A Novel Tri-Training Technique for the Semi-Supervised Classification of Hyperspectral Images Based on Regularized Local Discriminant Embedding Feature Extraction
Abstract
:1. Introduction
2. Spatial Mean Filtering and Feature Extraction
2.1. Spatial Mean Filtering
2.2. Local Discriminant Embedding (LDE)
2.3. Regularized Local Discriminant Embedding (RLDE)
2.4. Cooperative Training Strategy Combining Local Features
- (1)
- A mean filtering process is employed to reduce the noise in the HSI.
- (2)
- The local feature information of training samples is extracted by the RLDE method, and is labeled .
- (3)
- The classifier is trained with , to obtain the predicted classification result .
- (4)
- For the classifier , another two classifiers are selected which agree on the labeling of these samples to build the candidate set .
- (5)
- The active learning method is used to select the most useful and informative samples from the candidate sets and .
- (6)
- The process is terminated if the stopping condition is met; otherwise, go to Step (2).
Algorithm: RLDE tri-training |
Input: L: Original labeled sample set U: Unlabeled sample set BT: Breaking ties algorithm MV: Majority voting algorithm Process: L←SMF(L); U←SMF(U) L1←L; L2←L; L3←L Repeat until none of hi(i∈{1,2,3}) changes ←RLDE(); ←RLDE(); ←RLDE() MLR(); KNN(); RF() ←; ←; ← For i ∈ {1,2,3} do ←(i ≠ j ≠ k) ←BT() ; End of for End of repeat OUTPUT: S MV() |
3. Experimental Results and Analysis
3.1. Data Used in the Experiments
3.2. The Effect of the Spatial Mean Filtering
3.3. Comparison between the Different Feature Extraction Methods: AVIRIS Data
3.4. Comparison between the Different Feature Extraction Methods: ROSIS Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ben-Dor, E.; Schläpfer, D.; Plaza, A.J.; Malthus, T. Hyperspectral remote sensing. In Airborne Measurements for Environmental Research: Methods and Instruments; Wiley-VCH Verlag & Co. KGaA: Weinheim, Germany, 2013; pp. 1249–1259. [Google Scholar]
- Groves, P.; Tian, L.F.; Bajwa, S.G.; Bajcsy, P. Hyperspectral image data mining for band selection in agricultural applications. Trans. ASAE 2004, 47, 895–907. [Google Scholar]
- Plaza, J.; Pérez, R.; Plaza, A.; Martínez, P.; Valencia, D. Mapping oil spills on sea water using spectral mixture analysis of hyperspectral image data. In Chemical and Biological Standoff Detection III; International Society for Optics and Photonics: Bellingham, WA, USA, 2005; Volume 5995, pp. 79–86. [Google Scholar]
- Iranzad, A. Hyperspectral Mineral Identification Using SVM and SOM; Brock University: St. Catharines, ON, Canada, 2013. [Google Scholar]
- Blum, A.; Mitchell, T. Combining labeled and unlabeled data with co-training. In Proceedings of the Eleventh Conference on Computational Learning Theory, Madisson, WI, USA, 24–26 July 1998; pp. 92–100. [Google Scholar]
- Peng, L.; Hui, Z.; Eom, K.B. Active deep learning for classification of hyperspectral images. IEEE J. Sel. Top. Appl. Earth Observat. Remote Sens. 2017, 10, 712–724. [Google Scholar]
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 2015, 258619. [Google Scholar] [CrossRef]
