004, 21, 170–184. [Google Scholar]
- Jacoby, A. Adapting the Front-End of Innovation to Its Context : A Methodological Approach. In Proceedings of the DRS CUMULUS Oslo—The 2nd International Conference for Design Education Researchers, Oslo, Norway, 14–17 May 2013; pp. 14–17. [Google Scholar]
- Florén, H.; Frishammar, J. From Preliminary Ideas to Corroborated Product Definitions. Calif. Manag. Rev. 2012, 54, 20–43. [Google Scholar] [CrossRef]
- Cooper, R.G. Predevelopment Activities Determine New Product Success. Ind. Mark. Manag. 1988, 17, 237–247. [Google Scholar] [CrossRef]
- Dornberger, U.; Suvelza, A. Managing the Fuzzy Front-End of Innovation; International SEPT Program of the Leipzig University: Leipzig, Germany, 2012. [Google Scholar]
- Zhang, Q.; Doll, W.D. The Fuzzy Front End and Success of New Product Development: A Causal Model. Eur. J. Innov. Manag. 2001, 4, 95–112. [Google Scholar] [CrossRef]
- Ho, Y.-C.; Tsai, C.-T. Front End of Innovation of High Technology Industries: The Moderating Effect of Front-End Fuzziness. J. High Tech. Manag. Res. 2011, 22, 47–58. [Google Scholar] [CrossRef]
- Wolfe, K. Estimating Market Potential Check-List. 2006. Available online: http://athenaeum.libs.uga.edu/bitstream/handle/10724/18679/CR-06-08.pdf?sequence=1 (accessed on 30 January 2017).
- Natarajarathinam, M.; Nepal, B. Industrial Marketing Management—A Holistic Approach to Market Assessment for a Manufacturing Company in an Emerging Economy. Ind. Mark. Manag. 2012, 41, 1142–1151. [Google Scholar]
- Cooper, R.G.; Kleinschmidt, E. An Investigation into the New Product Process: Steps, Deficiencies, and Impact. J. Prod. Innov. Manag. 1986, 3, 71–85. [Google Scholar] [CrossRef]
- Moenaert, R.K.; De Meyer, A.; Souder, W.E.; Deschoolmeester, D. R&D/marketing Communication during the Fuzzy Front-End. IEEE T Eng. Manag. 1995, 42, 243–258. [Google Scholar]
- Song, X.M.; Parry, M.E. A Cross-National Comparative Study of New Product Development Processes: Japan and the United States. J. Mark. 1997, 2, 1–18. [Google Scholar] [CrossRef]
- Herstatt, C.; Verworn, B.; Stockstrom, C.; Nagahira, A.; Takahashi, O. ‘Fuzzy Front End’ Practices in Innovating Japanese Companies. Int. J. Innov. Technol. Manag. 2006, 3, 43–60. [Google Scholar] [CrossRef]
- Bocken, N.M.P.; Short, S.W.; Rana, P.; Evans, S. A Literature and Practice Review to Develop Sustainable Business Model Archetypes Q. J. Clean. Prod. 2014, 65, 42–56. [Google Scholar]
- Sousa, I.; Wallace, D. Product Classification to Support Approximate Life-Cycle Assessment of Design Concepts. Technol. Forecast. Soc. Chang. 2006, 73, 228–249. [Google Scholar] [CrossRef]
- Van Berkel, R.; Willems, E.; Lafleur, M. Development of an industrial ecology toolbox for the introduction of industrial ecology in enterprises. J. Clean. Prod. 1997, 5, 11–25. [Google Scholar] [CrossRef]
- Montoya-Weiss, M.M.; O’Driscoll, T.M. From Experience: Applying Performance Support Technology in the Fuzzy Front End. J. Prod. Innov. Manag. 2000, 17, 143–161. [Google Scholar]
- Kurkkio, M.; Frishammar, J.; Lichtenthaler, U. Where Process Development Begins: A Multiple Case Study of Front End Activities in Process Firms. Technovation 2011, 31, 490–504. [Google Scholar]
- Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M.; et al. Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science 2014, 344, 709–719. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.G.; Reinertsen, D.G. Shortening the Product Development Cycle. Res. Technol. Manag. 1992, 5–7, 44–49. [Google Scholar]
- Cooper, R.G.; Kleinschmidt, E. Performance Typologies of New Product Projects. Ind. Mark. Manag. 1995, 24, 439–456. [Google Scholar] [CrossRef]
- Bocken, N.M.P.; Allwood, J.M.; Willey, A.R.; King, J.M.H. Development of a Tool for Rapidly Assessing the Implementation Difficulty and Emissions Benefits of Innovations. Technovation 2012, 32, 19–31. [Google Scholar] [CrossRef]
