In-Season Diagnosis of Rice Nitrogen Status Using Proximal Fluorescence Canopy Sensor at Different Growth Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Fluorescence Measurements
2.3. Plant Sampling and Measurements
2.4. Statistical Analysis
3. Results
3.1. Comparison of the Three Measurement Modes
3.2. Changes in Multiplex Indices (“On-The-Go” Mode) over Growth Stages under Different N Supplies
3.3. Correlations between Multiplex Indices (“On-The-Go” Mode) and N Status Indicators
3.4. Validation of the Estimation Models for N Status Indicators
3.5. Rice N Status Diagnosis
4. Discussion
4.1. Multiplex Measurement Modes and Estimation of Crop N Indicators by Fluorescence Indices
4.2. Normalized Nitrogen Sufficiency Fluorescence Indices
4.3. The Application Potential of the Multiplex Sensor
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef]
- Miao, Y.; Stewart, B.A.; Zhang, F. Long-term experiments for sustainable nutrient management in China. A review. Agron. Sustain. Dev. 2011, 31, 397–414. [Google Scholar] [CrossRef]
- Samborski, S.M.; Tremblay, N.; Fallon, E. Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agron. J. 2009, 101, 800–816. [Google Scholar] [CrossRef]
- Evans, J.R. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiol. 1983, 72, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Blackmer, T.M.; Schepers, J.S. Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn. J. Prod. Agric. 1995, 8, 56–60. [Google Scholar] [CrossRef]
- Schlemmer, M.R.; Francis, D.D.; Shanahan, J.F. Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agron. J. 2005, 97, 106–112. [Google Scholar] [CrossRef]
- Schröder, J.J.; Neeteson, J.J.; Oenema, O.; Struik, P.C. Does the crop or the soil indicate how to save nitrogen in maize production? Reviewing the state of the art. Field Crop Res. 2000, 66, 151–164. [Google Scholar] [CrossRef]
- Schepers, J.S.; Blackmer, T.M.; Francis, D.D. Predicting N fertilizer needs for corn in humid regions: Using chlorophyll meters. In Predicting N Fertilizer Needs for Corn in Humid Regions; Bock, B.R., Kelley, K.R., Eds.; National Fertilizer and Environmental Research Center: Muscle Shoals, AL, USA, 1992; pp. 105–114. [Google Scholar]
- Schepers, J.S.; Francis, D.D.; Vigil, M.; Below, F.E. Comparison of corn leaf nitrogen concentration and chlorophyll meter readings. Commun. Soil Sci. Plan. 1992, 23, 2173–2187. [Google Scholar] [CrossRef]
- Markwell, J.; Osterman, J.C.; Mitchell, J.L. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth. Res. 1995, 46, 467–472. [Google Scholar] [CrossRef]
- Lin, F.F.; Qiu, L.F.; Deng, J.S.; Shi, Y.Y.; Chen, L.S.; Wang, K. Investigation of spad meter-based indices for estimating rice nitrogen status. Comput. Electron. Agric. 2010, 71, S60–S65. [Google Scholar] [CrossRef]
- Ali, M.M.; Al-Ani, A.; Eamus, D.; Tan, D.K.Y. Leaf nitrogen determination using non-destructive techniques—A review. J. Soil Sci. Plant Nutr. 2017, 40, 928–953. [Google Scholar]
- Mulla, D.J.; Miao, Y. Precision Farming. In Land Resources Monitoring, Modeling, and Mapping with Remote Sensing; Thenkabail, P.S., Ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Heege, H.J.; Reusch, S.; Thiessen, E. Prospects and results for optical systems for site-specific on-the-go control of nitrogen-top-dressing in Germany. Precis. Agric. 2008, 9, 115–131. [Google Scholar] [CrossRef]
