PS-InSAR Analysis of Sentinel-1 Data for Detecting Ground Motion in Temperate Oceanic Climate Zones: A Case Study in the Republic of Ireland
Abstract
:1. Introduction
2. Ground Motion in Ireland
3. Study Areas
4. Data and Methods
- Image importation: the Single Look Complex (SLC) images comprising radar amplitude and phase information in vertical co-polarization (VV) are imported; the corrections related to the satellites position are made by using precise orbit files (Precise Orbit State Vectors for ENVISAT and Precise Orbit Ephemerides for Sentinel-1, both provided by the European Space Agency (ESA).
- Connection graph generation: all the images are connected to a master image (selected to minimize the spatial and temporal baselines across the dataset) (Figure 6) in order to obtain the pairs that will be analyzed in the next steps.
- Interferometric processing: the images are co-registered to the geometry of the master image; the interferograms are then generated by pixel-wise subtraction of the phase information in each image. The phase difference due to the topography is removed by using the Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) (1 arc second, ~30 m × 30 m resolution) [50]. The remaining phase difference predominantly relates to ground displacement and atmospheric effects.
- PSs identification: the point target candidates are identified by considering the Amplitude Dispersion Index (ADI), which is defined as the ratio between the standard deviation and the mean of the amplitude values of a pixel [1]. Pixels with low ADI in all acquisitions are selected as PSs.
- First inversion: in this step, the phase components related to the topographic residuals and to the displacement velocity are calculated by using a linear velocity model and are then removed from the interferograms. The coherence (i.e., the measure of decorrelation due to temporal and geometric degradation [51]) and elevation of the image pixels are also calculated.
- Second inversion: the atmospheric phase components are estimated using the products of the linear model calculated in the previous step and are subtracted from the interferograms by using high-pass (365 days) and low-pass (1200 m) filters. The PSs with coherence values lower than 0.75 are discarded. Considering such parameters, the precision of the measured velocities was calculated to be in the 0.06–0.39 mm/year range. The precision is calculated with the following formula (after [52]):
- Geocoding: the final interferometric products are geocoded into the WGS 84 UTM zone 29N projected coordinate system and exported as shape or raster files for the post-processing analyses.
5. Results for AOI-1
5.1. Anthropic Instabilities in AOI-1
5.1.1. Urban Areas
5.1.2. Motorway and Railway Infrastructure
5.2. Natural Instabilities in AOI-1
5.2.1. Landslides/Slope Instabilities
5.2.2. Peatlands
6. Results for AOI-2
7. Discussion
7.1. Feasibility of Sentinel-1 PS-InSAR for Ground-Motion Detection in Ireland
7.2. InSAR-Detected Ground Motions in Ireland (AOI-1 and AOI-2)
8. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Mora, O.; Mallorqui, J.J.; Broquetas, A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2243–2253. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, T. Repeat-Pass SAR Interferometry With Partially Coherent Targets. IEEE Trans. Geosci. Remote Sens. 2012, 50, 271–280. [Google Scholar] [CrossRef]
- Sowter, A.; Bateson, L.; Strange, P.; Ambrose, K.; Syafiudin, M.F. DInSAR estimation of land motion using intermittent coherence with application to the South Derbyshire and Leicestershire coalfields. Remote Sens. Lett. 2013, 4, 979–987. [Google Scholar] [CrossRef]
- Devanthery, N.; Crosetto, M.; Monserrat, O.; Cuevas-Gonzalez, M.; Crippa, B. An Approach to Persistent Scatterer Interferometry. Remote Sens. 2014, 6, 6662–6679. [Google Scholar] [CrossRef]
