Assessing the Impact of Nightlight Gradients on Street Robbery and Burglary in Cincinnati of Ohio State, USA
Abstract
:1. Introduction
1.1. Edges and Crimes
1.2. Edges Measured by Nightlight Satellite Data
2. Research Questions and Conceptual Framework
3. Study Area and Data
3.1. Study Area and Crime Data
3.2. Nightlight Satellite Data
3.3. Edges Defined as Nightlight Gradients
3.4. Operationalization of Variables
3.5. Models
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brantingham, P.L.; Brantingham, P.J. Residential burglary and urban form. Urban Stud. 1975, 12, 273–284. [Google Scholar] [CrossRef]
- Brantingham, P.J.; Brantingham, P.L. Housing patterns and burglary in a medium-sized American city. Crim. Justice Plan. 1977, 63–74. Available online: https://www.ncjrs.gov/App/Publications/abstract.aspx?ID=44979 (accessed on 25 August 2019).
- Brantingham, P.; Brantingham, P. Notes on the geometry of crime. Environ. Criminol. 1981, 13, 27–53. [Google Scholar]
- Duffala, D.C. Convenience stores, armed robbery, and physical environmental features. Am. Behav. Sci. 1976, 20, 227–245. [Google Scholar] [CrossRef]
- Eck, J.; Weisburd, D.L. Crime places in crime theory. Crime Place Crime Prev. Stud. 2015, 4, 1–33. [Google Scholar]
- Hunter, R.D. Environmental characteristics of convenience store robberies in the state of Florida. In Proceedings of the Annual Meeting of the American Society of Criminology. 1988. Available online: https://www.asc41.com/History.html (accessed on 25 July 2019).
- Rengert, G.F. Burglary in Philadelphia: A critique of an opportunity structure model. Environ. Criminol. 1981, 189–201. Available online: https://www.mendeley.com/catalogue/burglary-philadelphia/ (accessed on 25 August 2019).
- LeBeau, J.L. The methods and measures of centrography and the spatial dynamics of rape. J. Quant. Criminol. 1987, 3, 125–141. [Google Scholar] [CrossRef]
- Mayhew, P.; Britain, G. Crime as Opportunity; HM Stationery Office: London, UK, 1976; Volume 34. [Google Scholar]
- Rengert, G. Theory and practice in urban police response. In Crime: A Spatial Perspective; Columbia University Press: New York, NY, USA, 1980; pp. 276–289. [Google Scholar]
- Stoks, F.G. Assessing urban public space environments for danger of violent crime-especially rape. In Proceedings of the Conference on People and Physical Environment Research. 1983, pp. 331–343. Available online: https://elibrary.ru/item.asp?id=7366133 (accessed on 25 July 2019).
- Jeffery, C.R. An integrated theory of crime and criminal behavior. J. Crim. Law Criminol. Police Sci. 1958, 49, 533. [Google Scholar] [CrossRef]
- Bernasco, W.; Block, R. Robberies in Chicago: A block-level analysis of the influence of crime generators, crime attractors, and offender anchor points. J. Res. Crime Delinq. 2011, 48, 33–57. [Google Scholar] [CrossRef]
- Brantingham, P.L.; Brantingham, P.J. Nodes, paths and edges: Considerations on the complexity of crime and the physical environment. J. Environ. Psychol. 1993, 13, 3–28. [Google Scholar] [CrossRef]
- Brantingham, P.; Brantmgham, P. Criminality of place. Eur. J. Crim. Policy Res. 1995, 3, 5–26. [Google Scholar] [CrossRef]
- Cohen, L.E.; Felson, M. Social change and crime rate trends: A routine activity approach. Am. Sociol. Rev. 1979, 588–608. [Google Scholar] [CrossRef]
- Herbert, D.T.; Hyde, S.W. Environmental Criminology: Testing Some Area Hypotheses. Trans. Inst. Br. Geogr. 1985, 10, 259–274. [Google Scholar] [CrossRef]