- Gargulak, J.D.; Lebo, S.E. Commercial Use of Lignin-Based Materials. In Lignin: Historical, Biological, and Materials Perspectives; Wolfgang, G, Glasser, W.G., Northey, R.A., Schultz, T.P., Eds.; American Chemical Society: San Francisco, CA, USA, 1999; pp. 304–320. [Google Scholar]
- Lora, J.H.; Glasser, W.G. Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials. J. Polym. Environ. 2002, 10, 39–48. [Google Scholar] [CrossRef]
- Bozell, J.; Holladay, J.; Johnson, D.; White, J. Top Value Added Chemicals from Biomass-Volume II: Results of Screening for Potential Candidates from Biorefinery Lignin; Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL): Richland, WA, USA, 2007. [Google Scholar]
- Stewart, D. Lignin as a Base Material for Materials Applications : Chemistry, Application and Economics. Ind. Crops. Prod. 2008, 7, 202–207. [Google Scholar] [CrossRef]
- Jönsson, A.S.; Wallberg, O. Cost Estimates of Kraft Lignin Recovery by Ultrafiltration. Desalination 2009, 237, 254–267. [Google Scholar] [CrossRef]
- Gosselink, R.J.A.; Van Dam, J.E.G.; De Jong, E.; Scott, E.L.; Sanders, J.P.M.; Li, J.; Gellerstedt, G. Fractionation, Analysis, and PCA Modeling of Properties of Four Technical Lignins for Prediction of Their Application Potential in Binders. Holzforschung 2010, 64, 193–200. [Google Scholar]
- Tomani, P. The Lignoboost Process. Cellul. Chem. Technol. 2010, 44, 53–58. [Google Scholar]
- Gosselink, R.J.A. Lignin as a Renewable Aromatic Resource for the Chemical Industry. In Proceedings of the Mini-Symposium Organised by Wageningen UR Lignin Platform, Wageningen, The Netherlands, 6 December 2011. [Google Scholar]
- Vishtal, A.; Kraslawski, A. Challenges in Industrial Applications of Technical Lignins. BioResources 2011, 6, 3547–3568. [Google Scholar]
- Bajpai, P. Biorefinery in the Pulp and Paper Industry; Elsevier: London, UK, 2013. [Google Scholar]
- Soccol, C.R.; Karp, S.G.; De Siqueira, P.; Nemoto Sanada, C.T.; Thomaz-Soccol, V.; Pandey, A. Biorefinery concept applied to valorization of agro-food coproducts and wastes—Integrated process for waste recycling and effluent treatment. In Fermentation Processes Engineering in the Food Industry; Carlos Ricardo Soccol, C.R., Pandey, A., Larroche, C., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 429–464. [Google Scholar]
- Hodásová, L.; Jablonsky, M.; Skulcova, A.; Haz, A. Lignin, Potential Products and Their Market Value. Wood Res. 2015, 60, 973–986. Available online: http://www.centrumdp.sk/wr/201506/13.pdf (accessed on 30 January 2017).
- Pajunen, N.; Watkins, G.; Wierink, M.; Heiskanen, K. Drivers and Barriers of Effective Industrial Material Use. Miner. Eng. 2012, 29, 39–46. [Google Scholar] [CrossRef]
- Cimren, E.; Fiksel, J.; Posner, M.E.; Sikdar, K. Material Flow Optimization in By-Product Synergy Networks. J. Ind. Ecol. 2011, 15, 315–332. [Google Scholar] [CrossRef]
- Smolarski, N. High-Value Opportunities for Lignin: Unlocking Its Potential; Frost & Sullivan: Mountain View, CA, USA, 2012; pp. 1–15. Available online: http://www.greenmaterials.fr/wp-content/uploads/2013/01/High-value-Opportunities-for-Lignin-Unlocking-its-Potential-Market-Insights.pdf (accessed on 30 January 2017).
- Lignimatch. Future Use of Lignin in Value Added Products—A Roadmap for Possible Nordic/Baltic Innovation; Lignimatch: Gothenburg, Sweden, 2010. [Google Scholar]
- Kraus, P. Ligninbasiertes Phenol: Anforderungen Und Interesse an Nachhaltige Technologien Innerhalb Der Wertschöpfungskette von Phenol—Eine Potenzialanalyse. Master’s Thesis, University of Natural Resources and Life Sciences, Vienna, Austria, 2012. [Google Scholar]
- Comtrade. United Nations Comtrade Database. Available online: http://comtrade.un.org (accessed 6 December 2015).