- Bekaert, D.P.S.; Walters, R.J.; Wright, T.J.; Hooper, A.J.; Parker, D.J. Statistical comparison of InSAR tropospheric correction techniques. Remote Sens. Environ. 2015, 170, 40–47. [Google Scholar] [CrossRef]
- Alipour, S.; Motgah, M.; Sharifi, M.A.; Walter, T.R. InSAR time series investigation of land subsidence due to groundwater overexploitation in Tehran, Iran. In Proceedings of the Second Workshop on Use of Remote Sensing Techniques for Monitoring Volcanoes and Seismogenic Areas, Naples, Italy, 11–14 November 2008; pp. 1–5. [Google Scholar]
- Karimzadeh, S. Characterization of land subsidence in Tabriz basin (NW Iran) using InSAR and watershed analyses. Acta Geod. Geophys. 2016, 51, 181–195. [Google Scholar] [CrossRef]
- Lazecky, M.; Canaslan Comut, F.; Nikolaeva, E.; Bakon, M.; Papco, J.; Ruiz-Armenteros, A.M.; Qin, Y.; de Sousa, J.J.M.; Ondrejka, P. Potential of Sentinel-1A for nation-wide routine updates of active landslides maps. In Proceedings of the XXIII ISPRS Congress, Prague, Czech Republic, 12–19 July 2016. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Koppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Palle, E.; Butler, C.J. Sunshine records from Ireland: Cloud factors and possible links to solar activity and cosmic rays. Int. J. Climatol. 2001, 21, 709–729. [Google Scholar] [CrossRef]
- Walsh, S. A Summary of Climate Averages for Ireland, 1981–2010. Available online: https://www.met.ie/climate-ireland/SummaryClimAvgs.pdf (accessed on 8 February 2019).
- Lydon, K.; Smith, G. CORINE Landcover 2012, Ireland, Final Report. Available online: http://www.epa.ie/pubs/data/corinedata/ (accessed on 8 February 2019).
- Sheehy, M. PanGeo D7.1.25: Geohazard Description for Dublin. Available online: https://www.gsi.ie/en-ie/publications/Pages/PanGeo-Geohazard-Description-for-Dublin.aspx (accessed on 8 February 2019).
- Sheehy, M. PanGeo D7.1.25: Geohazard Description for Cork. Available online: http://spatial.dcenr.gov.ie/GSI_DOWNLOAD/Geohazard-Description-cork.pdf (accessed on 8 February 2019).
- Cigna, F.; Banks, V.J.; Donald, A.W.; Donohue, S.; Graham, C.; Hughes, D.; McKinley, J.M.; Parker, K. Mapping Ground Instability in Areas of Geotechnical Infrastructure Using Satellite InSAR and Small UAV Surveying: A Case Study in Northern Ireland. Geosciences 2017, 7. [Google Scholar] [CrossRef]
- Drew, D.P. Hydrogeology of lowland karst in Ireland. Q. J. Eng. Geol. Hydroge. 2008, 41, 61–72. [Google Scholar] [CrossRef]
- Hickey, C. The Use of Multiple Techniques for Conceptualisation of Lowland Karst, a Case Study from County Roscommon, Ireland. Acta Carsol. 2010, 39, 331–346. [Google Scholar] [CrossRef]
- Long, M.; Jennings, P.; Carroll, R. Irish peat slides 2006–2010. Landslides 2011, 8, 391–401. [Google Scholar] [CrossRef]
- Irish Landslides Working Group. Landslides in Ireland. 2006. Available online: https://www.gsi.ie/documents/Landslides_in_Ireland_2006.pdf (accessed on 9 February 2019).
- Jennings, P.; Kane, G. Geotechnical Engineering for Wind Farms on Peatland Sites. Available online: https://www.icevirtuallibrary.com/doi/abs/10.1680/ecsmge.60678.vol2.072 (accessed on 8 February 2019).
- Barry, T.A. Origins and distribution of peat-types in the bogs of Ireland. Irish For. 1969, 26, 40–52. [Google Scholar]
- Hammond, R.F. The classification of Irish peats as surveyed by the National Survey of Ireland. In Proceedings of the 7th International Peat Congress, Dublin, Ireland, 18–23 June 1984; pp. 168–187. [Google Scholar]
- Renou, F.; Egan, T.; Wilson, D. Tomorrow’s landscapes: Studies in the after-uses of industrial cutaway peatlands in Ireland. Suoseura—Finn. Peatl. Soc. 2006, 57, 97–107. Available online: http://www.ucd.ie/bogland/Renou_et_al_2006.pdf (accessed on 8 February 2019).
