Detection of Shelterbelt Density Change Using Historic APFO and NAIP Aerial Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Digitizing Historic Panchromatic Imagery
2.3. Geographic Object-Based Image Analysis of National Agriculture Imagery Program Imagery
2.4. Geographic-Object-Based Image Analysis for Change Detection
2.5. Change Detection Accuracy Assessment
2.6. Examining Shelterbelt Density Change and Spatial Patterns in GFC
3. Results
3.1. Shelterbelt Density
3.2. Shelterbelt Density and Soil Alkalinity
3.3. Shelterbelt Density and Surface Geology
3.4. Shelterbelt Ownership
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Measured Polygon Area | Approximated Length | |||||||
---|---|---|---|---|---|---|---|---|
Year | Min (m2) | Max (m2) | Mean (m2) | St. Dev. (m2) | Min (m) | Max (m) | Mean (m) | St. Dev. (m) |
1962 | 50.3 | 129,227.3 | 8758.6 | 10,615.9 | 11.4 | 1730.9 | 450.9 | 315.5 |
2014 | 50.0 | 92,130.0 | 8907.2 | 9634.6 | 10.3 | 1788.6 | 436.2 | 296.6 |
2016 | 50.0 | 92,130.0 | 9011.6 | 9692.2 | 10.3 | 1763.6 | 440.1 | 296.8 |
References
- Govers, G.; Merckx, R.; Van Wesemael, B.; Van Oost, K. Soil conservation in the 21st century: Why we need smart agricultural intensification. Soil 2017, 3, 45–59. [Google Scholar] [CrossRef]
- United Nations. World Population Prospects: The 2015 Revision; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Lee, J.A.; Gill, T.E. Multiple causes of wind erosion in the Dust Bowl. Aeolian Res. 2015, 19, 15–36. [Google Scholar] [CrossRef]
- Lockeretz, W. The Lessons of the Dust Bowl: Several decades before the current concern with environmental problems, dust storms ravaged the Great Plains, and the threat of more dust storms still hangs over us. Am. Sci. 2013, 66, 560–569. [Google Scholar]
- Tibke, G. Basic Principles of Wind Erosion Control. Agric. Ecosyst. Environ. 1988, 22, 103–122. [Google Scholar] [CrossRef]
- FAO and ITPS. Status of the World’s Soil Resources (SWSR)—Main Report; FAO and ITPS: Rome, Italy, 2015. [Google Scholar]
- Brandle, J.R.; Hodges, L.; Zhou, X.H. Windbreaks in North American Agricultural Systems Windbreaks in North American Agricultural Systems. Agrofor. Syst. 2004, 61, 65–78. [Google Scholar]
- Gardner, R. Trees as technology: Planting shelterbelts on the Great Plains. Hist. Technol. 2009, 25, 325–341. [Google Scholar] [CrossRef]
- Kort, J. Benefits of Windbreaks to Field and Forage Crops. Agric. Ecosyst. Environ. 1988, 22, 165–190. [Google Scholar] [CrossRef]
- Mize, C.W.; Brandle, J.R.; Schoeneberger, M.M.; Bentrup, G. Ecological Development and Function of Shelterbelts in Temperate North America BT—Toward Agroforestry Design: An Ecological Approach. Towar. Agrofor. Des. An Ecol. Approach 2008, 4, 27–54. [Google Scholar] [CrossRef]
- Schaefer, B.P.R.; Dronen, S.; Erickson, D. Windbreaks: A Plains legacy in decline. J. Soil Water Conserv. 1987, 42, 237–238. [Google Scholar]
- Baltensperger, B.H. Hedgerow distribution and removal in nonforested regions of the Midwest. J. Soil Water Conserv. 1987, 42, 60–64. [Google Scholar]
- Knutson, J. Shelterbelts: Relic or Useful Tools? Available online: https://www.agweek.com/business/agriculture/3788961-shelterbelts-relic-or-useful-tools (accessed on 6 March 2015).
- Franzen, D. Exit Tree Rows, Enter Soil Loss. Available online: http://www.ag.ndsu.edu/cpr/soils/exit-tree-rows-enter-soil-loss-05-23-13 (accessed on 6 March 2015).
- Wachenheim, C. Spotlight on Economics: A Changing Paradigm for Conservation Decisions. Available online: http://www.ag.ndsu.edu/news/columns/spotlight-on-economics/spotlight-oneconomics-a-changing-paradigm-for-conservation-decisions (accessed on 11 November 2014).