- Yao, Y.; Miao, Y.; Huang, S.; Gao, L.; Ma, X.; Zhao, G.; Jiang, R.; Chen, X.; Zhang, F.; Yu, K.; et al. Active canopy sensor-based precision n management strategy for rice. Agron. Sustain. Dev. 2012, 32, 925–933. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Shen, J.; Yu, W.; Yuan, F.; Cheng, S.; Huang, S.; Wang, H.; Yang, W.; Liu, F. Improving in-season estimation of rice yield potential and responsiveness to topdressing nitrogen application with Crop Circle active crop canopy sensor. Precis. Agric. 2016, 17, 136–154. [Google Scholar] [CrossRef]
- Olfs, H.W.; Blankenau, K.; Brentrup, F.; Jasper, J.; Link, A.; Lammel, J. Soil-and plant-based nitrogen-fertilizer recommendations in arable farming. J. Soil Sci. Plant Nutr. 2005, 168, 414–431. [Google Scholar] [CrossRef]
- Yu, K.; Li, F.; Gnyp, M.L.; Miao, Y.; Bareth, G.; Chen, X. Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the Northeast China Plain. ISPRS J. Photogramm. Remote Sens. 2013, 78, 102–115. [Google Scholar] [CrossRef]
- Huang, S.; Miao, Y.; Zhao, G.; Yuan, F.; Ma, X.; Tan, C.; Yu, W.; Gnyp, M.; Lenz-Wiedemann, V.; Rascher, U. Satellite remote sensing-based in-season diagnosis of rice nitrogen status in Northeast China. Remote Sens. 2015, 7, 10646–10667. [Google Scholar] [CrossRef]
- Bredemeier, C.; Schmidhalter, U. Laser-induced chlorophyll fluorescence sensing to determine biomass and nitrogen uptake of winter wheat under controlled environment and field condition. In Proceedings of the 5th European Conference on Precision Agriculture, Uppsala, Sweden, 9–12 June 2005; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005; pp. 273–280. [Google Scholar]
- McMurtrey, J.E., III; Chappelle, E.W.; Kim, M.S.; Meisinger, J.J.; Corp, L.A. Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements. Remote Sens. Environ. 1994, 47, 36–44. [Google Scholar] [CrossRef]
- Langsdorf, G.; Buschmann, C.; Sowinska, M.; Babani, F.; Mokry, M.; Timmermann, F.; Lichtenthaler, H.K. Multicolour fluorescence imaging of sugar beet leaves with different nitrogen status by flash lamp UV-excitation. Photosynthetica 2000, 38, 539–551. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Buschmann, C.; Lichtenthaler, H.K. The chlorophyll fluorescence ratio F-735/F-700 as an accurate measure of the chlorophyll content in plants. Remote Sens. Environ. 1999, 69, 296–302. [Google Scholar] [CrossRef]
- Cerovic, Z.G.; Goutouly, J.P.; Hilbert, G.; Destrac-Irvine, A.; Martinon, V.; Moise, N. Mapping winegrape quality attributes using portable fluorescence-based sensors. Frutic 2009, 9, 301–310. [Google Scholar]
- Yang, J.; Wei, G.; Shi, S.; Lin, D.; Sun, J.; Song, S.; Chen, B.; Zhang, Z. Analyzing the performance of fluorescence parameters in the monitoring of leaf nitrogen content of paddy rice. Sci. Rep. 2016, 6, 28787. [Google Scholar] [CrossRef] [PubMed]
- Longchamps, L.; Khosla, R. Early detection of nitrogen variability in maize using fluorescence. Agron. J. 2014, 106, 511–518. [Google Scholar] [CrossRef]
- Teal, R.K.; Tubana, B.; Girma, K.; Freeman, K.W.; Arnall, D.B.; Walsh, O.; Raun, W.R. In-season prediction of corn grain yield potential using normalized difference vegetation index. Agron. J. 2006, 98, 1488–1494. [Google Scholar] [CrossRef]
