What Motivates Farmers’ Adaptation to Climate Change? The Case of Apple Farmers of Shaanxi in China
Abstract
:1. Introduction
2. Conceptual Framework
3. Materials and Methods
3.1. Research Site
3.2. Sampling and Data Collection
3.3. Variable Measurements
4. Results and Discussion
4.1. The Measurement Model
4.2. Hypotheses Testing
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lim, B.; Spanger-Siegfried, E.; Burton, I. Adaptation Policy Frameworks for Climate Change: Developing Strategies, Policies and Measures; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- United Nations Framework Convention on Climate Change (UNFCCC). Climate Change: Impacts, Vulnerabilities and Adaptation in Developing Countries; UNFCCC: Bonn, Germany, 2007. [Google Scholar]
- Parry, M.L.; Carter, T.R. An assessment of the effects of climatic change on agriculture. Clim. Chang. 1989, 15, 95–116. [Google Scholar] [CrossRef]
- Reilly, J. Climate change and global agriculture: Recent findings and issues. Am. J. Agric. Econ. 1995, 77, 727–733. [Google Scholar]
- Smit, B.; Skinner, M.W. Adaptation options in agriculture to climate change: A typology. Mitig. Adapt. Strateg. Glob. Chang. 2002, 7, 85–114. [Google Scholar]
- Adger, W.N.; Huq, S.; Brown, K.; Conway, D.; Hulme, M. Adaptation to climate change in the developing world. Prog. Dev. Stud. 2003, 3, 179–195. [Google Scholar] [CrossRef]
- Grothmann, T.; Patt, A. Adaptive capacity and human cognition: The process of individual adaptation to climate change. Glob. Environ. Chang. 2005, 15, 199–213. [Google Scholar] [CrossRef]
- Osbahr, H.; Twyman, C.; Adger, W.N.; Thomas, D.S.G. Evaluating successful livelihood adaptation to climate variability and change in Southern Africa. Ecol. Soc. 2010, 15, 27. [Google Scholar] [CrossRef]
- Smit, B.; Pilifosova, O. Adaptation to climate change in the context of sustainable development and equity. In Climate Change 2001: Impacts, Adaptation and Vulnerability; McCarthy, J.J., Canziani, O.F., Leary, N.A., Dokken, D.J., White, K.S., Eds.; Cambridge University Press: Cambridge, UK, 2003; pp. 877–912. [Google Scholar]
- Bryan, E.; Deressa, T.T.; Gbetibouo, G.A.; Ringler, C. Adaptation to climate change in Ethiopia and South Africa: Options and constraints. Environ. Sci. Policy 2009, 12, 413–426. [Google Scholar] [CrossRef]
- Thomas, D.S.G.; Twyman, C.; Osbahr, H.; Hewitson, B. Adaptation to climate change and variability: Farmer responses to intra-seasonal precipitation trends in South Africa. Clim. Chang. 2007, 83, 301–322. [Google Scholar] [CrossRef]
- Ziervogel, G.; Bharwani, S.; Downing, T.E. Adapting to climate variability: Pumpkins, people and policy. Nat. Resour. Forum 2006, 30, 294–305. [Google Scholar] [CrossRef]
- Esham, M.; Garforth, C. Agricultural adaptation to climate change: Insights from a farming community in Sri Lanka. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 535–549. [Google Scholar] [CrossRef]
- Howden, M.S.; Soussana, J.F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19691–19696. [Google Scholar] [CrossRef] [PubMed]
- Acquah, D.G.; Onumah, E.E. Farmers perception and adaptation to cimate change: An estimation of willingness to pay. J. Sustain. Dev. Afr. 2011, 3, 31–39. [Google Scholar]
- Aemro, T.; Jemma, H.; Mengistu, K. Climate change adaptation strategies of smallholder farmers: The case of Babilie District, East Harerghe Zone of Oromia Regional State of Ethiopia. J. Econ. Sustain. Dev. 2012, 3, 1–13. [Google Scholar]
- Deressa, T.; Rashid, M.H.; Claudia, R.; Tekie, A.; Mahmud, Y. Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Glob. Environ. Chang. 2009, 19, 248–255. [Google Scholar] [CrossRef]
- Deressa, T.; Hassan, R.M.; Ringler, C. Perception of and adaptation to climate change by farmers in the Nile basin of Ethiopia. J. Agric. Sci. 2011, 149, 23–31. [Google Scholar]