- Suttles, G.D. The Social Order of the Slum: Ethnicity and Territory in the Inner City; University of Chicago Press: Chicago, IL, USA, 1968. [Google Scholar]
- Brantingham, P.L.; Brantingham, P.J.; Vajihollahi, M.; Wuschke, K. Crime Analysis at Multiple Scales of Aggregation: A Topological Approach; Springer: New York, NY, USA, 2009. [Google Scholar]
- Kim, Y.-A.; Hipp, J.R. Physical boundaries and city boundaries: Consequences for crime patterns on street segments? Crime Delinq. 2018, 64, 227–254. [Google Scholar] [CrossRef]
- Legewie, J. Living on the edge: Neighborhood boundaries and the spatial dynamics of violent crime. Demography 2018, 55, 1957–1977. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Andresen, M.A.; Brantingham, P.L.; Spicer, V. Crime on the edges: Patterns of crime and land use change. Cartogr. Geogr. Inf. Sci. 2017, 44, 51–61. [Google Scholar] [CrossRef]
- Song, J.; Spicer, V.; Brantingham, P. The edge effect: Exploring high crime zones near residential neighborhoods. In Proceedings of the 2013 IEEE International Conference on Intelligence and Security Informatics, Seattle, WA, USA, 4–7 June 2013. [Google Scholar]
- Davison, E.L.; Smith, W.R. The relationship between crime and urban location in Raleigh, North Carolina. 2002. Available online: http://www.ncsociology.org/beth9.htm (accessed on 26 July 2019).
- Doll, C.N.; Muller, J.-P.; Morley, J.G. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 2006, 57, 75–92. [Google Scholar] [CrossRef]
- Ghosh, T.; L Powell, R.; D Elvidge, C.; E Baugh, K.; C Sutton, P.; Anderson, S. Shedding light on the global distribution of economic activity. Open Geogr. J. 2010, 3. [Google Scholar] [CrossRef]
- Proville, J.; Zavala-Araiza, D.; Wagner, G. Night-time lights: A global, long term look at links to socio-economic trends. PLoS ONE 2017, 12, e0174610. [Google Scholar] [CrossRef] [PubMed]
- Sutton, P.C.; Elvidge, C.D.; Ghosh, T. Estimation of Gross Domestic Product at Sub-National Scales using Nighttime Satellite Imagery. Int. J. Ecol. Econ. Stat. 2017, 8, 5–27. [Google Scholar]
- Doll, C.H.; Muller, J.-P.; Elvidge, C.D. Night-time imagery as a tool for global mapping of socioeconomic parameters and greenhouse gas emissions. Ambio A J. Hum. Environ. 2000, 29, 157–163. [Google Scholar] [CrossRef]
- Ghosh, T.; Elvidge, C.D.; Sutton, P.C.; Baugh, K.E.; Ziskin, D.; Tuttle, B.T. Creating a global grid of distributed fossil fuel CO2 emissions from nighttime satellite imagery. Energies 2010, 3, 1895–1913. [Google Scholar] [CrossRef]
- Raupach, M.; Rayner, P.; Paget, M. Regional variations in spatial structure of nightlights, population density and fossil-fuel CO2 emissions. Energy Policy 2010, 38, 4756–4764. [Google Scholar] [CrossRef]
- Chand, T.K.; Badarinath, K.; Elvidge, C.; Tuttle, B. Spatial characterization of electrical power consumption patterns over India using temporal DMSP-OLS night-time satellite data. Int. J. Remote Sens. 2009, 30, 647–661. [Google Scholar] [CrossRef]
- He, C.; Ma, Q.; Liu, Z.; Zhang, Q. Modeling the spatiotemporal dynamics of electric power consumption in Mainland China using saturation-corrected DMSP/OLS nighttime stable light data. Int. J. Digit. Earth 2014, 7, 993–1014. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: A comparison with DMSP-OLS data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef]