- Martin, K.L.; Girmaa, K.; Freemana, K.W.; Teala, R.K.; Tubańaa, B.; Arnalla, D.B.; Chunga, B.; Walsha, O.; Solieb, J.B.; Stoneb, M.L.; et al. Expression of variability in corn as influenced by growth stage using optical sensor measurements. Agron. J. 2007, 99, 384–389. [Google Scholar] [CrossRef]
- Jones, C.G.; Hartley, S.E. A protein competition model of phenolic allocation. Oikos 1999, 86, 27–44. [Google Scholar] [CrossRef]
- Burchard, P.; Bilger, W.; Weissenbock, G. Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ. 2000, 23, 1373–1380. [Google Scholar] [CrossRef]
- Knogge, W.; Weissenböck, G. Tissue-distribution of secondary phenolic biosynthesis in developing primary leaves of Avena sativa L. Planta 1986, 167, 196–205. [Google Scholar] [CrossRef]
- Cerovic, Z.G.; Ounis, A.; Cartelat, A.; Latouche, G.; Goulas, Y.; Meyer, S.; Moya, I. The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environ. 2002, 25, 1663–1676. [Google Scholar] [CrossRef]
- Tremblay, N.; Wang, Z.; Bélec, C. Evaluation of the Dualex for the assessment of corn nitrogen status. J. Soil Sci. Plant Nutr. 2007, 30, 1355–1369. [Google Scholar] [CrossRef]
- Tremblay, N.; Wang, Z.; Belec, C. Performance of Dualex in spring wheat for crop nitrogen status assessment, yield prediction and estimation of soil nitrate content. J. Soil Sci. Plant Nutr. 2009, 33, 57–70. [Google Scholar] [CrossRef]
- Lejealle, S.; Evain, S. Multiplex: A new diagnostic tool for management of nitrogen fertilization of turgrass. In Proceedings of the 10th International Conference on Precision Agriculture, Denver, CO, USA, 18–21 July 2010. [Google Scholar]
- Cerovic, Z.G.; Moise, N.; Agati, G.; Latouche, G.; Ghozlen, N.B.; Meyer, S. New portable optical sensors for the assessment of winegrape phenolic maturity based on berry fluorescence. J. Food Compos. Anal. 2008, 21, 650–654. [Google Scholar] [CrossRef]
- Yu, K.; Leufen, G.; Hunsche, M.; Noga, G.; Chen, X.; Bareth, G. Investigation of leaf diseases and estimation of chlorophyll concentration in seven barley varieties using fluorescence and hyperspectral indices. Remote Sens. 2013, 6, 64–86. [Google Scholar] [CrossRef]
- Diago, M.P.; Rey-Carames, C.; Le Moigne, M.; Fadaili, E.M.; Tardaguila, J.; Cerovic, Z.G. Calibration of non-invasive fluorescence-based sensors for the manual and on-the-go assessment of grapevine vegetative status in the field. Aust. J. Grape Wine R. 2016, 22, 438–449. [Google Scholar] [CrossRef]
- Song, X.; Yang, G.; Yang, C.; Wang, J.; Cui, B. Spatial variability analysis of within-field winter wheat nitrogen and grain quality using canopy fluorescence sensor measurements. Remote Sens. 2017, 9, 237. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Tremblay, N.; Zhu, J.J. A first comparison of Multiplex® for the assessment of corn nitrogen status. J. Food Agric. Environ. 2012, 10, 1008–1016. [Google Scholar]
- Li, J.W.; Zhang, J.X.; Zhao, Z.; Lei, X.D.; Xu, X.L.; Lu, X.X.; Weng, D.L.; Gao, Y.; Cao, L.K. Use of fluorescence-based sensors to determine the nitrogen status of paddy rice. J. Agric. Sci. 2013, 151, 862–871. [Google Scholar] [CrossRef]
- Lu, J.; Miao, Y.; Wei, S.; Li, J.; Yuan, F. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor. Sci. Rep. 2017, 7, 14073. [Google Scholar] [CrossRef]