- Hassan, R.; Nhemachena, C. Determinants of African farmers’ strategies for adapting to climate change: Multinomial choice analysis. Afr. J. Agric. Resour. Econ. 2008, 2, 83–104. [Google Scholar]
- Kurukulasuriya, P.; Mendelsohn, R. Crop Selection: Adapting to Climate Change in Africa; No. 26; Centre for Environmental Economics and Policy in Africa: Pretoria, South Africa, 2006. [Google Scholar]
- Below, T.B.; Mutabazi, K.D.; Kirschke, D.; Franke, C.; Sieber, S.; Siebert, R.; Tscherning, K. Can farmers’ adaptation to climate change be explained by socioeconomic household-level variables? Glob. Environ. Chang. 2012, 22, 223–235. [Google Scholar] [CrossRef]
- Gebrehiwot, T.; Veen, A.V.D. Farmers prone to drought risk: Why some farmers undertake farm-level risk-reduction measures while others not? Environ. Manag. 2015, 55, 588–602. [Google Scholar]
- Dang, H.L.; Li, E.; Nuberg, I.; Bruwer, J. Understanding farmers’ adaptation intention to climate change: A structural equation modelling study in the Mekong Delta, Vietnam. Environ. Sci. Policy 2014, 41, 11–22. [Google Scholar] [CrossRef]
- Truelove, H.B.; Carrico, A.R.; Thabrew, L. A socio-psychological model for analyzing climate change adaptation: A case study of Sri Lankan paddy farmers. Glob. Environ. Chang. 2015, 31, 85–97. [Google Scholar] [CrossRef]
- Genius, M.; Koundouri, P.; Nauges, C.; Tzouvelekas, V. Information transmission in irrigation technology adoption and diffusion: Social learning, extension services, and spatial effects. Am. J. Agric. Econ. 2013, 96, 328–344. [Google Scholar] [CrossRef]
- Dang, H.L.; Li, E.; Bruwer, J. Understanding climate change adaptive behavior of farmers: An integrated conceptual framework. Int. J. Clim. Chang. Impacts Responses 2012, 3, 255–272. [Google Scholar] [CrossRef]
- Paul, C.J.; Weinthal, E.S.; Bellemare, M.F.; Jeuland, M.A. Social capital, trust, and adaptation to climate change: Evidence from rural Ethiopia. Glob. Environ. Chang. 2016, 36, 124–138. [Google Scholar] [CrossRef]
- Milne, S.; Sheeran, P.; Orbell, S. Prediction and intervention in health related behavior: A meta-analytic review of protection motivation theory. J. Appl. Soc. Psychol. 2000, 30, 106–143. [Google Scholar] [CrossRef]
- Rogers, R.W. A protection motivation theory of fear appeals and attitude change. J. Psychol. 1975, 91, 93–114. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.F.; James, B.H.; David, R.E. The protection motivation model: A normative model of fear appeals. J. Mark. 1991, 55, 36–45. [Google Scholar] [CrossRef]
- Kantola, S.J.; Syme, G.J.; Nesdale, A.R. The effects of appraised severity and efficacy in promoting water conservation: An informational analysis. J. Appl. Soc. Psychol. 1983, 13, 164–182. [Google Scholar] [CrossRef]
- Wolf, S.; Gregory, W.L.; Stephan, W.G. Protection motivation theory: Prediction of intentions to engage in antinuclear war behavior. J. Appl. Soc. Psychol. 1986, 16, 310–321. [Google Scholar] [CrossRef]
- Bubeck, P.; Botzen, W.J.W.; Kreibich, H.; Aerts, J.C.J.H. Detailed insights into the influence of flood-coping appraisals on mitigation behaviour. Glob. Environ. Chang. 2013, 23, 1327–1338. [Google Scholar] [CrossRef]
- Grothmann, T.; Reusswig, F. People at risk of flooding: Why some residents take precautionary action while others do not. Nat. Hazard. 2006, 38, 101–120. [Google Scholar] [CrossRef]
- Martin, I.M.; Bender, H.; Raish, C. What motivates individuals to protect themselves from risks: The case of wildland fires. Risk Anal. 2007, 27, 887–900. [Google Scholar] [CrossRef] [PubMed]
- Matuschke, I. Evaluating the Impact of Social Network in Rural Innovation Systems: An Overview. Available online: http://www.ifpri.org/publication/evaluating-impact-social-networks-rural-innovation-systems (accessed on 8 March 2017).