- Townsend, A.C.; Bruce, D.A. The use of night-time lights satellite imagery as a measure of Australia’s regional electricity consumption and population distribution. Int. J. Remote Sens. 2010, 31, 4459–4480. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Hu, Y.; Huang, C.; Shi, K.; Wu, J. Estimating house vacancy rate in metropolitan areas using NPP-VIIRS nighttime light composite data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2188–2197. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Anderson, S.J.; Sutton, P.C.; Ghosh, T. The Night Light Development Index (NLDI): A spatially explicit measure of human development from satellite data. Soc. Geogr. 2012, 7, 23–35. [Google Scholar] [CrossRef]
- Sutton, P. Modeling population density with night-time satellite imagery and GIS. Comput. Environ. Urban Syst. 1997, 21, 227–244. [Google Scholar] [CrossRef]
- Sutton, P.; Roberts, D.; Elvidge, C.; Meij, H. A comparison of nighttime satellite imagery and population density for the continental United States. Photogramm. Eng. Remote Sens. 1997, 63, 1303–1313. [Google Scholar]
- Ma, T.; Zhou, Y.; Wang, Y.; Zhou, C.; Haynie, S.; Xu, T. Diverse relationships between Suomi-NPP VIIRS night-time light and multi-scale socioeconomic activity. Remote Sens. Lett. 2014, 5, 652–661. [Google Scholar] [CrossRef]
- Dou, Y.; Liu, Z.; He, C.; Yue, H. Urban land extraction using VIIRS nighttime light data: An evaluation of three popular methods. Remote Sens. 2017, 9, 175. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Safran, J.; Tuttle, B.; Sutton, P.; Cinzano, P.; Pettit, D.; Arvesen, J.; Small, C. Potential for global mapping of development via a nightsat mission. GeoJournal 2007, 69, 45–53. [Google Scholar] [CrossRef]
- Henderson, M.; Yeh, E.T.; Gong, P.; Elvidge, C.; Baugh, K. Validation of urban boundaries derived from global night-time satellite imagery. Int. J. Remote Sens. 2003, 24, 595–609. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Lawrence, W.T.; Elvidge, C.D.; Paul, T.; Levine, E.; Privalsky, M.V.; Brown, V. Using nighttime DMSP/OLS images of city lights to estimate the impact of urban land use on soil resources in the United States. Remote Sens. Environ. 1997, 59, 105–117. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; Li, D.; Xu, H. Mapping urban extent using Luojia 1-01 nighttime light imagery. Sensors 2018, 18, 3665. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Lo, C. Urban indicators of china from radiance-calibrated digital dmsp-ols nighttime images. Ann. Assoc. Am. Geogr. 2002, 92, 225–240. [Google Scholar] [CrossRef]
- McDonald, R.I.; Kareiva, P.; Forman, R.T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 2008, 141, 1695–1703. [Google Scholar] [CrossRef]
- Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sens. Lett. 2014, 5, 358–366. [Google Scholar] [CrossRef]
- Wu, J.; Ma, L.; Li, W.; Peng, J.; Liu, H. Dynamics of urban density in china: Estimations based on DMSP/OLS nighttime light data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4266–4275. [Google Scholar] [CrossRef]
- Yu, B.; Shu, S.; Liu, H.; Song, W.; Wu, J.; Wang, L.; Chen, Z. Object-based spatial cluster analysis of urban landscape pattern using nighttime light satellite images: A case study of China. Int. J. Geogr. Inf. Sci. 2014, 28, 2328–2355. [Google Scholar] [CrossRef]
- Brantingham, P.J.; Brantingham, P.L.; Molumby, T. Perceptions of crime in a dreadful enclosure. Ohio J. Sci. 1977, 77, 256–261. [Google Scholar]