- Pedrós, R.; Goulas, Y.; Jacquemoud, S.; Louis, J.; Moya, I. FluorMODleaf: A new leaf fluorescence emission model based on the PROSPECT model. Remote Sens. Environ. 2010, 114, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Ounis, A.; Cerovic, Z.G.; Briantais, J.M.; Moya, I. Dual-excitation FLIDAR for the estimation of epidermal UV absorption in leaves and canopies. Remote Sens. Environ. 2001, 76, 33–48. [Google Scholar] [CrossRef]
- Agati, G.; Cerovic, Z.G.; Pinelli, P.; Tattini, M. Light-induced accumulation of ortho-dihydroxylated flavonoids as non-destructively monitored by chlorophyll fluorescence excitation techniques. Environ. Exp. Bot. 2011, 73, 3–9. [Google Scholar] [CrossRef]
- Cartelat, A.; Cerovic, Z.G.; Goulas, Y.; Meyer, S.; Lelarge, C.; Prioul, J.L.; Barbottin, A.; Jeuffroy, M.H.; Gate, P.; Agati, G. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crop. Res. 2005, 91, 35–49. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Vegetation stress: An introduction to the stress concept in plants. J Plant Physiol. 1996, 148, 4–14. [Google Scholar] [CrossRef]
- Ghozlen, N.B.; Cerovic, Z.G.; Germain, C.; Toutain, S.; Latouche, G. Non-destructive optical monitoring of grape maturation by proximal sensing. Sensors 2010, 10, 10040–10068. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Miao, Y.; Yuan, F.; Cao, Q.; Ye, H.; Lenz-Wiedemann, V.; Khosla, R.; Bareth, G. Proximal fluorescence sensing for in-season diagnosis of rice nitrogen status. Adv. Anim. Biosci. 2017, 8, 343–348. [Google Scholar] [CrossRef]
- Huang, S.; Miao, Y.; Cao, Q.; Yao, Y.; Zhao, G.; Yu, W.; Shen, J.; Yu, K.; Bareth, G. Critical nitrogen dilution curve for rice nitrogen status diagnosis in Northeast China. Pedosphere 2018, 28, 814–822. [Google Scholar] [CrossRef]
- Xia, T.; Miao, Y.; Wu, D.; Shao, H.; Khosla, R.; Mi, G. Active optical sensing of spring maize for in-season diagnosis of nitrogen status based on nitrogen nutrition index. Remote Sens. 2016, 8, 605. [Google Scholar] [CrossRef]
- Bausch, W.C.; Khosla, R. QuickBird satellite versus ground-based multi-spectral data for estimating nitrogen status of irrigated maize. Precis. Agric. 2010, 11, 274–290. [Google Scholar] [CrossRef]
- Landis, R.J.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B. Proximal optical sensing of cucumber crop N status using chlorophyll fluorescence indices. Eur. J. Agron. 2016, 73, 83–97. [Google Scholar] [CrossRef]
- Agati, G.; Foschi, L.; Grossi, N.; Volterrani, M. In field non-invasive sensing of the nitrogen status in hybrid bermudagrass (Cynodon dactylon, × C. transvaalensis, Burtt Davy) by a fluorescence-based method. Eur. J. Agron. 2015, 63, 89–96. [Google Scholar] [CrossRef]
- Buschmann, C. Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynth. Res. 2007, 92, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Ata-Ul-Karim, S.T.; Cao, Q.; Lu, Z.; Cao, W.; Zhu, Y.; Liu, X. Indicators for diagnosing nitrogen status of rice based on chlorophyll meter readings. Field Crop. Res. 2016, 185, 12–20. [Google Scholar] [CrossRef]
- Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B. Evaluation of optical sensor measurements of canopy reflectance and of leaf flavonols and chlorophyll contents to assess crop nitrogen status of muskmelon. Eur. J. Agron. 2014, 58, 39–52. [Google Scholar] [CrossRef]