- IHS Markit. Chemical Economics Handbook—Styrene Butadiene Latexes. 2014. Available online: https://www.ihs.com/products/styrene-butadiene-latexes-chemical-economics-handbook.html (accessed 4 September 2016).
- Rosa, J.M.D.A.; Liebner, F.; Pour, G.; Knicker, H. Partitioning of N in growing plants, microbial biomass and soil organic matter after amendment of N-ammonoxidized lignins. Soil Biol. Biochem. 2013, 60, 125–133. [Google Scholar] [CrossRef]
- Neff, J.C.; Chapin, F.S.; Vitousek, P.M. Breaks in the cycle: Dissolved organic nitrogen in terrestrial ecosystems. Front. Ecol. Environ. 2003, 1, 205–211. [Google Scholar] [CrossRef]
- Ramirez, F.; Gonzalez, V.; Crespo, M.; Meier, D.; Faix, O.; Zúñiga, V. Ammoxidized kraft lignin as a slow-release fertilizer tested on Sorghum vulgare. Bioresour. Technol. 1997, 61, 43–46. [Google Scholar] [CrossRef]
- Chertow, M.R.; Ehrenfeld, J. Organizing Self-Organizing Systems—Toward a Theory of Industrial Symbiosis. J. Ind. Ecol. 2012, 16, 13–27. [Google Scholar] [CrossRef]
Lignin Type | Price Min. (€/Tonne) | Price Max. (€/Tonne) | World Annual Production (MT) | Lignin Purity |
---|---|---|---|---|
Low-purity lignin | 40 | 270 | 50,000,000 | Low |
Ligno sulfonates | 180 | 400 | 1,000,000 | Low-medium |
Kraft lignin | 250 | 550 | 60,000 | High |
Organosolv lignin | 350 | 600 | 1000 | High |
High-grade lignin | 500 | 750 | N/A | Very high |
Lignin Type | Lignin Purity | Potential Application Fields |
---|---|---|
Low-purity lignin | Low | Energy, refinery (carbon cracker) |
Ligno sulfonates | Low-medium | Adhesives, binders, cement additives and adhesives, detergents, dispersants, particle board, refinery (carbon cracker), stabilizer, surfactants |
Kraft lignin | High | Activated carbon, binders, biofuel, bitumen, BTX, carbon fibers, cement additives, fertilizer and pesticide carrier, hydroxylated aromatics, phenolic resins, refinery (carbon cracker), vanillin |
Organosolv lignin | High | Activated carbon, additives for paints, carbon fibers, phenol derivatives, phenolic resins, vanillin, varnishes |
High-grade lignin | Very high | Carbon fibers, phenol derivatives, vanillin |
Application Field | Adhesive | Binders | Fibers | Soil Conditioner |
---|---|---|---|---|
Products replaced | Polyamide 6 Polycarbonate Caprolactam Phenol formaldehyde Adhesive Phenolic resin Phenol Platform chemical (bio oil) | Styrene Butadiene rubber Styrene butadiene latex Styrene butadiene rubber (except latex) Dextrines Potato starch Wheat starch Maize starch Manioc starch Starches (except P,W,Mai,Man) Starches inulin Starch residues Native starch | Carbon fiber Glass fiber (E type) Carboxymethyl cellulose (CMC) | Nitrogen fertilizer Soil Peat |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabriel, M.; Schöggl, J.-P.; Posch, A. Early Front-End Innovation Decisions for Self-Organized Industrial Symbiosis Dynamics—A Case Study on Lignin Utilization. Sustainability 2017, 9, 515. https://doi.org/10.3390/su9040515
Gabriel M, Schöggl J-P, Posch A. Early Front-End Innovation Decisions for Self-Organized Industrial Symbiosis Dynamics—A Case Study on Lignin Utilization. Sustainability. 2017; 9(4):515. https://doi.org/10.3390/su9040515
Chicago/Turabian StyleGabriel, Magdalena, Josef-Peter Schöggl, and Alfred Posch. 2017. "Early Front-End Innovation Decisions for Self-Organized Industrial Symbiosis Dynamics—A Case Study on Lignin Utilization" Sustainability 9, no. 4: 515. https://doi.org/10.3390/su9040515
APA StyleGabriel, M., Schöggl, J. -P., & Posch, A. (2017). Early Front-End Innovation Decisions for Self-Organized Industrial Symbiosis Dynamics—A Case Study on Lignin Utilization. Sustainability, 9(4), 515. https://doi.org/10.3390/su9040515