- Lynch, K. The Image of the City; The MIT Press: Cambridge, MA, USA, 1960. [Google Scholar]
- Groff, E.R.; Weisburd, D.; Yang, S.-M. Is it important to examine crime trends at a local “micro” level? A longitudinal analysis of street to street variability in crime trajectories. J. Quant. Criminol. 2010, 26, 7–32. [Google Scholar] [CrossRef]
- McCutcheon, J.C.; Weaver, G.S.; Huff-Corzine, L.; Corzine, J.; Burraston, B. Highway robbery: Testing the impact of interstate highways on robbery. Justice Q. 2016, 33, 1292–1310. [Google Scholar] [CrossRef]
- Kimpton, A.; Corcoran, J.; Wickes, R. Greenspace and crime: An analysis of greenspace types, neighboring composition, and the temporal dimensions of crime. J. Res. Crime Delinq. 2017, 54, 303–337. [Google Scholar] [CrossRef]
- Brantingham, P.L.; Brantingham, P.J. A topological technique for regionalization. Environ. Behav. 1978, 10, 335–353. [Google Scholar] [CrossRef]
- Brantingham, P.J.; Tita, G.E.; Short, M.B.; Reid, S.E. The ecology of gang territorial boundaries. Criminology 2012, 50, 851–885. [Google Scholar] [CrossRef]
- Hart, T.C.; Miethe, T.D. Public Bus Stops and the Meso Environment: Understanding the Situational Context of Street Robberies. In Safety and Security in Transit Environments; Springer: New York, NY, USA, 2015; pp. 196–212. [Google Scholar]
- Zhuo, L.; Zhang, X.; Zheng, J.; Tao, H.; Guo, Y. An EVI-based method to reduce saturation of DMSP/OLS nighttime light data. Acta Geogr. Sin. 2015, 70, 1339–1350. [Google Scholar]
- Wright, R.; Jacques, S. Street Robbery: Oxford Bibliographies Online Research Guide; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Waller, I.; Okihiro, N.R. Burglary: The Victim and the Public; Centre of Criminology, University of Toronto by University of Toronto Press: Toronto, ON, Canada, 1978. [Google Scholar]
- Shaw, C.R.; McKay, H.D. Juvenile delinquency and urban areas: A study of rates of delinquency in relation to differential characteristics of local communities in American cities (1969). In Classics in Environmental Criminology; CRC Press: Boca Raton, FL, USA, 2010; pp. 103–140. [Google Scholar]
- Weisburd, D.; Groff, E.R.; Yang, S.-M. The Criminology of Place: Street Segments and Our Understanding of the Crime Problem; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Bursik Jr, R.J. Social disorganization and theories of crime and delinquency: Problems and prospects. Criminology 1988, 26, 519–552. [Google Scholar] [CrossRef]
- Stafford, M.C. Social Sources of Delinquency: An Appraisal of Analytic Models by Ruth R. Kornhauser. Contemp. Sociol. 1981, 10, 232. [Google Scholar] [CrossRef]
- Kubrin, C.E.; Weitzer, R. New directions in social disorganization theory. J. Res. Crime Delinq. 2003, 40, 374–402. [Google Scholar] [CrossRef]
- Liu, L.; Feng, J.; Ren, F.; Xiao, L. Examining the relationship between neighborhood environment and residential locations of juvenile and adult migrant burglars in China. Cities 2018, 82, 10–18. [Google Scholar] [CrossRef]
- Rosenfeld, R.; Fornango, R. The impact of police stops on precinct robbery and burglary rates in New York City, 2003–2010. Justice Q. 2014, 31, 96–122. [Google Scholar] [CrossRef]
- Shaw, C.R.; McKay, H.D. Juvenile Delinquency and Urban Areas; University of Chicago Press: Chicago, IL, USA, 1942. [Google Scholar]
- F.B.I. 2010. Available online: http://os.cqpress.com/citycrime/2011/City_Lo-Hi_2011.pdf (accessed on 25 July 2019).
