Bayesian Bias Correction of Satellite Rainfall Estimates for Climate Studies
Abstract
:1. Introduction
2. Study Region and Data
3. Methodology
3.1. Bayesian Method
3.1.1. Training Period
3.1.2. Testing Period
3.2. Evaluation of Bias Corrected CHIRPS Rainfall
3.3. Assessments of Bayesian Approach Performance
4. Results
4.1. Assessments of Bias-Corrected CHIRPS Estimates
4.1.1. Monthly Assessments
4.1.2. Yearly Evaluations
4.2. Analysis of Bayesian Performance
5. Discussion
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kidd, C.; Bauer, P.; Turk, J.; Huffman, G.J.; Joyce, R.; Hsu, K.L.; Braithwaite, D. Intercomparison of high-resolution precipitation products over northwest Europe. J. Hydrometeorol. 2012, 13, 67–83. [Google Scholar] [CrossRef]
- Villarini, G.; Krajewski, W.F. Empirically-based modeling of spatial sampling uncertainties associated with rainfall measurements by rain gauges. Adv. Water Resour. 2008, 31, 1015–1023. [Google Scholar] [CrossRef]
- Dibike, Y.B.; Coulibaly, P. Validation of hydrological models for climate scenario simulation: The case of Saguenay watershed in Quebec. Hydrol. Process. 2007, 21, 3123–3135. [Google Scholar] [CrossRef]
- Sorooshian, S.; Hsu, K.L.; Gao, X.; Gupta, H.V.; Imam, B.; Braithwaite, D. Evaluation of persiann system satellite-based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046. [Google Scholar] [CrossRef]
- Feidas, H.; Lagouvardos, K.; Kotroni, V.; Cartalis, C. Application of three satellite techniques in support of precipitation forecasts of a NWP model. Int. J. Remote Sens. 2005, 26, 5393–5417. [Google Scholar] [CrossRef]
- Krajewski, W.F.; Ciach, G.J.; McCollum, J.R.; Bacotiu, C. Initial validation of the global precipitation climatology project monthly rainfall over the United States. J. Appl. Meteorol. 2000, 39, 1071–1086. [Google Scholar] [CrossRef]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.; Janowiak, J.; Arkin, P. The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis. J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Arkin, P.A.; Xie, P.P. The global precipitation climatology project—1st algorithm intercomparison project. Bull. Am. Meteorol. Soc. 1994, 75, 401–419. [Google Scholar] [CrossRef]
- Maidment, R.I.; Grimes, D.I.F.; Allan, R.P.; Greatrex, H.; Rojas, O.; Leo, O. Evaluation of satellite-based and model re-analysis rainfall estimates for Uganda. Meteorol. Appl. 2013, 20, 308–317. [Google Scholar] [CrossRef]
- Tote, C.; Patricio, D.; Boogaard, H.; van der Wijngaart, R.; Tarnavsky, E.; Funk, C. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sens. 2015, 7, 1758–1776. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Mehran, A.; Norouzi, H.; Behrangi, A. Systematic and random error components in satellite precipitation data sets. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Abera, W.; Brocca, L.; Rigon, R. Comparative evaluation of different satellite rainfall estimation products and bias correction in the Upper Blue Nile (UBN) basin. Atmos. Res. 2016, 178, 471–483. [Google Scholar] [CrossRef]