- Knutson, J. Conservation officials recommend windbreaks.
- Tonneson, L. Shelterbelt Surprise -Taking Them Out Is Really about Dollars. Available online: http://farmprogress.com/ story-shelterbelt-surprise-taking-really-do llars-9-113 646 (accessed on 6 March 2015).
- Donovan, L. New Grant Helps Land Owners Replace Tree Rows, Shelterbelts. Available online: https://www.grandforksherald.com/news/3779596-new-grant-helps-land-owners-replace-tree-rows-shelterbelts (accessed on 6 July 2016).
- Todhunter, P.E.; Cihacek, L.J. Historical reduction of airborne dust in the Red River Valley of the North. J. Soil Water Conserv. 1999, 54, 543–551. [Google Scholar]
- Burke, M.W.V. Shelterbelt Density Dynamics and Their Driving Forces in Grand Forks County, North Dakota, 1962 to 2014; University of North Dakota: Grand Forks, ND, USA, 2016. [Google Scholar]
- Wiseman, G.; Kort, J.; Walker, D. Quantification of shelterbelt characteristics using high-resolution imagery. Agric. Ecosyst. Environ. 2009, 131, 111–117. [Google Scholar] [CrossRef]
- Pankiw, J.; Piwowar, J. Seasonality of imagery: The impact on object-based classification accuracy of shelterbelts. Prairie Perspect. Geogr. Essays 2010, 13, 39–48. [Google Scholar]
- Czerepowicz, L.; Case, B.S.; Doscher, C. Using satellite image data to estimate aboveground shelterbelt carbon stocks across an agricultural landscape. Agric. Ecosyst. Environ. 2012, 156, 142–150. [Google Scholar] [CrossRef]
- Meneguzzo, D.M.; Liknes, G.C.; Nelson, M.D. Mapping trees outside forests using high-resolution aerial imagery: A comparison of pixel- and object-based classification approaches. Environ. Monit. Assess. 2013, 185, 6261–6275. [Google Scholar] [CrossRef] [PubMed]
- Pankiw, J. The Use of Object-Based Classification of High Resolution Panchromatic Satellite Imagery for the Inventory of Shelterbelts in the Province of Saskatchewan. Mater’s Thesis, University of Regina, Regina, SK, Canada, 2013. [Google Scholar]
- Ghimire, K.; Dulin, M.W.; Atchison, R.L.; Goodin, D.G.; Hutchinson, J.M.S. Identification of windbreaks in Kansas using object-based image analysis, GIS techniques and field survey. Agrofor. Syst. 2014, 88, 865–875. [Google Scholar] [CrossRef] [Green Version]
- U.S. Census Bureau Annual Estimates of the Resident Population: April 1, 2010 to July 1, 2017. Available online: https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk (accessed on 11 July 2018).
- U.S. Department of Agriculture. U.S. Census of Agriculture, County Summary Highlights: 2012; U.S. Department of Agriculture: Washington, DC, USA, 2012.
- Stoner, J.D.; Lorenz, D.L.; Wiche, G.J.; Goldstein, R.M. Red River of the North Basin, Minnesota, North Dakota, and South Dakota. JAWRA J. Am. Water Resour. Assoc. 1993, 29, 575–615. [Google Scholar] [CrossRef]
- Lister, A.J.; Scott, C.T.; Rasmussen, S. Inventory methods for trees in nonforest areas in the great plains states. Environ. Monit. Assess. 2012, 184, 2465–2474. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture Quick Stats. Available online: https://quickstats.nass.usda.gov/results/42BA80E4-E258-3568-85C6-2F8BFB9E8125 (accessed on 11 July 2018).
- Tuskan, G.A.; Laughlin, K. Windbreak species performance and management practices as reported by Montana and North Dakota landowners. J. Soil Water Conserv. 1991, 46, 225–228. [Google Scholar]
- Redmann, R.E. Plant communities and soils of an eastern North Dakota prairie. Bull. Torrey Bot. Club 1972, 99, 65–76. [Google Scholar] [CrossRef]
- Grand Forks County Soil Conservation District Tree Descriptions for Spring 2017 List. Available online: https://gfscd.org/wp-content/uploads/2017/11/TREE-DESCRIPTIONS-FOR-SPRING-2017-LIST.pdf (accessed on 13 December 2018).
