Multiscale Analysis of DInSAR Measurements for Multi-Source Investigation at Uturuncu Volcano (Bolivia)
Abstract
:1. Introduction
2. DInSAR Measurements
3. Multiscale Methods
3.1. Cross-correlation Analysis
3.2. Multiridge Method
4. Results
4.1. Cross Aorrelation Analysis of 2005–2008 Time Interval
4.2. Multiridge Analysis of 2005–2008 Time Interval
4.3. Multiridge Analysis of August 2006–February 2007 Time Interval
5. Discussion
6. Conclusions
- The DInSAR measurements retrieved through ENVISAT satellite data during the 2003–2010 time interval show two different deformation trends for APVC and Uturuncu volcano region, as highlighted by the analyzed pixels (i.e., P1 and P2 time-series). In addition, the vertical and East-West components are retrieved by combining the data acquired along ascending and descending orbits.
- The results of the Cross-correlation analysis, performed on the vertical component of the ground deformation between 2005 and 2008, reveal that a large number of pixels, covering the central part of APVC, are characterized by the same deformation trend observed at P1, while the Uturuncu volcano area is entirely affected by the same deformation trend recorded at P2.
- The Multiridge method allowed us an investigation on the multi-source scenario responsible for the observed deformation patterns at APVC zone and Uturuncu volcano, providing their depths and horizontal positions. This methodology is different from the methods currently used to model the ground deformation sources. It does not require any assumptions about the source type, and it is not influenced by the distribution of medium elastic parameters or the presence of high-frequency noise in the dataset. However, it does not provide information about the source type and its volume.
- The estimated inflating deep source at 18.7 ± 0.8 km depth, active during the focused time interval beneath APVC, is in agreement with those proposed by several authors regarding the APMB. A further inflating shallow source at 4.5 ± 0.5 km depth is identified between August 2006 and February 2007 beneath Uturuncu volcano, whose existence is supported by petrological, geochemical, and geophysical information about the reservoir.
- The existence of this transient shallow source, located just beneath Uturuncu volcano, allows comparing, for the first time, the geophysical information at that depth with those retrieved from the geodetic study, suggesting the active role of the hydrothermal system for 2006–2007 observed uplift phenomenon.
- The combined analysis of our results with the geophysical and petrological evidence confirms, as an interpretative scenario, a deep volcanic reservoir and shallow hydrothermal system beneath APVC zone and Uturuncu volcano, respectively.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Pritchard, M.E.; de Silva, S.L.; Michelfelder, G.; Zandt, G.; McNutt, S.R.; Gottsmann, J.; West, M.E.; Blundy, J.; Christensen, D.H.; Finnegan, N.J.; et al. Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere 2018, 14, 954–982. [Google Scholar] [CrossRef] [Green Version]
- Gottsmann, J.; del Potro, R.; Muller, C. 50 years of steady ground deformation in the Altiplano-Puna region of southern Bolivia. Geosphere 2018, 14, 65–73. [Google Scholar] [CrossRef]
- De Silva, S.L.; Gosnold, W.D. Episodic construction of batholiths: Insights from the spatiotemporal development of an ignimbrite flare-up. J. Volcanol. Geotherm. Res. 2007, 167, 320–335. [Google Scholar] [CrossRef]
- Brandmeier, M.; Worner, G. Compositional variations of ignimbrite magmas in the Central Andes over the past 26 Ma—A multivariate statistical perspective. Lithos 2016, 262, 713–728. [Google Scholar] [CrossRef]
- Allmendinger, R.W.; Jordan, T.E.; Kay, S.M.; Isacks, B.L. The evolution of the Altiplano-Puna plateau of the central Andes. Annu. Rev. Earth Planet. Sci. 1997, 25, 139–174. [Google Scholar] [CrossRef]
- Schmitz, M.; Heinsohn, W.D.; Schilling, F.R. Seismic, gravity and petrological evidence for partial melt beneath the thickened Central Andean crust. Tectonophysics 1997, 270, 313–326. [Google Scholar] [CrossRef]
- Schilling, F.R.; Partzsch, G.M.; Brasse, H.; Schwarz, G. Partial melting below the magmatic arc in the central Andes deduced from geoelectromagnetic field experiments and laboratory data. Phys. Earth Planet. Inter. 1997, 103, 17–31. [Google Scholar] [CrossRef]
- Chmielowski, J.; Zandt, G.; Haberland, C. The Central Andean Altiplano-Puna Magma Body. Geophys. Res. Lett. 1999, 26, 783–786. [Google Scholar] [CrossRef]
- Sparks, R.S.J.; Folkes, C.B.; Humphreys, M.C.S.; Barfod, D.N.; Clavero, J.; Sunagua, M.C.; McNutt, S.R.; Pritchard, M.E. Uturuncu volcano, Bolivia: Volcanic unrest due to mid-crustal magma intrusion. Am. J. Sci. 2008, 308, 727–769. [Google Scholar] [CrossRef]