- Barthod, S.; Cerovic, Z.; Epron, D. Can dual chlorophyll fluorescence excitation be used to assess the variation in the content of UV-absorbing phenolic compounds in leaves of temperate tree species along a light gradient? J. Exp. Bot. 2007, 58, 1753–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goulas, Y.; Cerovic, Z.G.; Cartelat, A.; Moya, I. Dualex: A new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence. Appl. Opt. 2004, 43, 4488–4496. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Schweiger, J. Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants. J. Plant Physiol. 1998, 152, 272–282. [Google Scholar] [CrossRef]
- Buschmann, C.; Lichtenthaler, H.K. Principles and characteristics of multi-colour fluorescence imaging of plants. J. Plant Physiol. 1998, 152, 297–314. [Google Scholar] [CrossRef]
- Bürling, K.; Cerovic, Z.G.; Cornic, G.; Ducruet, J.M.; Noga, G.; Hunsche, M. Fluorescence-based sensing of drought-induced stress in the vegetative phase of four contrasting wheat genotypes. Environ. Exp. Bot. 2013, 89, 51–59. [Google Scholar] [CrossRef]
- Agati, G.; Pinelli, P.; Cortés, E.S.; Romani, A.; Cartelat, A.; Cerovic, Z.G. Nondestructive evaluation of anthocyanins in olive (Olea europaea) fruits by in situ chlorophyll fluorescence spectroscopy. J. Agric. Food Chem. 2005, 53, 1354–1363. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, J.; Yan, B.; Cui, L.; Pan, J.; Kai, G. Agronomic traits of a new characteristic rice line ‘Huxuan 102’. Acta Agric. Shanghai 2015, 2, 60–64. [Google Scholar]
- Zubillaga, M.; Urricariet, S. Assessment of nitrogen status in wheat using aerial photography. Commun. Soil Sci. Plan. 2005, 36, 1787–1798. [Google Scholar] [CrossRef]
- Lemaire, G.; Jeuffroy, M.H.; Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. Eur. J. Agron. 2008, 28, 614–624. [Google Scholar] [CrossRef]
- Hussain, F.; Bronson, K.F.; Peng, S. Use of chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia. Agron. J. 2000, 92, 875–879. [Google Scholar]
- Varvel, G.E.; Wilhelm, W.W.; Shanahan, J.F.; Schepers, J.S. An algorithm for corn nitrogen recommendations using a chlorophyll meter based sufficiency index. Agron. J. 2007, 99, 701–706. [Google Scholar] [CrossRef]
- Cerovic, Z.G.; Ghozlen, N.B.; Milhade, C.; Obert, M.; Debuisson, S.; Le Moigne, M. Nondestructive diagnostic test for nitrogen nutrition of grapevine (Vitis vinifera L.) based on Dualex leaf-clip measurements in the field. J. Agr. Food Chem. 2015, 63, 3669–3680. [Google Scholar] [CrossRef] [PubMed]
- Stroppiana, D.; Boschetti, M.; Brivio, P.A.; Bocchi, S. Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry. Field Crop. Res. 2009, 111, 119–129. [Google Scholar] [CrossRef]
- Tremblay, N.; Wang, Z.; Cerovic, Z.G. Sensing crop nitrogen status with fluorescence indicators. a review. Agron. Sustain. Dev. 2012, 32, 451–464. [Google Scholar] [CrossRef]
- Demotes-Mainard, S.; Boumaza, R.; Meyer, S.; Cerovic, Z.G. Indicators of nitrogen status for ornamental woody plants based on optical measurements of leaf epidermal polyphenol and chlorophyll contents. Sci. Hortic. 2008, 115, 377–385. [Google Scholar] [CrossRef]