- Song, J.; Zhang, H.; Li, X.; Gao, L.; Wang, M.; Hong, R. Self-supervised video hashing with hierarchical binary auto-encoder. IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc. 2018, 27, 3210. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Shen, Q. Spectral-spatial classification of hyperspectral imagery with 3d convolutional neural network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef]
- Wang, X.; Gao, L.; Wang, P.; Sun, X.; Liu, X. Two-stream 3d convnet fusion for action recognition in videos with arbitrary size and length. IEEE Trans. Multimed. 2018, 20, 634–644. [Google Scholar] [CrossRef]
- Wang, X.; Gao, L.; Song, J.; Shen, H. Beyond frame-level cnn: Saliency-aware 3d cnn with lstm for video action recognition. IEEE Signal Process. Lett. 2017, 24, 510–514. [Google Scholar] [CrossRef]
- Mou, L.; Ghamisi, P.; Zhu, X.X. Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655. [Google Scholar] [CrossRef]
- Goldberg, A.B.; Zhu, X.; Singh, A.; Xu, Z.; Nowak, R. Multi-manifold semi-supervised learning. Ynh Lr on Arfal Nllgn & Mahn Larnng 2009, 5, 169–176. [Google Scholar]
- Tan, K.; Zhou, S.; Du, Q. Semisupervised discriminant analysis for hyperspectral imagery with block-sparse graph. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1–5. [Google Scholar]
- Tuia, D.; Ratle, F.; Pacifici, F.; Kanevski, M.F. Active learning methods for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2218–2232. [Google Scholar] [CrossRef]
- Huang, R.; He, W. Using tri-training to exploit spectral and spatial information for hyperspectral data classification. In Proceedings of the International Conference on Computer Vision in Remote Sensing, Xiamen, China, 16–18 December 2012; pp. 30–33. [Google Scholar]
- Zhou, Z.H.; Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Trans. Knowl. Data Eng. 2005, 17, 1529–1541. [Google Scholar] [CrossRef]
- Tan, K.; Li, E.; Du, Q.; Du, P. An efficient semi-supervised classification approach for hyperspectral imagery. Isprs J. Photogramm. Remote Sens. 2014, 97, 36–45. [Google Scholar] [CrossRef]
- Nixon, M. Feature Extraction & Image Processing for Computer Vision, 3rd ed.; Academic Press: Cambridge, MA, USA, 2008; pp. 595–599. [Google Scholar]
- Rui, Y.; Huang, T.S.; Chang, S.F. Image retrieval: Current techniques, promising directions, and open issues. J. Vis. Commun. Image Represent. 1999, 10, 39–62. [Google Scholar] [CrossRef]
- Hughes, G.F.; Hughes, G. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14, 55–63. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef] [Green Version]
- Pevný, T.; Filler, T.; Bas, P. Using High-Dimensional Image Models to Perform Highly Undetectable Steganography; Springer: Berlin/Heidelberg, Germany, 2010; pp. 161–177. [Google Scholar]
- Yu, L.; Liu, H. Feature selection for high-dimensional data: A fast correlation-based filter solution. In Proceedings of the Twentieth International Conference on Machine Learning, Washington, DC, USA, 21–24 August 2003; pp. 856–863. [Google Scholar]