- Renou, F.; Farrell, E.P. Reclaiming peatlands for forestry: The Irish experience. In Restoration of Boreal and Temperate Forests; Stanturf, J.A., Madsen, P., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 541–557. [Google Scholar]
- Conaghan, J.; Douglas, C.; Grogan, H.; O’Sullivan, A.; Kelly, L.; Garvey, L.; Van Doorslaer, L.; Scally, L.; Dunnells, D.; Wyse Jackson, M.; et al. Distribution, Ecology and Conservation of Blanket Bog in Ireland (A Synthesis of the Reports of the Blanket Bog Surveys Carried out between 1987 and 1991 by the National Parks & Wildlife Service. Available online: https://www.npws.ie/content/publications/distribution-ecology-and-conservation-blanket-bog-ireland (accessed on 8 February 2019).
- Creamer, R.; O’Sullivan, L. The Soils of Ireland; Springer: Yew York, NY, USA, 2018. [Google Scholar]
- Carey, M.L.; Hammond, R.F.; McCarthy, R. Plantation Forestry on Cutaway Raised Bogs and Fen Peats in the Republic of Ireland. Available online: https://journal.societyofirishforesters.ie/index.php/forestry/article/view/9573 (accessed on 8 February 2019).
- Drew, D.P.; Burke, A.M.; Daly, D. Assessing the extent and degree of karstification in Ireland. In Proceedings of the International Conference on Karst Fractured Aquifers-Vulnerability and Sustainability, University of Silesia, Katowice-Ustron, Poland, 10–13 June 1996; pp. 37–47. [Google Scholar]
- Waltham, T. Sinkhole hazard case histories in karst terrains. Q. J. Eng. Geol. Hydroge. 2008, 41, 291–300. [Google Scholar] [CrossRef]
- Rutty, P.; Jennings, P. Investigation, design & construction in karts. In Proceedings of the Engineers Ireland, Geotechnical Society of Ireland, Geotechnics on Irish Roads, 2000–2010, Portlaoise, Ireland, 11 October 2012. [Google Scholar]
- Ordnance Survey Ireland. Available online: https://www.osi.ie (accessed on 9 February 2019).
- McGreal, W.S. Marine Erosion of Glacial Sediments from a Low-Energy Cliffline Environment near Kilkeel, Northern-Ireland. Mar. Geol. 1979, 32, 89–103. [Google Scholar] [CrossRef]
- McGreal, W.S. Cliffline recession near Kilkeel. N Ireland: An example of a dynamic coastal system. Geografiska Annaler 1979, 61A, 211–219. [Google Scholar] [CrossRef]
- Devoy, R.J.N. Coastal vulnerability and the implications of sea-level rise for Ireland. J. Coast. Res. 2008, 24, 325–341. [Google Scholar] [CrossRef]
- Cox, R.; Jahn, K.L.; Watkins, O.G.; Cox, P. Extraordinary boulder transport by storm waves (west of Ireland, winter 2013–2014), and criteria for analysing coastal boulder deposits. Earth Sci. Rev. 2018, 177, 623–636. [Google Scholar] [CrossRef]
- Cooper, J.A.G.; Boyd, S.W. Case Study Ireland: Coastal Tourism and Climate Change in Ireland. Available online: https://www.cabdirect.org/cabdirect/abstract/20173364150 (accessed on 8 February 2019).
