A Study of Rank Defect and Network Effect in Processing the CMONOC Network on Bernese
Abstract
:1. Introduction
2. GPS Data Set and Data Processing Strategy on Bernese
2.1. GPS Data Set
2.2. Data Processing Strategy on Bernese
3. Diagnosing Rank-Deficient Problems and CDR Filtering of the Original NEQ
3.1. Diagnosing Rank-Deficient Problems of the Original NEQ
3.2. CDR Filtering of the Original NEQ
4. Frame Alignment Analysis
4.1. Frame Orientation
4.2. Frame Scale
4.3. Network Effect
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, Q.; Zhang, P.Z.; Freymueller, J.T.; Bilham, R.; Larson, K.M.; Lai, X.A.; You, X.; Niu, Z.; Wu, J.; Li, Y.; et al. Present-day crustal deformation in China constrained by global positioning system measurements. Science 2001, 294, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhao, B.; Wang, Q.; Yang, S. Noise analysis of continuous GPS coordinate time series for CMONOC. Adv. Space Res. 2012, 49, 943–956. [Google Scholar] [CrossRef]
- Shen, Z.K.; Lü, J.; Wang, M.; Bürgmann, R. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Gan, W.; Zhang, P.; Shen, Z.K.; Niu, Z.; Wang, M.; Wan, Y.; Cheng, J. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Liang, S.; Gan, W.; Shen, C.; Xiao, G.; Liu, J.; Chen, W.; Zhou, D. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. J. Geophys. Res. 2013, 118, 5722–5732. [Google Scholar] [CrossRef]
- Herring, T.; King, R.; McClusky, S. Introduction to Gamit/Globk; Technical Reports; Massachusetts Institute of Technology: Cambridge, MA, USA, 2008. [Google Scholar]
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Dach, R.; Lutz, S.; Walser, P.; Fridez, P. Bernese GNSS Software Version 5.2; University of Bern, Bern Open Publishing: Bern, Switzerland, 2015. [Google Scholar]
- Sagiya, T. A decade of GEONET: 1994–2003—The continuous GPS observation in Japan and its impact on earthquake studies. Earth Planets Space 2004, 56, 29–41. [Google Scholar] [CrossRef]
- Kenyeres, A.; Bruyninx, C. EPN coordinate time series monitoring for reference frame maintenance. GPS Solut. 2004, 8, 200–209. [Google Scholar] [CrossRef]
- Bruyninx, C.; Habrich, H.; Söhne, W.; Kenyeres, A.; Stangl, G.; Völksen, C. Enhancement of the EUREF Permanent Network Services and Products. In Geodesy for Planet Earth; Springer: Berlin/Heidelberg, Germany, 2012; Volume 136, pp. 27–34. [Google Scholar]
- Dach, R.; Brockmann, E.; Schaer, S.; Beutler, G.; Meindl, M.; Prange, L.; Bock, H.; Jäggi, A.; Ostini, K. GNSS processing at CODE: Status report. J. Geodesy 2009, 83, 353–365. [Google Scholar] [CrossRef]
- Kotsakis, C.; Chatzinikos, M. Rank defect analysis and the realization of proper singularity in normal equations of geodetic networks. J. Geodesy 2017, 91, 627–652. [Google Scholar] [CrossRef]
- Rebischung, P.; Altamimi, Z.; Ray, J.; Garayt, B. The IGS contribution to ITRF2014. J. Geodesy 2016, 90, 611–630. [Google Scholar] [CrossRef]
- Altamimi, Z. Discussion on How to Express a Regional GPS Solution in the ITRF; EUREF Publication: Frankfurt am Main, Germany, 2003; Volume 12, pp. 162–167. [Google Scholar]
- Sillard, P.; Boucher, C. A review of algebraic constraints in terrestrial reference frame datum definition. J. Geodesy 2001, 75, 63–73. [Google Scholar] [CrossRef]
- Rebischung, P.; Altamimi, Z.; Springer, T. A collinearity diagnosis of the GNSS geocenter determination. J. Geodesy 2014, 88, 65–85. [Google Scholar] [CrossRef]
- Collilieux, X.; Altamimi, Z. Impact of the Network Effect on the Origin and Scale: Case Study of Satellite Laser Ranging. In Observing Our Changing Earth; Springer: New York, NY, USA, 2009; pp. 31–37. [Google Scholar]
- Coulot, D.; Rebischung, P.; Pollet, A.; Grondin, L.; Collot, G. Global optimization of GNSS station reference networks. GPS Solut. 2015, 19, 569–577. [Google Scholar] [CrossRef]
- Rebischung, P.; Griffiths, J.; Ray, J.; Schmid, R.; Collilieux, X.; Garayt, B. IGS08: The IGS realization of ITRF2008. GPS Solut. 2012, 16, 483–494. [Google Scholar] [CrossRef]
- Tregoning, P.; van Dam, T. Effects of atmospheric pressure loading and seven-parameter transformations on estimates of geocenter motion and station heights from space geodetic observations. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Lavallée, D.A.; Van Dam, T.; Blewitt, G.; Clarke, P.J. Geocenter motions from GPS: A unified observation model. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Collilieux, X.; van Dam, T.; Ray, J.; Coulot, D.; Métivier, L.; Altamimi, Z. Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. J. Geodesy 2012, 86, 1–14. [Google Scholar] [CrossRef]