- Draper, B.A.; Baek, K.; Bartlett, M.S.; Beveridge, J.R. Recognizing faces with pca and ica. Comput. Vis. Image Underst. 2003, 91, 115–137. [Google Scholar] [CrossRef]
- Liu, Z.P. Linear Discriminant Analysis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 2464–2485. [Google Scholar]
- Kukharev, G.; Forczmaski, P.L. Face recognition by means of two-dimensional direct linear discriminant analysis. In Proceedings of the 8th International Conference on Pattern Recognition and Information Processing, Minsk, Belarus, 18–20 May 2005; Volume 280. [Google Scholar]
- Li, H.; Jiang, T.; Zhang, K. Efficient and robust feature extraction by maximum margin criterion. IEEE Trans. Neural Netw. 2006, 17, 157–165. [Google Scholar] [CrossRef]
- Bilgin, G.; Erturk, S.; Yildirim, T. Nonlinear dimension reduction methods and segmentation of hyperspectral images. In Proceedings of the IEEE Signal Processing, Communication and Applications Conference, Aydin, Turkey, 20–22 April 2008; pp. 1–4. [Google Scholar]
- Camps-Valls, G.; Gomez-Chova, L.; Munoz-Mari, J.; Rojo-Alvarez, J.L. Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1822–1835. [Google Scholar] [CrossRef]
- Song, J.; Gao, L.; Nie, F.; Shen, H.; Yan, Y.; Sebe, N. Optimized graph learning with partial tags and multiple features for image and video annotation. IEEE Trans. Image Process. 2016, 25, 4999–5011. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Zha, H. Adaptive manifold learning. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 253–265. [Google Scholar] [CrossRef]
- Wu, W.; Massart, D.L.; Jong, S.D. The kernel pca algorithms for wide data. Part i: Theory and algorithms. Chemom. Intell. Lab. Syst. 1997, 36, 165–172. [Google Scholar] [CrossRef]
- Mika, S.; Rätsch, G.; Weston, J.; Schölkopf, B.; Müller, K.R. Fisher discriminant analysis with kernels. In Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop; The Institute of Electrical and Electronics Engineers, Inc.: New York, NY, USA, 1999; pp. 41–48. [Google Scholar]
- Song, J.; Yang, Y.; Li, X.; Huang, Z.; Yang, Y. Robust hashing with local models for approximate similarity search. IEEE Trans. Cybern. 2014, 44, 1225. [Google Scholar] [CrossRef]
- Song, J.; Yang, Y.; Huang, Z.; Shen, H.T.; Luo, J. Effective multiple feature hashing for large-scale near-duplicate video retrieval. IEEE Trans. Multimed. 2013, 15, 1997–2008. [Google Scholar] [CrossRef]
- Tenenbaum, J.B.; De, S.V.; Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290, 2319. [Google Scholar] [CrossRef]
- Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323. [Google Scholar] [CrossRef]
- He, X.; Cai, D.; Yan, S.; Zhang, H.J. Neighborhood preserving embedding. In Proceedings of the Tenth IEEE International Conference on Computer Vision, Beijing, China, 17–21 October 2005; pp. 1208–1213. [Google Scholar]
- Chen, H.T.; Chang, H.W.; Liu, T.L. Local discriminant embedding and its variants. In Proceedings of the IEEE Computer Society Conference on Computer Vision & Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; pp. 846–853. [Google Scholar]
- Zhou, Y.; Peng, J.; Chen, C.L.P. Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1082–1095. [Google Scholar] [CrossRef]