- Agati, G.; Foschi, L.; Grossi, N.; Guglielminetti, L.; Cerovic, Z.G.; Volterrani, M. Fluorescence-based versus reflectance proximal sensing of nitrogen content in Paspalum vaginatum and Zoysia matrella turfgrasses. Eur. J. Agron. 2013, 45, 39–51. [Google Scholar] [CrossRef]
- Meyer, S.; Cerovic, Z.G.; Goulas, Y.; Montpied, P.; Demotesmainard, S.; Bidel, L.P.; Moya, I.; Dreyer, E. Relationships between optically assessed polyphenols and chlorophyll contents, and leaf mass per area ratio in woody plants: A signature of the carbon-nitrogen balance within leaves? Plant Cell Environ. 2006, 29, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
Experiment | Year | Cultivar | Transplanting Date | Sampling Date and Stage |
---|---|---|---|---|
1 | 2012 | KY 131 | 18 May | 21 June (PI), 29 June (SE), 23 July (HE) |
1 | 2012 | LJ 21 | 18 May | 25 June (PI), 2 July (SE), 23 July (HE) |
2 | 2013 | KY 131 | 17 May | 23 June (PI), 2 July (SE), 22 July (HE) |
2 | 2013 | LJ 21 | 17 May | 28 June (PI), 6 July (SE), 27 July (HE) |
Variables | Formula | Explanation |
---|---|---|
BGF_UV | / | Blue–green Fluorescence under UV excitation |
RF_UV | / | Red Fluorescence under UV excitation |
FRF_UV | / | Far-Red Fluorescence under UV excitation |
BGF_G | / | Reflected Blue–Green light under Green excitation |
RF_G | / | Red Fluorescence under Green excitation |
FRF_G | / | Far-Red Fluorescence under Green excitation |
RF_R | / | Red Fluorescence under Red excitation |
FRF_R | / | Far-Red Fluorescence under Red excitation |
SFR_G | FRF_G/RF_G | Simple Fluorescence Ratio under Green excitation |
SFR_R | FRF_R/RF_R | Simple Fluorescence Ratio under Red excitation |
BRR_FRF | BGF_UV/FRF_UV | Blue–green to Far-Red Fluorescence Ratio under UV excitation |
FER_RUV | FRF_R/FRF_UV | Flavonols under Red and UV excitation |
FLAV | Log (FRF_R/FRF_UV) | Flavonols under Red and UV excitation |
FER_RG | FRF_R/FRF_G | Anthocyanins under Red and Green excitation |
ANTH | Log (FRF_R/FRF_G) | Anthocyanins under Red and Green excitation |
NBI_G | FRF_UV/RF_G | Nitrogen Balance Index under UV and Green excitation |
NBI_R | FRF_UV/RF_R | Nitrogen Balance Index under UV and Red excitation |
FERARI# | Log (5000/FRF_R) | Fluorescence Excitation Ratio Anthocyanin Relative Index |
Variety | Stage | BGF_U V | RF_UV | FRF_UV | BGF_G | RF_G | FRF_G | RF_R | FRF_R | SFR_G | SFR_R | BRR_FRF | FLAV | ANTH | NBI_G | NBI_R | FERARI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KY 131 | AC measurement mode | ||||||||||||||||
PI | NS | * | * | NS | * | * | * | * | ** | ** | NS | NS | NS | NS | NS | ** | |
SE | NS | NS | NS | NS | NS | NS | NS | NS | NS | * | NS | NS | NS | * | NS | NS | |
OG measurement mode | |||||||||||||||||
PI | *** | ** | ** | ** | *** | *** | *** | *** | *** | *** | ** | * | * | ** | ** | ||
SE | ** | *** | *** | NS | ** | *** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ||
HE | NS | *** | *** | NS | ** | ** | * | ** | ** | ** | ** | ** | ** | *** | *** | ||
LS measurement mode | |||||||||||||||||
PI | NS | NS | NS | NS | NS | NS | NS | * | * | * | NS | NS | NS | NS | NS | NS | |
SE | NS | NS | NS | NS | NS | * | NS | * | *** | ** | NS | NS | NS | ** | * | * | |
HE | NS | NS | NS | ** | NS | * | NS | * | ** | * | * | NS | NS | * | * | * | |
LJ 21 | AC measurement mode | ||||||||||||||||
PI | NS | * | * | NS | * | * | * | * | ** | ** | ** | * | * | ** | * | ** | |