- Elvidge, C.D.; Erwin, E.H.; Baugh, K.E.; Ziskin, D.; Tuttle, B.T.; Ghosh, T.; Sutton, P.C. Overview of DMSP nightime lights and future possibilities. In Proceedings of the 2009 Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009. [Google Scholar]
- Iona, G.; Butler, J.; Guenther, B.; Graziani, L.; Johnson, E.; Kennedy, B.; Kent, C.; Lambeck, R.; Waluschka, E.; Xiong, X. VIIRS on-orbit optical anomaly: Investigation, analysis, root cause determination and lessons learned. In Proceedings of the Earth Observing Systems XVII, San Diego, CA, USA, 13–16 August 2012. [Google Scholar]
- Zhang, G.; Wang, J.; Jiang, Y.; Zhou, P.; Zhao, Y.; Xu, Y. On-Orbit Geometric Calibration and Validation of Luojia 1-01 Night-Light Satellite. Remote Sens. 2019, 11, 264. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.-C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia Pac. Adv. Netw. 2013, 35, 62. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xu, H.; Chen, X.; Li, C. Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China. Remote Sens. 2013, 5, 3057–3081. [Google Scholar] [CrossRef]
- Small, C.; Elvidge, C.D.; Baugh, K. Mapping urban structure and spatial connectivity with VIIRS and OLS night light imagery. In Proceedings of the Urban Remote Sensing Event, Sao Paulo, Brazil, 21–23 April 2013. [Google Scholar]
- Li, X.; Elvidge, C.; Zhou, Y.; Cao, C.; Warner, T. Remote Sensing of Night-Time Light; Taylor & Francis: Boca Raton, FL, USA, 2017. [Google Scholar]
- Zhao, N.; Hsu, F.-C.; Cao, G.; Samson, E.L. Improving accuracy of economic estimations with VIIRS DNB image products. Int. J. Remote Sens. 2017, 38, 5899–5918. [Google Scholar] [CrossRef]
- Osgood, D.W. Poisson-based regression analysis of aggregate crime rates. J. Quant. Criminol. 2000, 16, 21–43. [Google Scholar] [CrossRef]
- James, A.; Smith, B. There will be blood: Crime rates in shale-rich US counties. J. Environ. Econ. Manag. 2017, 84, 125–152. [Google Scholar] [CrossRef]
- Peterson, R.D.; Krivo, L.J.; Harris, M.A. Disadvantage and neighborhood violent crime: Do local institutions matter? J. Res. Crime Delinq. 2000, 37, 31–63. [Google Scholar] [CrossRef]
- Danzinger, S. Explaining urban crime rates. Criminology 1976, 14, 291. [Google Scholar] [CrossRef]
- Haberman, C.P.; Ratcliffe, J.H. Testing for temporally differentiated relationships among potentially criminogenic places and census block street robbery counts. Criminology 2015, 53, 457–483. [Google Scholar] [CrossRef]
- Braungart, M.M.; Braungart, R.G.; Hoyer, W.J. Age, sex, and social factors in fear of crime. Sociol. Focus 1980, 13, 55–66. [Google Scholar] [CrossRef]
- Gibson, C.L.; Zhao, J.; Lovrich, N.P.; Gaffney, M.J. Social integration, individual perceptions of collective efficacy, and fear of crime in three cities. Justice Q. 2002, 19, 537–564. [Google Scholar] [CrossRef]
- Hilbe, J.M. Negative Binomial Regression; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Nelder, J.A.; Wedderburn, R.W. Generalized linear models. J. R. Stat. Soc. Ser. A 1972, 135, 370–384. [Google Scholar] [CrossRef]
- McCullagh, P. Generalized Linear Models; Routledge: London, UK, 2019. [Google Scholar]
- Cameron, A.C.; Trivedi, P.K. Regression Analysis of Count Data; Cambridge University Press: Cambridge, UK, 2013; Volume 53. [Google Scholar]
Types of Areas | Nightlight Pixel Values | Sharp Level of Composite Edges |
---|---|---|
Areas within CBD or UC | Super high surrounded by high | Moderate |
Areas within residential areas | Moderate surrounded by moderate | Low |
Areas within parks or rivers | Low surrounded by low | Low |
Areas along the edges of CBD or UC | High surrounded by low | High |
Areas along the edges of residential areas | Moderate surrounded by low | Moderate |