- Liao, W.; Pizurica, A.; Philips, W.; Pi, Y. Feature extraction for hyperspectral images based on semi-supervised local discriminant analysis. IEEE Trans. Geosci. Remote Sens. 2013, 51, 401–404. [Google Scholar]
- Sugiyama, M.; Idé, T.; Nakajima, S.; Sese, J. Semi-Supervised Local Fisher Discriminant Analysis for Dimensionality Reduction; Springer: Berlin/Heidelberg, Germany, 2008; pp. 35–61. [Google Scholar]
- Hua, G.; Brown, M.; Winder, S. Discriminant embedding for local image descriptors. In Proceedings of the IEEE International Conference on Computer Vision, Rio De Janeiro, Brazil, 14–21 October 2007; pp. 1–8. [Google Scholar]
- Wan, M.; Yang, G.; Lai, Z.; Jin, Z. Feature extraction based on fuzzy local discriminant embedding with applications to face recognition. IET Comput. Vis. 2011, 5, 301–308. [Google Scholar] [CrossRef]
- Pang, Y.; Yu, N. Regularized local discrimimant embedding. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 14–19 May 2006; p. III. [Google Scholar]
- Tan, K.; Zhu, J.; Du, Q.; Wu, L.; Du, P. A novel tri-training technique for semi-supervised classification of hyperspectral images based on diversity measurement. Remote Sens. 2016, 8, 749. [Google Scholar] [CrossRef]
- Zhang, G.; Jia, X. Feature selection using kernel based local fisher discriminant analysis for hyperspectral image classification. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 1728–1731. [Google Scholar]
- Mei, S.; Ji, J.; Bi, Q.; Hou, J.; Qian, D.; Wei, L. Integrating spectral and spatial information into deep convolutional neural networks for hyperspectral classification. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016. [Google Scholar]
- He, M.; Bo, L.; Chen, H. Multi-scale 3d deep convolutional neural network for hyperspectral image classification. In Proceedings of the IEEE International Conference on Image Processing, Beijing, China, 17–20 September 2017. [Google Scholar]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AVIRIS | Non- SMF | 5 | 43.11 | 61.59 | 69.31 | 73.88 | 77.58 | 79.93 | 81.91 | 83.29 | 84.86 | 86.15 |
10 | 53.01 | 66.71 | 72.70 | 77.04 | 79.56 | 81.86 | 83.69 | 84.64 | 85.95 | 86.96 | ||
15 | 60.57 | 69.52 | 74.92 | 78.21 | 80.91 | 82.56 | 83.94 | 85.44 | 86.45 | 87.35 | ||
SMF | 5 | 59.01 | 79.01 | 86.60 | 90.75 | 93.36 | 94.98 | 96.37 | 97.13 | 97.83 | 98.34 | |
10 | 69.77 | 83.51 | 88.93 | 92.14 | 94.48 | 95.67 | 96.55 | 97.35 | 97.92 | 98.35 | ||
15 | 76.54 | 86.00 | 90.96 | 93.47 | 95.23 | 96.21 | 97.14 | 97.79 | 98.30 | 98.65 | ||
ROSIS | Non- SMF | 5 | 62.45 | 79.98 | 84.83 | 86.53 | 87.51 | 88.43 | 89.10 | 89.78 | 90.19 | 90.58 |
10 | 69.83 | 83.35 | 86.68 | 88.72 | 89.61 | 90.36 | 90.87 | 91.27 | 91.63 | 91.94 | ||
15 | 75.36 | 84.35 | 87.65 | 88.88 | 89.86 | 90.54 | 90.88 | 91.38 | 91.70 | 92.05 | ||
SMF | 5 | 71.70 | 89.71 | 93.24 | 95.21 | 96.43 | 96.92 | 97.36 | 97.75 | 97.96 | 98.14 | |
10 | 80.11 | 92.52 | 94.33 | 95.91 | 96.73 | 97.27 | 97.63 | 97.96 | 98.29 | 98.39 | ||
15 | 85.94 | 93.41 | 95.63 | 96.69 | 97.23 | 97.68 | 97.97 | 98.26 | 98.49 | 98.62 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