- Kimani, M.W.; Hoedjes, J.C.B.; Su, Z.B. An assessment of satellite-derived rainfall products relative to ground observations over East Africa. Remote Sens. 2017, 9, 430. [Google Scholar] [CrossRef]
- Maurer, E.P.; Pierce, D.W. Bias correction can modify climate model simulated precipitation changes without adverse effect on the ensemble mean. Hydrol. Earth Syst. Sci. 2014, 18, 915–925. [Google Scholar] [CrossRef] [Green Version]
- Mateus, P.; Borma, L.S.; da Silva, R.D.; Nico, G.; Catalao, J. Assessment of two techniques to merge ground-based and trmm rainfall measurements: A case study about Brazilian Amazon rainforest. GISci. Remote Sens. 2016, 53, 689–706. [Google Scholar] [CrossRef]
- Vila, D.A.; de Goncalves, L.G.G.; Toll, D.L.; Rozante, J.R. Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental South America. J. Hydrometeorol. 2009, 10, 533–543. [Google Scholar] [CrossRef]
- Tian, Y.D.; Peters-Lidard, C.D.; Eylander, J.B. Real-time bias reduction for satellite-based precipitation estimates. J. Hydrometeorol. 2010, 11, 1275–1285. [Google Scholar] [CrossRef]
- Stokstad, E. Hydrology—Scarcity of rain, stream gages threatens forecasts. Science 1999, 285, 1199–1200. [Google Scholar] [CrossRef]
- Dinku, T.; Ceccato, P.; Grover-Kopec, E.; Lemma, M.; Connor, S.J.; Ropelewski, C.F. Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens. 2007, 28, 1503–1526. [Google Scholar] [CrossRef]
- Talagrand, O. Assimilation of observations, an introduction (gtspecial issueltdata assimilation in meteology and oceanography: Theory and practice). J. Meteorol. Soc. Jpn. Ser. II 1997, 75, 191–209. [Google Scholar] [CrossRef]
- Seiz, G.; Foppa, N. National climate observing system of switzerland (GCOS Switzerland). Adv. Sci. Res. 2011, 6, 95–102. [Google Scholar] [CrossRef]
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A Quasi-Global Precipitation Time Series for Drought Monitoring; U.S. Geological Survey Data Series: Reston, VA 20192, USA, 2014. [Google Scholar]
- IGAD. Available online: http://www.Icpac.Net/ (accessed on 6 November 2015).
- Funk, C.; Nicholson, S.E.; Landsfeld, M.; Klotter, D.; Peterson, P.; Harrison, L. The centennial trends greater horn of Africa precipitation dataset. Sci. Data 2015, 2, 150050. [Google Scholar] [CrossRef] [PubMed]
- ICPAC. Available online: http://chg-wiki.geog.ucsb.edu/wiki/GeoCLIM (accessed on 6 November 2015).
- SRTM 90m Digital Elevation Database v4.1. Available online: http://www.Cgiar-csi.Org/data/srtm-90m-digital-elevation-database-v4-1 (accessed on 5 July 2018).
- Carlin, B.P.; Louis, T.A. Bayes and Empirical Bayes Methods for Data Analysis; Chapman and Hall: London, UK, 1996; p. 399. [Google Scholar]