- Bandiera, O.; Rasul, I. Social network and technology adoption in Northern Mozambique. Econ. J. 2006, 116, 869–902. [Google Scholar] [CrossRef]
- Baerenklau, K.A. Toward an understanding of technology adoption: Risk, learning, and neighborhood effects. Land Econ. 2005, 8, 1–19. [Google Scholar] [CrossRef]
- Conley, T.G.; Udry, C. Social learning through networks: The adoption of new agricultural technologies in Ghana. Am. J. Agric. Econ. 2001, 83, 668–673. [Google Scholar] [CrossRef]
- Matuschke, I.; Mishra, R.R.; Qaim, M. Adoption and impact of hybrid wheat in India. World Dev. 2007, 35, 1422–1435. [Google Scholar] [CrossRef]
- Sherchan, W.; Nepal, S.; Paris, C. A survey of trust in social network. ACM Comput. Surv. 2013, 45, 115–123. [Google Scholar] [CrossRef]
- Nepal, S.; Sherchan, W.; Paris, C. Building trust communities using social trust. In Proceedings of the International Conference on User Modeling, Adaptation, and Personalization, Girona, Spain, 11–15 July 2011; pp. 841–846. [Google Scholar]
- Akpalu, W.; Arndt, C.; Matshe, I. Introduction to the Special Issue on the Economics of Climate Change Impacts on Developing Countries: Selected Studies on Sub-Saharan Africa and South-East Asia. Sustainability 2015, 7, 12122–12126. [Google Scholar] [CrossRef]
- Jiang, R.; Xie, J.; He, H.; Luo, J.; Zhu, J. Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012. Nat. Hazard. 2015, 75, 2885–2903. [Google Scholar] [CrossRef]
- Arthur, D.; Quester, P. Who’s afraid of that ad? Applying segmentation to the protection motivation model. Psychol. Mark. 2004, 21, 671–696. [Google Scholar] [CrossRef]
- Maddux, J.E.; Rogers, R.W. Protection motivation and self-efficacy: A revised theory of fear appeals and attitude change. J. Exp. Soc. Psychol. 1983, 19, 469–479. [Google Scholar] [CrossRef]
- Floyd, D.L.; Prentice-Dunn, S.; Rogers, R.W. A meta-analysis of research on protection motivation theory. J. Appl. Soc. Psychol. 2000, 30, 407–429. [Google Scholar] [CrossRef]
- Wang, G.L.; Lu, Q. The test of U-type relationship between the social network’s impact and the farmers’ technology adoption—Case of adoption of water saving irrigation technology in Minqin, Gansu. J. Agrotech. Econ. 2015, 92–106. (In Chinese) [Google Scholar]
- Feng, X.L.; Chen, Z.X.; Huo, X.X. Influencing factors of apple farmer adaptation to meteorological disasters. Resour. Sci. 2015, 37, 2491–2500. (In Chinese) [Google Scholar]
- Feng, X.L.; Chen, Z.X.; Huo, X.X. Factors influencing farmers adapting behavior to drought: Based on 1079 apple household survey data. J. AridLand Resour. Environ. 2016, 30, 43–49. (In Chinese) [Google Scholar]
- McKenzie, K.; Gow, K. Exploring the first year academic achievement of school leavers and mature-age students through structural equation modelling. Learn. Individ. Differ. 2004, 14, 107–123. [Google Scholar] [CrossRef]
- Hair, J.F.J.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Veen, R.V.D.; Song, H.Y. Impact of the perceived image of celebrity endorsers on tourists’ intentions to visit. J. Travel Res. 2014, 53, 211–224. [Google Scholar]
- Chan, F.; Lee, G.K.; Lee, E.J.; Kubota, C.; Allen, C.A. Structural equation modeling in rehabilitation counseling research. Rehabil. Couns. Bull. 2007, 51, 44–57. [Google Scholar]
- Lee, S.; Scott, D.; Kim, H. Celebrity fan involvement and destination perceptions. Ann. Tour. Res. 2008, 35, 809–832. [Google Scholar] [CrossRef]
- Bollen, K. Structural Equation with Latent Variable; Wiley & Sons: New York, NY, USA, 1989. [Google Scholar]
Item | Description | Coding | Variables |
---|---|---|---|
TA1 | Perceived probability | 5-point Likert scale (disagree to agree) | Threat appraisal |
TA2 | Perceived severity | ||