- Joyce, K.E.; Samsonov, S.V.; Levick, S.R.; Engelbrecht, J.; Belliss, S. Mapping and monitoring geological hazards using optical, LiDAR, and synthetic aperture RADAR image data. Nat. Hazard. 2014, 73, 137–163. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-Gonzalez, M.; Devanthery, N.; Crippa, B. Persistent Scatterer Interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Williams, P.W. Limestone morphology in Ireland. In Irish Geographical Studies; Stephens, N., Glasscock, R.E., Eds.; Queen’s University: Belfast, UK, 1970; pp. 105–124. [Google Scholar]
- Ashton, J.H.; Blakeman, R.J.; Geraghty, J.F.; Beach, A.; Coller, D.; Philcox, M.; Boyce, A.; Wilkinson, J. The Giant Navan Carbonate-Hosted Zn-Pb Deposit—A Review. Available online: https://www.researchgate.net/profile/Jamie_Wilkinson/publication/280314983_The_Giant_Navan_Carbonate-Hosted_Zn-Pb_Deposit_-_A_Review/links/55b2127d08aed621ddfd80a4/The-Giant-Navan-Carbonate-Hosted-Zn-Pb-Deposit-A-Review.pdf (accessed on 8 February 2019).
- Ashton, J.H.; Downing, D.T.; Finlay, S. The geology of the Navan Zn-Pb orebody. In Geology and Genesis of Mineral Deposits in Ireland; Andrews, C.J., Crowe, R.W.A., Finlay, S., Pennell, W.M., Pyne, J.F., Eds.; Irish Association of Economic Geology: Dublin, Ireland, 1986. [Google Scholar]
- Strogen, P.; Jones, G.L.; Somerville, I.D. Stratigraphy and Sedimentology of Lower Carboniferous (Dinatian) Boreholes from West Co Meath, Ireland. Geol. J. 1990, 25, 103–137. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- USGS. Shuttle Radar Topography Mission, 1 Arc Second Scene; Global Land Cover Facility, University of Maryland: College Park, MD, USA, 2013. [Google Scholar]
- Zebker, H.A.; Villasenor, J. Decorrelation in Interferometric Radar Echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
- Bamler, R.; Just, D. Phase statistics and decorrelation in SAR interferograms. In Proceedings of the Geoscience and Remote Sensing Symposium, IGARSS, Tokyo, Japan, 18–21 August 1993; pp. 980–984. [Google Scholar]
- Pepe, A.; Calo, F. A Review of Interferometric Synthetic Aperture RADAR (InSAR) Multi-Track Approaches for the Retrieval of Earth’s Surface Displacements. Appl. Sci. 2017, 7. [Google Scholar] [CrossRef]
- Geological Survey Ireland. Available online: https://www.gsi.ie/en-ie/data-and-maps (accessed on 9 February 2019).
- Environmental Protection Agency. Available online: http://gis.epa.ie (accessed on 9 February 2019).
- Transport Infrastructure Ireland. Available online: https://data.gov.ie (accessed on 9 February 2019).
- North, M.; Farewell, T.; Hallett, S.; Bertelle, A. Monitoring the Response of Roads and Railways to Seasonal Soil Movement with Persistent Scatterers Interferometry over Six UK Sites. Remote Sens. 2017, 9. [Google Scholar] [CrossRef]
- Hanssen, R.F.; van Leijen, F.J.; van Zwieten, G.J.; Bremmer, C.; Dortland, S.; Kleuskens, M. Validation of Existing Processing Chains in TerraFirma Stage 2. Available online: http://www.pangeoproject.eu/sites/default/files/pangeo_other/TF_Validation_Project_Final_Report_23rd_May_2008.pdf (accessed on 8 February 2019).
- Irish Coast Guard. Available online: www.coastalhelicopterview.ie (accessed on 9 February 2019).
- Met Éireann Forecast. Available online: www.met.ie (accessed on 9 February 2019).
- Nahli, A.; Simonetto, E.; Merrien-Soukatchoff, V.; Durand, F.; Rangeard, D. Sentinel-1 for Monitoring Tunnel Excavations in Rennes, France. Available online: https://www.sciencedirect.com/science/article/pii/S1877050918316892 (accessed on 8 February 2019).