L = 5 | Tri-training | OA | 59.83 | 75.76 | 82.46 | 86.13 | 88.80 | 90.38 | 91.44 | 92.21 | 92.93 | 93.31 |
Kappa | 55.41 | 72.38 | 79.96 | 84.15 | 87.21 | 89.01 | 90.23 | 91.11 | 91.93 | 92.36 | ||
LDE | OA | 57.69 | 74.65 | 80.88 | 83.99 | 86.36 | 88.47 | 89.51 | 90.67 | 91.42 | 92.03 | |
Kappa | 56.65 | 71.93 | 78.50 | 81.93 | 84.57 | 86.97 | 88.12 | 89.44 | 90.30 | 90.99 | ||
LFDA | OA | 52.34 | 61.83 | 74.61 | 81.84 | 86.56 | 89.95 | 92.01 | 93.74 | 94.92 | 95.74 | |
Kappa | 61.09 | 70.80 | 79.20 | 84.25 | 88.23 | 90.97 | 92.56 | 94.08 | 95.02 | 95.67 | ||
RLDE | OA | 56.86 | 74.96 | 85.29 | 88.82 | 92.14 | 94.56 | 95.99 | 97.19 | 98.16 | 98.16 | |
Kappa | 52.78 | 71.87 | 83.37 | 87.34 | 91.07 | 93.81 | 95.44 | 96.80 | 97.90 | 97.90 | ||
L = 10 | Tri-training | OA | 70.07 | 80.29 | 85.21 | 88.17 | 90.07 | 91.47 | 92.49 | 93.25 | 93.81 | 94.00 |
Kappa | 66.56 | 77.51 | 83.10 | 86.51 | 88.68 | 90.27 | 91.43 | 92.31 | 92.94 | 93.16 | ||
LDE | OA | 67.93 | 78.95 | 84.48 | 87.06 | 89.22 | 90.46 | 91.37 | 92.04 | 92.54 | 93.09 | |
Kappa | 67.32 | 77.15 | 82.80 | 85.48 | 87.89 | 89.28 | 90.30 | 91.01 | 91.58 | 92.18 | ||
LFDA | OA | 57.09 | 70.36 | 79.51 | 85.31 | 88.42 | 91.00 | 93.07 | 94.16 | 95.28 | 96.06 | |
Kappa | 69.07 | 75.21 | 82.21 | 87.06 | 89.50 | 91.70 | 93.53 | 94.32 | 95.25 | 96.00 | ||
RLDE | OA | 68.85 | 80.45 | 88.48 | 91.53 | 93.32 | 95.32 | 96.96 | 97.54 | 98.26 | 98.84 | |
Kappa | 65.59 | 78.11 | 86.95 | 90.41 | 92.42 | 94.67 | 96.53 | 97.20 | 98.02 | 98.68 | ||
L = 15 | Tri-training | OA | 73.75 | 82.56 | 86.25 | 89.17 | 90.55 | 91.93 | 93.04 | 93.57 | 93.92 | 94.45 |
Kappa | 70.60 | 80.12 | 84.31 | 87.64 | 89.22 | 90.80 | 92.07 | 92.67 | 93.07 | 93.68 | ||
LDE | OA | 73.43 | 81.61 | 85.83 | 88.15 | 89.97 | 91.43 | 92.36 | 93.03 | 93.48 | 94.01 | |
Kappa | 72.68 | 79.82 | 84.21 | 86.70 | 88.66 | 90.29 | 91.32 | 92.07 | 92.59 | 93.21 | ||
LFDA | OA | 62.32 | 76.62 | 83.36 | 87.31 | 90.11 | 92.17 | 93.62 | 94.85 | 95.74 | 96.50 | |
Kappa | 68.91 | 80.68 | 85.36 | 88.31 | 90.62 | 92.39 | 93.62 | 94.80 | 95.60 | 96.36 | ||
RLDE | OA | 71.89 | 82.96 | 89.29 | 92.57 | 94.77 | 96.34 | 97.28 | 98.08 | 98.63 | 98.98 | |
Kappa | 68.92 | 80.82 | 87.88 | 91.57 | 94.05 | 95.83 | 96.90 | 97.82 | 98.44 | 98.84 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
L = 5 | tri-training | OA | 64.05 | 78.30 | 81.71 | 85.13 | 86.47 | 86.91 | 87.16 | 87.35 | 87.14 | 87.26 |
Kappa | 55.62 | 71.67 | 76.05 | 80.25 | 82.07 | 82.75 | 83.09 | 83.35 | 83.11 | 83.26 | ||
LDE | OA | 70.15 | 83.80 | 89.63 | 92.29 | 93.72 | 94.56 | 95.37 | 95.92 | 96.26 | 96.16 | |
Kappa | 62.78 | 78.42 | 86.14 | 89.67 | 91.61 | 92.75 | 93.82 | 94.56 | 95.02 | 94.89 | ||
LFDA | OA | 68.54 | 85.61 | 90.40 | 92.30 | 93.70 | 94.33 | 94.88 | 95.31 | 95.60 | 95.90 | |
Kappa | 65.16 | 81.62 | 87.14 | 89.53 | 91.40 | 92.22 | 92.99 | 93.57 | 93.97 | 94.36 | ||
RLDE | OA | 71.70 | 89.71 | 93.24 | 95.21 | 96.43 | 96.92 | 97.36 | 97.75 | 97.96 | 98.14 | |
Kappa | 67.16 | 87.22 | 91.24 | 93.68 | 95.22 | 95.84 | 96.41 | 96.93 | 97.21 | 97.44 | ||