- Hay, G.J.; Castilla, G. Geographic object-based image analysis (GEOBIA ): A new name for a new discipline. Lect. Notes Geoinf. Cartogr. 2008, 75–89. [Google Scholar] [CrossRef]
- U.S. Geological Survey the Public Land Survey System (PLSS). Available online: https://nationalmap.gov/small_scale/a_plss.html (accessed on 10 December 2018).
- Brandle, J.R.; Hintz, D.L.; Sturrock, J.W. Windbreak Technology: Proceedings of an Internaitonal Symposium on Windbreak Technology, Lincoln, Nebraska, 23–27 June 1986; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1988; Volume 23. [Google Scholar]
- Hussain, G.; Sadiq, M.; Nabulsi, Y.A.; Helweg, O.J. Effect of saline water on establishment of windbreak trees. Agric. Water Manag. 1994, 25, 35–43. [Google Scholar] [CrossRef]
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An introduction to spatial data analysis. Geogr. Anal. 2006, 38, 5–22. [Google Scholar] [CrossRef]
- Herberich, E.; Sikorski, J.; Hothorn, T. A robust procedure for comparing multiple means under heteroscedasticity in unbalanced designs. PLoS ONE 2010, 5, e9788. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture, F.S.A. Common Land Unit (CLU). Available online: https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-products/common-land-unit-clu/index (accessed on 12 November 2018).
- Knutson, J. ND Nursery Copes with Declining Shelterbelt Sales. Available online: http://www.agweek.com/event!article/id/24031/publisher _ ID/80/ (accessed on 6 March 2015).
- Chepil, W.S. Factors that influence clod structure and erodibility of soil by wind: IV. Sand, silt, and clay. Soil Sci. 1955, 80, 155–162. [Google Scholar] [CrossRef]
- United States Department of Agriculture Conservation Reserve Program. Available online: https://www.fsa.usda.gov/programs-and-services/conservation-programs/conservation-reserve-program/ (accessed on 30 October 2018).
- U.S. Department of Agriculture, F.S.A. CRP Practices Library. Available online: https://www.fsa.usda.gov/programs-and-services/conservation-programs/crp-practices-library/index (accessed on 13 December 2018).
- Wright, C.K.; Wimberly, M.C. Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proc. Natl. Acad. Sci. USA 2013, 110, 4134–4139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macdonald, J.M.; Korb, P.; Hoppe, R.A. Farm Size and the Organization of U.S. Crop Farming, 2013.
- Fernandez-Cornejo, J.; Nehring, R.; Osteen, C.; Wechsler, S.; Martin, A.; Vialou, A. Pesticide Use in US Agriculture: 21 Selected Crops, 1960–2005; Economic Research Service: Washington, DC, USA, 2014. [Google Scholar]
Was a Shelterbelt in: | Count out of 500: | |||
---|---|---|---|---|
1962 | 2014 | 2016 | Accurate | Error |
Yes | Yes | Yes | NA | 15 |
Yes | Yes | No | 2 | NA |
Yes | No | Yes | 0 | NA |
Yes | No | No | 64 | NA |
No | Yes | Yes | 404 | NA |
No | Yes | No | 8 | NA |
No | No | Yes | 0 | NA |
No | No | No | NA | 7 |
Sum | 478/500 | 22/500 | ||
% | 95.6% | 4.4% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burke, M.W.V.; Rundquist, B.C.; Zheng, H. Detection of Shelterbelt Density Change Using Historic APFO and NAIP Aerial Imagery. Remote Sens. 2019, 11, 218. https://doi.org/10.3390/rs11030218
Burke MWV, Rundquist BC, Zheng H. Detection of Shelterbelt Density Change Using Historic APFO and NAIP Aerial Imagery. Remote Sensing. 2019; 11(3):218. https://doi.org/10.3390/rs11030218
Chicago/Turabian StyleBurke, Morgen W.V., Bradley C. Rundquist, and Haochi Zheng. 2019. "Detection of Shelterbelt Density Change Using Historic APFO and NAIP Aerial Imagery" Remote Sensing 11, no. 3: 218. https://doi.org/10.3390/rs11030218
APA StyleBurke, M. W. V., Rundquist, B. C., & Zheng, H. (2019). Detection of Shelterbelt Density Change Using Historic APFO and NAIP Aerial Imagery. Remote Sensing, 11(3), 218. https://doi.org/10.3390/rs11030218