Areas along the edges of parks or rivers | Low surrounded by moderate | Moderate |
Analysis Unit | Mean Area (km2) | Between (Variance of Mean) | Within (Mean of Variance) | Unit Amount |
---|---|---|---|---|
Tract | 1.80 | 3.91 | 0.81 | 114 |
Variables | Description |
---|---|
Dependent | All variables are at Tract Level |
Street Robbery Rate | Counts of reported street robberies per 1000 people |
Burglary Rate | Counts of reported burglaries per 1000 people |
Independent | All variables are at Tract Level |
Nightlight Gradient | Mean of nightlight gradient values |
Vacancy Rate | Percentage of vacant buildings among all buildings |
Rental Rate | Percentage of rental buildings among occupied buildings |
African-American Rate | Percentage of the African-American population among total population |
Household Income (Log) | The natural logarithm of the median household income |
Advanced Degree Level | Percentage of population with bachelor’s degree or higher degree among population aged 25 or more |
Young Male Rate | Percentage of 18 to 29 male among total population |
Variables | Minimum | Maximum | Mean | Standard Deviation | VIF |
---|---|---|---|---|---|
Dependent | |||||
Street Robbery Rate | 0 | 50 | 9.32 | 9.68 | |
Burglary Rate | 0 | 158 | 30.03 | 24.61 | |
Independent | |||||
Nightlight Gradient | 0.32 | 11.48 | 1.75 | 1.98 | 1.78 |
Vacancy Rate | 0.02 | 0.71 | 0.22 | 0.13 | 2.25 |
Rental Rate | 0.10 | 1.00 | 0.59 | 0.21 | 4.03 |
African-American Rate | 0.00 | 0.95 | 0.42 | 0.30 | 2.42 |
Household Income (Log) | 8.92 | 11.60 | 10.37 | 0.55 | 5.80 |
Advanced Degree Level | 0.03 | 0.83 | 0.30 | 0.21 | 2.42 |
Young Male Rate | 0.01 | 0.50 | 0.11 | 0.09 | 1.76 |
Variables | Incident Rate Ratios (IRRs) | |||
---|---|---|---|---|
Street Robbery Rate | Burglary Rate | |||
Model 1 | Model 2 | Model 3 | Model 4 | |
Nightlight Gradient | 1.11 ** | 0.90 *** | ||
Vacancy Rate | 55.85 *** | 22.82 *** | 1.05 | 2.20 |
Rental Rate | 13.23 *** | 5.02 * | 0.74 | 1.16 |
African-American Rate | 2.32 * | 2.14 * | 1.14 | 1.17 |
Household Income (Log) | 1.39 | 1.04 | 0.53 ** | 0.61 ** |
Advanced Degree Level | 0.29 * | 0.12 ** | 0.38** | 0.48 * |
Young Male Rate | 20.60 ** | 21.21 ** | 4.94* | 5.92 ** |
(Constant) | 0.00 | 0.19 | 9423.42 *** | 1483.40 *** |
Alpha | 0.20 | 0.17 | 0.10 | 0.08 |
Prob > = chi2 | 0.00 | 0.00 | 0.00 | 0.00 |
AIC | 450.10 | 445.77 | 667.33 | 657.93 |
Variables | Street Robbery Rate | Burglary Rate | ||||
---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2012 | 2013 | 2014 | |
IRR of Nightlight Gradient | 1.11 ** | 1.41 *** | 1.24 *** | 0.90 *** | 0.88 ** | 0.95 * |
AIC Reduction | Yes (450.10 > 445.77) | Yes (464.36 > 442.80) | Yes (435.96 > 421.99) | Yes (667.33 > 657.93) | Yes (709.73 > 707.21) | Yes (662.57 > 661.15) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Liu, L.; Lan, M.; Yang, B.; Wang, Z. Assessing the Impact of Nightlight Gradients on Street Robbery and Burglary in Cincinnati of Ohio State, USA. Remote Sens. 2019, 11, 1958. https://doi.org/10.3390/rs11171958
Zhou H, Liu L, Lan M, Yang B, Wang Z. Assessing the Impact of Nightlight Gradients on Street Robbery and Burglary in Cincinnati of Ohio State, USA. Remote Sensing. 2019; 11(17):1958. https://doi.org/10.3390/rs11171958
Chicago/Turabian StyleZhou, Hanlin, Lin Liu, Minxuan Lan, Bo Yang, and Zengli Wang. 2019. "Assessing the Impact of Nightlight Gradients on Street Robbery and Burglary in Cincinnati of Ohio State, USA" Remote Sensing 11, no. 17: 1958. https://doi.org/10.3390/rs11171958
APA StyleZhou, H., Liu, L., Lan, M., Yang, B., & Wang, Z. (2019). Assessing the Impact of Nightlight Gradients on Street Robbery and Burglary in Cincinnati of Ohio State, USA. Remote Sensing, 11(17), 1958. https://doi.org/10.3390/rs11171958