SE | NS | * | * | NS | * | * | * | * | * | * | ** | NS | NS | NS | NS | * | |
OG measurement mode | |||||||||||||||||
PI | NS | * | * | NS | NS | * | NS | * | ** | ** | * | * | * | ** | ** | ||
SE | NS | ** | ** | NS | NS | ** | NS | ** | *** | *** | * | * | * | ** | ** | ||
HE | NS | *** | *** | NS | ** | *** | NS | *** | *** | *** | *** | *** | NS | *** | *** | ||
LS measurement mode | |||||||||||||||||
PI | NS | NS | NS | NS | NS | NS | NS | NS | * | ** | NS | NS | NS | * | NS | NS | |
SE | NS | ** | ** | NS | NS | * | NS | NS | * | NS | ** | NS | NS | * | * | * | |
HE | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Multiplex Indices | LNC (g kg−1) | PNC (g kg−1) | NNI | AGB (t ha−1) | PNU (kg ha−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PI | SE | HE | PI | SE | HE | PI | SE | HE | PI | SE | HE | PI | SE | HE | |
Standard indices | |||||||||||||||
SFR_G | 0.63 ** | 0.30 ** | 0.49 ** | 0.64 ** | 0.34 ** | 0.46 ** | 0.72 ** | 0.31 ** | 0.59 ** | 0.60 ** | 0.14 * | 0.41 ** | 0.66 ** | 0.21 ** | 0.58 ** |
SFR_R | 0.59 ** | 0.28 ** | 0.42 ** | 0.58 ** | 0.34 ** | 0.38 ** | 0.66 ** | 0.29 ** | 0.54 ** | 0.56 ** | 0.13 * | 0.45 ** | 0.61 ** | 0.19 ** | 0.57 ** |
BRR_FRF | 0.53 ** | 0.52 ** | 0.67 ** | 0.47 ** | 0.48 ** | 0.66 ** | 0.57 ** | 0.48 ** | 0.72 ** | 0.50 ** | 0.26 ** | 0.33 ** | 0.54 ** | 0.39 ** | 0.59 ** |
FLAV | 0.40 ** | 0.64 ** | 0.55 ** | 0.39 ** | 0.64 ** | 0.55 ** | 0.58 ** | 0.73 ** | 0.67 ** | 0.55 ** | 0.50 ** | 0.38 ** | 0.59 ** | 0.68 ** | 0.59 ** |
ANTH | 0.38 ** | 0.12 * | 0.27 ** | 0.41 ** | 0.14 * | 0.33 ** | 0.60 ** | 0.10 * | 0.47 ** | 0.60 ** | 0.03NS | 0.36 ** | 0.61 ** | 0.06NS | 0.48 ** |
NBI_G | 0.54 ** | 0.68 ** | 0.62 ** | 0.52 ** | 0.71 ** | 0.61 ** | 0.69 ** | 0.78 ** | 0.76 ** | 0.63 ** | 0.50 ** | 0.47 ** | 0.68 ** | 0.71 ** | 0.71 ** |
NBI_R | 0.52 ** | 0.67 ** | 0.58 ** | 0.52 ** | 0.71 ** | 0.56 ** | 0.70 ** | 0.77 ** | 0.74 ** | 0.64 ** | 0.47 ** | 0.51 ** | 0.69 ** | 0.68 ** | 0.72 ** |
Normalized indices | |||||||||||||||
SFR_GNSI | 0.58 ** | 0.39 ** | 0.67 ** | 0.65 ** | 0.42 ** | 0.70 ** | 0.55 ** | 0.54 ** | 0.69 ** | 0.35 ** | 0.45 ** | 0.24 ** | 0.43 ** | 0.50 ** | 0.52 ** |
SFR_RNSI | 0.57 ** | 0.42 ** | 0.62 ** | 0.61 ** | 0.46 ** | 0.67 ** | 0.52 ** | 0.57 ** | 0.68 ** | 0.33 ** | 0.45 ** | 0.25 ** | 0.40 ** | 0.52 ** | 0.52 ** |
BRR_FRFNSI | 0.49 ** | 0.34 ** | 0.63 ** | 0.48 ** | 0.41 ** | 0.74 ** | 0.41 ** | 0.56 ** | 0.76 ** | 0.26 ** | 0.50 ** | 0.28 ** | 0.33 ** | 0.56 ** | 0.58 ** |
FLAVNSI | 0.42 ** | 0.51 ** | 0.70 ** | 0.44 ** | 0.60 ** | 0.76 ** | 0.41 ** | 0.74 ** | 0.82 ** | 0.26 ** | 0.55 ** | 0.34 ** | 0.33 ** | 0.70 ** | 0.64 ** |
ANTHNSI | 0.51 ** | 0.40 ** | 0.57 ** | 0.64 ** | 0.40 ** | 0.65 ** | 0.54 ** | 0.57 ** | 0.56 ** | 0.34 ** | 0.52 ** | 0.11 * | 0.42 ** | 0.58 ** | 0.35 ** |
NBI_GNSI | 0.59 ** | 0.53 ** | 0.69 ** | 0.61 ** | 0.63 ** | 0.75 ** | 0.55 ** | 0.76 ** | 0.78 ** | 0.35 ** | 0.55 ** | 0.31 ** | 0.43 ** | 0.71 ** | 0.61 ** |
NBI_RNSI | 0.60 ** | 0.55 ** | 0.69 ** | 0.65 ** | 0.64 ** | 0.75 ** | 0.58 ** | 0.77 ** | 0.79 ** | 0.36 ** | 0.56 ** | 0.31 ** | 0.46 ** | 0.72 ** | 0.61 ** |
Growth Stage | Standard Indices | Model | R2 | Normalized Indices | Model | R2 |
---|---|---|---|---|---|---|