- Bateson, L.; Cigna, F.; Boon, D.; Sowter, A. The application of the Intermittent SBAS (ISBAS) InSAR method to the South Wales Coalfield, UK. Int. J. Appl. Earth Obs. 2015, 34, 249–257. [Google Scholar] [CrossRef]
- Alshammari, L.; Large, D.J.; Boyd, D.S.; Sowter, A.; Anderson, R.; Anderson, R.; Marsh, S. Long-Term Peatland Condition Assessment via Surface Motion Monitoring Using the ISBAS DInSAR Technique over the Flow Country, Scotland. Remote Sens. 2018, 10. [Google Scholar] [CrossRef]
- Farkas, P.; Grenerczy, G. Sentinel-1 PSI Analysis of Greater Budapest Region. In Proceedings of the H-SPACE 2018, 4th International Conference on Research, Technology and Education of Space, Budapest, Hungary, 15–6 February 2018. [Google Scholar]
- Bakon, M.; Perissin, D.; Lazecky, M.; Papco, J. Infrastructure Non-linear Deformation Monitoring Via Satellite Radar Interferometry. Procedia Technol. 2014, 16, 294–300. [Google Scholar] [CrossRef]
- Tang, W.; Liao, M.S.; Yuan, P. Atmospheric correction in time-series SAR interferometry for land surface deformation mapping–A case study of Taiyuan, China. Adv. Space Res. 2016, 58, 310–325. [Google Scholar] [CrossRef]
- Novellino, A.; Cigna, F.; Brahmi, M.; Sowter, A.; Bateson, L.; Marsh, S. Assessing the feasibility of a national InSAR ground deformation map of Great Britain with Sentinel-1. Geosciences 2017, 7. [Google Scholar] [CrossRef]
- McKeon, C. Geological Survey Ireland, National Landslide Susceptibility Mapping Project Summary 2016. Available online: https://www.gsi.ie/documents/National_Sus_Map_Summary_FINAL_NEW.pdf (accessed on 9 February 2019).
- Takada, M.; Mishima, Y.; Natsume, S. Estimation of surface soil properties in peatland using ALOS/PALSAR. Landsc. Ecol. Eng. 2009, 5, 45–58. [Google Scholar] [CrossRef]
- Loisel, J.; Gallego-Sala, A.V.; Yu, Z. Global-scale pattern of peatland Sphagnum growth driven by photosynthetically active radiation and growing season length. Biogeosciences 2012, 9, 2737–2746. [Google Scholar] [CrossRef]
- Reddish, D.J.; Whittaker, B.N. Subsidence Occurrence, Prediction and Control; Elsevier: Amsterdam, The Netherland, 1989; Volume 56. [Google Scholar]
- Boliden Tara Mines Limited. Extension of Mining Operations into New Areas in Liscartan and Rathaldron. Available online: http://www.epa.ie/licences/lic_eDMS/090151b28043520e.pdf (accessed on 8 February 2019).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiaschi, S.; Holohan, E.P.; Sheehy, M.; Floris, M. PS-InSAR Analysis of Sentinel-1 Data for Detecting Ground Motion in Temperate Oceanic Climate Zones: A Case Study in the Republic of Ireland. Remote Sens. 2019, 11, 348. https://doi.org/10.3390/rs11030348
Fiaschi S, Holohan EP, Sheehy M, Floris M. PS-InSAR Analysis of Sentinel-1 Data for Detecting Ground Motion in Temperate Oceanic Climate Zones: A Case Study in the Republic of Ireland. Remote Sensing. 2019; 11(3):348. https://doi.org/10.3390/rs11030348
Chicago/Turabian StyleFiaschi, Simone, Eoghan P. Holohan, Michael Sheehy, and Mario Floris. 2019. "PS-InSAR Analysis of Sentinel-1 Data for Detecting Ground Motion in Temperate Oceanic Climate Zones: A Case Study in the Republic of Ireland" Remote Sensing 11, no. 3: 348. https://doi.org/10.3390/rs11030348
APA StyleFiaschi, S., Holohan, E. P., Sheehy, M., & Floris, M. (2019). PS-InSAR Analysis of Sentinel-1 Data for Detecting Ground Motion in Temperate Oceanic Climate Zones: A Case Study in the Republic of Ireland. Remote Sensing, 11(3), 348. https://doi.org/10.3390/rs11030348