L = 10 | tri-training | OA | 70.12 | 82.27 | 85.78 | 86.59 | 87.42 | 87.39 | 87.23 | 87.22 | 86.75 | 87.30 |
Kappa | 63.03 | 76.53 | 80.98 | 82.21 | 83.34 | 83.39 | 83.25 | 83.24 | 82.70 | 83.37 | ||
LDE | OA | 77.92 | 88.64 | 92.10 | 93.76 | 95.03 | 95.40 | 95.84 | 96.19 | 96.50 | 96.66 | |
Kappa | 72.27 | 84.81 | 89.38 | 91.64 | 93.37 | 93.86 | 94.45 | 94.92 | 95.34 | 95.55 | ||
LFDA | OA | 76.41 | 88.52 | 91.59 | 93.18 | 94.07 | 94.73 | 95.32 | 95.65 | 95.98 | 96.33 | |
Kappa | 73.85 | 86.09 | 89.41 | 91.24 | 92.24 | 93.02 | 93.76 | 94.17 | 94.57 | 95.04 | ||
RLDE | OA | 80.11 | 92.52 | 94.33 | 95.91 | 96.73 | 97.27 | 97.63 | 97.96 | 98.29 | 98.39 | |
Kappa | 76.45 | 90.38 | 92.53 | 94.51 | 95.58 | 96.30 | 96.78 | 97.21 | 97.66 | 97.80 | ||
L = 15 | tri-training | OA | 73.58 | 83.70 | 85.85 | 86.70 | 86.64 | 86.62 | 86.84 | 86.89 | 86.75 | 87.26 |
Kappa | 66.94 | 78.41 | 81.24 | 82.46 | 82.44 | 82.48 | 82.81 | 82.88 | 82.74 | 83.37 | ||
LDE | OA | 82.54 | 89.98 | 92.71 | 94.20 | 95.02 | 95.58 | 95.81 | 96.21 | 96.45 | 96.66 | |
Kappa | 77.72 | 86.66 | 90.24 | 92.24 | 93.35 | 94.10 | 94.41 | 94.95 | 95.28 | 95.55 | ||
LFDA | OA | 81.94 | 90.59 | 92.99 | 94.12 | 94.82 | 95.38 | 95.75 | 96.09 | 96.30 | 96.54 | |
Kappa | 79.61 | 87.84 | 90.56 | 92.01 | 92.97 | 93.70 | 94.20 | 94.64 | 94.92 | 95.26 | ||
RLDE | OA | 85.94 | 93.41 | 95.63 | 96.69 | 97.23 | 97.68 | 97.97 | 98.26 | 98.49 | 98.62 | |
Kappa | 83.61 | 91.45 | 94.21 | 95.56 | 96.25 | 96.85 | 97.22 | 97.62 | 97.94 | 98.10 |
Training Samples | L = 5 | L = 10 | L = 15 | ||
---|---|---|---|---|---|
Feature Extraction Method | |||||
AVIRIS | LDE | 64.35%(20) | 75.16%(26) | 78.35%(30) | |
LFDA | 59.72%(30) | 59.48%(30) | 66.90%(24) | ||
RLDE | 66.54%(12) | 77.23%(10) | 81.20%(11) | ||
ROSIS | LDE | 70.20%(21) | 77.93%(24) | 82.61%(24) | |
RLDE | 72.76%(8) | 80.95%(11) | 86.62%(12) | ||
LFDA | 71.09%(24) | 76.43%(28) | 82.50%(8) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, D.; Tan, K.; Du, Q.; Zhu, J.; Wang, X.; Chen, Y. A Novel Tri-Training Technique for the Semi-Supervised Classification of Hyperspectral Images Based on Regularized Local Discriminant Embedding Feature Extraction. Remote Sens. 2019, 11, 654. https://doi.org/10.3390/rs11060654
Ou D, Tan K, Du Q, Zhu J, Wang X, Chen Y. A Novel Tri-Training Technique for the Semi-Supervised Classification of Hyperspectral Images Based on Regularized Local Discriminant Embedding Feature Extraction. Remote Sensing. 2019; 11(6):654. https://doi.org/10.3390/rs11060654
Chicago/Turabian StyleOu, Depin, Kun Tan, Qian Du, Jishuai Zhu, Xue Wang, and Yu Chen. 2019. "A Novel Tri-Training Technique for the Semi-Supervised Classification of Hyperspectral Images Based on Regularized Local Discriminant Embedding Feature Extraction" Remote Sensing 11, no. 6: 654. https://doi.org/10.3390/rs11060654
APA StyleOu, D., Tan, K., Du, Q., Zhu, J., Wang, X., & Chen, Y. (2019). A Novel Tri-Training Technique for the Semi-Supervised Classification of Hyperspectral Images Based on Regularized Local Discriminant Embedding Feature Extraction. Remote Sensing, 11(6), 654. https://doi.org/10.3390/rs11060654