PI | SFR_G | LNC = 4.468x + 5.932 | 0.63 | NBI_RNSI | LNC = 23.918x + 10.413 | 0.60 |
PI | SFR_G | PNC = 2.912x + 4.961 | 0.64 | NBI_RNSI | PNC = 15.323x + 8.247 | 0.65 |
PI | SFR_G | NNI = 0.2442x-0.5188 | 0.72 | NBI_RNSI | NNI = 1.1412x − 0.1116 | 0.58 |
PI | NBI_R | PNU = 88.184x-33.56 | 0.69 | NBI_RNSI | PNU = 85.908x − 43.67 | 0.46 |
PI | NBI_G | AGB = 1.5268x-1.1565 | 0.64 | NBI_RNSI | AGB = 2.905x − 1.1184 | 0.36 |
SE | NBI_G | LNC = 8.707x + 14.352 | 0.68 | NBI_RNSI | LNC = 17.96x + 16.279 | 0.55 |
SE | NBI_G | PNC = 5.544x + 9.082 | 0.71 | NBI_RNSI | PNC = 12.317x + 9.542 | 0.64 |
SE | NBI_G | NNI = 0.5003x + 0.0582 | 0.78 | NBI_RNSI | NNI = 1.1571x + 0.0601 | 0.77 |
SE | NBI_G | PNU = 51.494x-40.873 | 0.71 | NBI_RNSI | PNU = 120.8x − 42.157 | 0.72 |
SE | NBI_G | AGB = 1.7391x-0.4502 | 0.50 | NBI_RNSI | AGB = 4.1975x − 0.5961 | 0.56 |
HE | BRR_FRF | LNC = -210.31x + 47.452 | 0.67 | NBI_GNSI | LNC = 21.646x + 15.473 | 0.69 |
HE | BRR_FRF | PNC = -131.79x + 24.313 | 0.66 | FLAVNSI | PNC = -31.59x + 49.591 | 0.76 |
HE | NBI_G | NNI = 0.5942x-0.054 | 0.76 | FLAVNSI | NNI = -3.0631x + 4.3956 | 0.82 |
HE | NBI_R | PNU = 213.07x-67.623 | 0.72 | FLAVNSI | PNU = -462.81x + 612.19 | 0.64 |
HE | NBI_R | AGB = 8.3363x + 0.0609 | 0.51 | FLAVNSI | AGB = -15.729x + 24.131 | 0.34 |
Comparison | Agreement (%) | Kappa statistics | Comparison | Agreement (%) | Kappa statistics | ||||
---|---|---|---|---|---|---|---|---|---|
SE | HE | SE | HE | SE | HE | SE | HE | ||
SFR_G and NNI | 75 | 65 | 0.554 *** | 0.310 * | SFR_GNSI and NNI | 70 | 85 | 0.494 ** | 0.661 *** |
SFR_R and NNI | 70 | 70 | 0.510 *** | 0.322 * | SFR_RNSI and NNI | 75 | 85 | 0.583 *** | 0.661 *** |
BRR_FRF and NNI | 60 | 70 | 0.363 * | 0.409 ** | BRR_FRFNSI and NNI | 80 | 80 | 0.655 *** | 0.538 *** |
FLAV and NNI | 75 | 90 | 0.605 *** | 0.763 *** | FLAVNSI and NNI | 75 | 80 | 0.558 *** | 0.570 *** |
ANTH and NNI | 55 | 75 | 0.283NS | 0.355 * | ANTHNSI and NNI | 80 | 65 | 0.669 *** | 0.227NS |
NBI_G and NNI | 75 | 80 | 0.595 *** | 0.590 *** | NBI_GNSI and NNI | 75 | 85 | 0.673 *** | 0.698 *** |
NBI_R and NNI | 75 | 80 | 0.595 *** | 0.590 *** | NBI_RNSI and NNI | 90 | 85 | 0.840 *** | 0.698 *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Miao, Y.; Yuan, F.; Cao, Q.; Ye, H.; Lenz-Wiedemann, V.I.S.; Bareth, G. In-Season Diagnosis of Rice Nitrogen Status Using Proximal Fluorescence Canopy Sensor at Different Growth Stages. Remote Sens. 2019, 11, 1847. https://doi.org/10.3390/rs11161847
Huang S, Miao Y, Yuan F, Cao Q, Ye H, Lenz-Wiedemann VIS, Bareth G. In-Season Diagnosis of Rice Nitrogen Status Using Proximal Fluorescence Canopy Sensor at Different Growth Stages. Remote Sensing. 2019; 11(16):1847. https://doi.org/10.3390/rs11161847
Chicago/Turabian StyleHuang, Shanyu, Yuxin Miao, Fei Yuan, Qiang Cao, Huichun Ye, Victoria I.S. Lenz-Wiedemann, and Georg Bareth. 2019. "In-Season Diagnosis of Rice Nitrogen Status Using Proximal Fluorescence Canopy Sensor at Different Growth Stages" Remote Sensing 11, no. 16: 1847. https://doi.org/10.3390/rs11161847
APA StyleHuang, S., Miao, Y., Yuan, F., Cao, Q., Ye, H., Lenz-Wiedemann, V. I. S., & Bareth, G. (2019). In-Season Diagnosis of Rice Nitrogen Status Using Proximal Fluorescence Canopy Sensor at Different Growth Stages. Remote Sensing, 11(16), 1847. https://doi.org/10.3390/rs11161847