- Suwendi, A.; Allebach, J.P. Nearest-neighbor and bilinear resampling factor estimation to detect blockiness or blurriness of an image. J. Electron. Imaging 2008, 17, 023005. [Google Scholar]
- Tan, M.L.; Ficklin, D.L.; Dixon, B.; Ibrahim, A.L.; Yusop, Z.; Chaplot, V. Impacts of DEM resolution, source, and resampling technique on SWAT-simulated streamflow. Appl. Geogr. 2015, 63, 357–368. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, S. The turkana low-level jet: Mean climatology and association with regional aridity. Int. J. Climatol. 2016, 36, 2598–2614. [Google Scholar] [CrossRef]
- Kinuthia, J.H.; Asnani, G.C. A newly found jet in North Kenya (Turkana Channel). Mon. Weather Rev. 1982, 110, 1722–1728. [Google Scholar] [CrossRef]
- Trejo, F.J.P.; Barbosa, H.A.; Penaloza-Murillo, M.A.; Moreno, M.A.; Farias, A. Intercomparison of improved satellite rainfall estimation with chirps gridded product and rain gauge data over Venezuela. Atmosfera 2016, 29, 323–342. [Google Scholar] [CrossRef]
- Sassen, K.; Wang, Z.; Liu, D. Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Kinuthia, J.H. Horizontal and vertical structure of the lake Turkana jet. J. Appl. Meteorol. 1992, 31, 1248–1274. [Google Scholar] [CrossRef]
- Indeje, M.; Semazzi, F.H.M.; Ogallo, L.J. Enso signals in East African rainfall seasons. Int. J. Climatol. 2000, 20, 19–46. [Google Scholar] [CrossRef]
- Young, M.P.; Williams, C.J.R.; Chiu, J.C.; Maidment, R.I.; Chen, S.H. Investigation of discrepancies in satellite rainfall estimates over Ethiopia. J. Hydrometeorol. 2014, 15, 2347–2369. [Google Scholar] [CrossRef]
- Paredes-Trejo, F.J.; Barbosa, H.A.; Kumar, T.V.L. Validating chirps-based satellite precipitation estimates in northeast Brazil. J. Arid Environ. 2017, 139, 26–40. [Google Scholar] [CrossRef]
Months | CC | CC (bc) | Change (%) | RMSD | RMSD (bc) | Change (%) | MAE | MAE (bc) | Change (%) | Rainfall (mm/month) |
---|---|---|---|---|---|---|---|---|---|---|
Jan | 0.95 | 0.98 | 2 | 23.1 | 13 | -45 | 17.6 | 9 | -49 | 88.0 |
Feb | 0.96 | 0.97 | 2 | 23.1 | 15 | -37 | 14.9 | 10 | -31 | 70.3 |
Mar | 0.87 | 0.90 | 3 | 40.1 | 31 | -22 | 24.7 | 23 | -9 | 105.5 |
Apr | 0.47 | 0.61 | 14 | 64.3 | 48 | -25 | 43.1 | 28 | -35 | 155.1 |
May | 0.77 | 0.94 | 17 | 49.5 | 25 | -50 | 36.2 | 20 | -45 | 103.5 |
Jun | 0.87 | 0.97 | 10 | 22.8 | 10 | -58 | 15.8 | 6 | -61 | 38.4 |
Jul | 0.89 | 0.98 | 9 | 20.1 | 8 | -60 | 12.0 | 5 | -63 | 31.9 |
Aug | 0.89 | 0.98 | 9 | 24.1 | 11 | -56 | 14.2 | 6 | -57 | 38.8 |
Sep | 0.92 | 0.97 | 6 | 19.3 | 13 | -34 | 13.3 | 8 | -43 | 39.4 |
Oct | 0.95 | 0.95 | 0 | 21.1 | 19 | -11 | 16.9 | 15 | -11 | 87.1 |
Nov | 0.72 | 0.94 | 21 | 41.4 | 27 | -35 | 29.3 | 23 | -22 | 129.5 |
Dec | 0.92 | 0.92 | 0 | 27.2 | 26 | -4 | 20.7 | 20 | -1 | 127.0 |
Years | CC | CC (bc) | Change (%) | RMSD | RMSD (bc) | Change (%) | MAE | MAE (bc) | Change (%) | Rainfall (mm/year) |
---|---|---|---|---|---|---|---|---|---|---|
2003 | 0.71 | 0.88 | 17 | 264 | 145 | −45 | 197 | 107 | −46 | 847 |