CA1 | Perceived response efficacy | 5-point Likert scale (not effective to effective) | Coping appraisal |
CA2 | Perceived self-efficacy | 5-point Likert scale (disagree to agree) | |
M1 | There is no need to adapt because the influences of climate change on your life and apple production are light | 5-point Likert scale (disagree to agree) | Maladaptation |
M2 | It is not necessary to take adaptation measures since they do not work well | ||
M3 | Everything is decided by fate | ||
SA1 | Intensity of communication | 5-point Likert scale (not at all to very often) | Social appraisal |
SA2 | Intensity of trust | 5-point Likert scale (disagree to agree) | |
SA3 | Learning effects | ||
BI1 | Changing timing of irrigation | To what extent the behavioral intention is on a 5-point Likert scale (not at all to very large extent) | Behavioral intention |
BI2 | Changing timing of fertilizer | ||
BI3 | Changing timing of pesticides | ||
BI4 | Diversifying the apple varieties | ||
BI5 | Using artificial grass in apple orchards | ||
BI6 | Covering black plastic film mulch in apple orchards | ||
BI7 | Investing in water storage in apple orchards | ||
BI8 | Diversifying income sources |
Variables | Items | Factor Loadings | AVE | CR |
---|---|---|---|---|
Threat appraisal | TA1 | 0.724 a | 0.453 | 0.621 |
TA2 | 0.599 *** | |||
Coping appraisal | CA1 | 0.766 *** | 0.642 | 0.782 |
CA2 | 0.835a | |||
Social appraisal | SA1 | 0.713 *** | 0.378 | 0.639 |
SA2 | 0.642 *** | |||
SA3 | 0.461 a | |||
Maladaptation | M1 | 0.723 *** | 0.518 | 0.76 |
M2 | 0.821 a | |||
M3 | 0.597 *** | |||
Behavioral intention | BI1 | 0.846 a | 0.495 | 0.878 |
BI2 | 0.729 *** | |||
BI3 | 0.646 *** | |||
BI4 | 0.812 *** | |||
BI5 | 0.798 *** | |||
BI6 | 0.795 *** | |||
BI7 | 0.584 *** | |||
BI8 | 0.176 *** |
Paths | Estimates | S.E. | t-Value |
---|---|---|---|
H1: Threat appraisalBehavioral intention | 0.244 | 0.170 | 2.979 *** |
H2: Threat appraisalMaladaptation | −0.454 | 0.338 | −4.187 *** |
H3: Coping appraisalBehavioral intention | 0.720 | 0.087 | 12.389 *** |
H4: Coping appraisalMaladaptation | 0.015 | 0.142 | 0.229 |
H5: MaladaptationBehavioral intention | −0.047 | 0.033 | −0.946 |
H6: Social appraisalThreat appraisal | 0.410 | 0.106 | 4.124 *** |
H7: Social appraisalMaladaptation | 0.082 | 0.291 | 0.942 |
H8: Social appraisalCoping appraisal | 0.571 | 0.119 | 7.136 *** |
H9: Social appraisalBehavioral intention | −0.073 | 0.143 | −1.136 |
Squared Multiple Correlation (R2) Behavioral intention = 60.4% |
Variables Relationships | Total Effects | Direct Effects | Indirect Effects |
---|---|---|---|
Threat appraisalBehavioral intention | 0.265 | 0.244 | 0.021 |
Coping appraisalBehavioral intention | 0.719 | 0.720 | −0.001 |
Social appraisalBehavioral intention | 0.442 | −0.073 | 0.515 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Liu, M.; Huo, X.; Ma, W. What Motivates Farmers’ Adaptation to Climate Change? The Case of Apple Farmers of Shaanxi in China. Sustainability 2017, 9, 519. https://doi.org/10.3390/su9040519
Feng X, Liu M, Huo X, Ma W. What Motivates Farmers’ Adaptation to Climate Change? The Case of Apple Farmers of Shaanxi in China. Sustainability. 2017; 9(4):519. https://doi.org/10.3390/su9040519
Chicago/Turabian StyleFeng, Xiaolong, Mingyue Liu, Xuexi Huo, and Wanglin Ma. 2017. "What Motivates Farmers’ Adaptation to Climate Change? The Case of Apple Farmers of Shaanxi in China" Sustainability 9, no. 4: 519. https://doi.org/10.3390/su9040519
APA StyleFeng, X., Liu, M., Huo, X., & Ma, W. (2017). What Motivates Farmers’ Adaptation to Climate Change? The Case of Apple Farmers of Shaanxi in China. Sustainability, 9(4), 519. https://doi.org/10.3390/su9040519