- Collilieux, X.; Altamimi, Z.; Ray, J.; van Dam, T.; Wu, X. Effect of the satellite laser ranging network distribution on geocenter motion estimation. J. Geophys. Res. 2009, 114, 2415–2440. [Google Scholar] [CrossRef]
- Legrand, J.; Altamimi, Z.; Ray, J.; van Dam, T.; Wu, X. Impact of regional reference frame definition on geodynamic interpretations. J. Geodyn. 2010, 49, 116–122. [Google Scholar] [CrossRef]
- Zhao, Q.; Wu, W.; Wu, Y. Using combined GRACE and GPS data to investigate the vertical crustal deformation at the northeastern margin of the Tibetan Plateau. J. Asian Earth Sci. 2017, 134, 122–129. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, Q.; Zhang, B.; Wu, W. Characterizing the Seasonal Crustal Motion in Tianshan Area Using GPS, GRACE and Surface Loading Models. Remote Sens. 2017, 9, 1303. [Google Scholar] [CrossRef]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling non-linear station motions. J. Geophys. Res. 2016, 121, 6109–6131. [Google Scholar] [CrossRef]
- Fritsche, M.; Sośnica, K.; Rodríguez-Solano, C.J.; Steigenberger, P.; Wang, K.; Dietrich, R.; Dash, R. Homogeneous reprocessing of GPS, GLONASS and SLR observations. J. Geodesy 2014, 88, 625–642. [Google Scholar] [CrossRef]
- Melachroinos, S.A.; Lemoine, J.M.; Tregoning, P.; Biancale, R. Quantifying FES2004 S2 tidal model from multiple space-geodesy techniques, GPS and GRACE, over North West Australia. J. Geodesy 2009, 83, 915–923. [Google Scholar] [CrossRef]
- Ponte, R.M.; Ray, R.D. Atmospheric pressure corrections in geodesy and oceanography: A strategy for handling air tides. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef]
- Schmid, R.; Dach, R.; Collilieux, X.; Jäggi, A.; Schmitz, M.; Dilssner, F. Absolute IGS antenna phase center model igs08.atx: Status and potential improvements. J. Geodesy 2016, 90, 343–364. [Google Scholar] [CrossRef]
- Böhm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Petrie, E.J.; King, M.A.; Moore, P.; Lavallée, D.A. Higher-order ionospheric effects on the GPS reference frame and velocities. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Kotsakis, C. Reference frame stability and nonlinear distortion in minimum-constrained network adjustment. J. Geodesy 2012, 86, 755–774. [Google Scholar] [CrossRef]
- Freymueller, J.T. Seasonal Position Variations and Regional Reference Frame Realization. In Geodetic Reference Frames; Drewes, H., Ed.; Springer: Munich, Germany, 2006; Volume 134, pp. 191–196. [Google Scholar]
- Figurski, M.; Nykiel, G. Investigation of the Impact of ITRF2014/IGS14 on the Positions of the Reference Stations in Europe. Acta Geodyn. Geomater. 2017, 14, 401–410. [Google Scholar] [CrossRef]
- Altamimi, Z.; Sillard, P.; Boucher, C. ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Altamimi, Z.; Collilieux, X.; Legrand, J.; Garayt, B.; Boucher, C. ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
Parameters | Tx (mm) | Ty (mm) | Tz (mm) | Rx (mas) | Ry (mas) | Rz (mas) | Scale (ppb) |
---|---|---|---|---|---|---|---|
Without CDR | −3.4 | 5.5 | 11.5 | −0.0094 | 0.0056 | 0.0021 | −0.2407 |
With CDR | −4.0 | 6.2 | 10.6 | 0 | 0 | 0 | 0 |
Parameters | Tx (mm) | Ty (mm) | Tz (mm) | Rx (mas) | Ry (mas) | Rz (mas) | Scale (ppb) |
---|---|---|---|---|---|---|---|
NNTR | −1.4 | 4.3 | 12.2 | −0.0791 | 0.0973 | −0.0523 | −0.0686 |
NNTS | −4.1 | 6.3 | 10.9 | 0 | 0 | 0 | −0.0881 |
Frames | ITR96 | ITR97 | IGS97 | IGS00 | IGb00 | IGS05 | IGS08 | IGb08 |
---|---|---|---|---|---|---|---|---|
From | 1998067 | 1999213 | 2000156 | 2001336 | 2004011 | 2006309 | 2011107 | 2012281 |
To | 1999212 | 2000155 | 2001335 | 2004010 | 2006308 | 2011106 | 2012280 | 2016311 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Wu, J.; Meng, G. A Study of Rank Defect and Network Effect in Processing the CMONOC Network on Bernese. Remote Sens. 2018, 10, 357. https://doi.org/10.3390/rs10030357
Wu W, Wu J, Meng G. A Study of Rank Defect and Network Effect in Processing the CMONOC Network on Bernese. Remote Sensing. 2018; 10(3):357. https://doi.org/10.3390/rs10030357
Chicago/Turabian StyleWu, Weiwei, Jicang Wu, and Guojie Meng. 2018. "A Study of Rank Defect and Network Effect in Processing the CMONOC Network on Bernese" Remote Sensing 10, no. 3: 357. https://doi.org/10.3390/rs10030357
APA StyleWu, W., Wu, J., & Meng, G. (2018). A Study of Rank Defect and Network Effect in Processing the CMONOC Network on Bernese. Remote Sensing, 10(3), 357. https://doi.org/10.3390/rs10030357