2004 | 0.54 | 0.68 | 14 | 277 | 183 | −34 | 206 | 131 | −36 | 962 |
2005 | 0.72 | 0.86 | 15 | 241 | 138 | −43 | 178 | 96 | −46 | 772 |
2006 | 0.58 | 0.74 | 16 | 449 | 324 | −28 | 312 | 225 | −28 | 1234 |
2007 | 0.68 | 0.83 | 15 | 276 | 155 | −44 | 199 | 107 | −46 | 951 |
2008 | 0.66 | 0.78 | 12 | 270 | 168 | −38 | 201 | 123 | −39 | 917 |
2009 | 0.57 | 0.68 | 11 | 256 | 178 | −30 | 195 | 131 | −33 | 887 |
2010 | 0.77 | 0.92 | 15 | 261 | 134 | −49 | 187 | 97 | −48 | 943 |
2011 | 0.58 | 0.74 | 16 | 348 | 290 | −17 | 258 | 224 | −13 | 911 |
2012 | 0.78 | 0.87 | 9 | 258 | 205 | −21 | 191 | 155 | −19 | 866 |
2013 | 0.62 | 0.79 | 17 | 316 | 264 | −17 | 239 | 204 | −15 | 847 |
Mt Elgon | Southern Tanzania | |||||
---|---|---|---|---|---|---|
Years | MAE | MAE (bc) | Change (%) | MAE | MAE (bc) | Change (%) |
2003 | 105.2 | 85.2 | −19 | 270.9 | 182.6 | −33 |
2004 | 167.3 | 160.3 | −4 | 423.0 | 334.7 | −21 |
2005 | 56.2 | 37.4 | −33 | 254.3 | 166.0 | −35 |
2006 | 771.7 | 764.8 | −1 | 601.4 | 513.0 | −15 |
2007 | 143.9 | 137.0 | −5 | 175.6 | 87.3 | −50 |
2008 | 113.1 | 103.9 | −8 | 498.3 | 410.0 | −18 |
2009 | 49.4 | 30.5 | −38 | 383.2 | 294.8 | −3 |
2010 | 182.9 | 176.0 | −4 | 322.6 | 234.3 | −27 |
2011 | 347.9 | 341.0 | −2 | 844.4 | 756.1 | −10 |
2012 | 728.5 | 721.6 | −1 | 329.6 | 241.3 | −27 |
2013 | 188.8 | 181.9 | −4 | 602.8 | 514.5 | −15 |
Lake Victoria | Mt Kilimanjaro | |||||
MAE | MAE (bc) | Change (%) | MAE | MAE (bc) | Change (%) | |
2003 | 504.6 | 384.8 | −24 | 1167.7 | 907.7 | −22 |
2004 | 492.6 | 372.8 | −24 | 1254.7 | 994.7 | −21 |
2005 | 459.2 | 339.4 | −26 | 1140.4 | 880.5 | −23 |
2006 | 720.4 | 600.5 | −17 | 1692.8 | 1432.8 | −15 |
2007 | 577.6 | 457.8 | −21 | 1238.9 | 978.9 | −21 |
2008 | 446.3 | 326.5 | −27 | 1685.8 | 1425.9 | −15 |
2009 | 273.5 | 153.7 | −44 | 1548.5 | 1288.5 | −17 |
2010 | 481.2 | 361.4 | −25 | 1239.0 | 979.1 | −21 |
2011 | 851.9 | 732.0 | −14 | 1399.5 | 1139.5 | −19 |
2012 | 572.6 | 452.8 | −21 | 1272.8 | 1012.8 | −20 |
2013 | 427.1 | 307.3 | −28 | 1178.0 | 918.0 | −22 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimani, M.W.; Hoedjes, J.C.B.; Su, Z. Bayesian Bias Correction of Satellite Rainfall Estimates for Climate Studies. Remote Sens. 2018, 10, 1074. https://doi.org/10.3390/rs10071074
Kimani MW, Hoedjes JCB, Su Z. Bayesian Bias Correction of Satellite Rainfall Estimates for Climate Studies. Remote Sensing. 2018; 10(7):1074. https://doi.org/10.3390/rs10071074
Chicago/Turabian StyleKimani, Margaret Wambui, Joost C. B. Hoedjes, and Zhongbo Su. 2018. "Bayesian Bias Correction of Satellite Rainfall Estimates for Climate Studies" Remote Sensing 10, no. 7: 1074. https://doi.org/10.3390/rs10071074
APA StyleKimani, M. W., Hoedjes, J. C. B., & Su, Z. (2018). Bayesian Bias Correction of Satellite Rainfall Estimates for Climate Studies. Remote Sensing, 10(7), 1074. https://doi.org/10.3390/rs10071074