- Perkins, J.P.; Ward, K.M.; de Silva, S.L.; Zandt, G.; Beck, S.L.; Finnegan, N.J. Surface uplift in the Central Andes driven by growth of the Altiplano Puna Magma Body. Nat. Commun. 2016, 7, 13185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muir, D.D.; Blundy, J.D.; Rust, A.C.; Hickey, J. Experimental Constraints on Dacite Pre-eruptive Magma Storage Conditions beneath Uturuncu Volcano. J. Petrol. 2014, 55, 749–767. [Google Scholar] [CrossRef] [Green Version]
- Michelfelder, G.S.; Feeley, T.C.; Wilder, A.D. The Volcanic Evolution of Cerro Uturuncu: A High-K, Composite Volcano in the Back- Arc of the Central Andes of SW Bolivia. IJG 2014, 5, 1263–1281. [Google Scholar] [CrossRef]
- de Silva, S.L. Altiplano-Puna volcanic complex of the central Andes. Geology 1989, 17, 1102–1106. [Google Scholar] [CrossRef]
- PLUTONS Project. Probing Lazufre and Uturuncu TOgether: Nsf (USA), Nerc (UK), Nserc (Canada), Sergeotecmin (Bolivia), Sernageomin (Chile), Observatorio San calixto (Bolivia), Universidad Nacional de Salta (Argentina), Universidad Major San andres (Bolivia), Universidad de Poto Si (Bolivia), Sernap (Bolivia), Chilean Seismological Service, Universidad de San Juan (Argentina); The PLUTONS Project is Funded by the National Science Foundation Continental Dynamics Program and the Natural Environment Research Council, The PLUTONS Group; Oregon State University, Department of Geosciences: Corvallis, OR, USA, 2009. [Google Scholar]
- Zandt, G.; Leidig, M.; Chmielowski, J.; Baumont, D.; Yuan, X. Seismic Detection and Characterization of the Altiplano-Puna Magma Body, Central Andes. Pure Appl. Geophys. 2003, 160, 789–807. [Google Scholar] [CrossRef]
- Kukarina, E.; West, M.; Keyson, L.H.; Koulakov, I.; Tsibizov, L.; Smirnov, S. Focused magmatism beneath Uturuncu volcano, Bolivia: Insights from seismic tomography and deformation modeling. Geosphere 2017, 13, 1855–1866. [Google Scholar] [CrossRef]
- Ward, K.M.; Zandt, G.; Beck, S.L.; Christensen, D.H.; McFarlin, H. Seismic imaging of the magmatic underpinnings beneath the Altiplano-Puna volcanic complex from the joint inversion of surface wave dispersion and receiver functions. Earth Planet. Sci. Lett. 2014, 404, 43–53. [Google Scholar] [CrossRef]
- Ward, K.M.; Delph, J.R.; Zandt, G.; Beck, S.L.; Ducea, M.N. Magmatic evolution of a Cordilleran flare-up and its role in the creation of silicic crust. Sci. Rep. 2017, 7, 9047. [Google Scholar] [CrossRef] [Green Version]
- McFarlin, H.; Christensen, D.; McNutt, S.R.; Ward, K.M.; Ryan, J.; Zandt, G.; Thompson, G. Receiver function analyses of Uturuncu volcano, Bolivia and vicinity. Geosphere 2017, 14, 50–64. [Google Scholar] [CrossRef] [Green Version]
- Del Potro, R.; Diez, M.; Blundy, J.; Camacho, A.G.; Gottsmann, J. Diapiric ascent of silicic magma beneath the Bolivian Altiplano. Geophys. Res. Lett. 2013, 40, 2044–2048. [Google Scholar] [CrossRef] [Green Version]
- Jay, J.A.; Pritchard, M.E.; West, M.E.; Christensen, D.; Haney, M.; Minaya, E.; Sunagua, M.; McNutt, S.R.; Zabala, M. Shallow seismicity, triggered seismicity, and ambient noise tomography at the long-dormant Uturuncu Volcano, Bolivia. Bull. Volcanol. 2012, 74, 817–837. [Google Scholar] [CrossRef]
- Alvizuri, C.; Tape, C. Full moment tensors for small events at Uturuncu volcano, Bolivia. Geophys. J. Int. 2016, 206, 1761–1783. [Google Scholar] [CrossRef]
- Comeau, M.J.; Unsworth, M.J.; Ticona, F.; Sunagua, M. Magnetotelluric images of magma distribution beneath Volcan Uturuncu, Bolivia: Implications for magma dynamics. Geology 2015, 43, 243–246. [Google Scholar] [CrossRef]
- Comeau, M.J.; Unsworth, M.J.; Cordell, D. New constraints on the magma distribution and composition beneath Volcan Uturuncu and the southern Bolivian Altiplano from magnetotelluric data. Geosphere 2016, 12, 1391–1421. [Google Scholar] [CrossRef]
- Pritchard, M.E.; Simons, M. A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes. Nature 2002, 418, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, M.E.; Simons, M. An InSAR-based survey of volcanic deformation in the central Andes. Geochem. Geophys. Geosyst. 2004, 5, 1–42. [Google Scholar] [CrossRef]
- Fialko, Y.; Pearse, J. Sombrero Uplift Above the Altiplano-Puna Magma Body: Evidence of a Ballooning Mid-Crustal Diapir. Science 2012, 338, 250–252. [Google Scholar] [CrossRef] [PubMed]
- Henderson, S.T.; Pritchard, M.E. Decadal volcanic deformation in the Central Andes Volcanic Zone revealed by InSAR time series. Geochem. Geophys. Geosyst. 2013, 14, 1358–1374. [Google Scholar] [CrossRef] [Green Version]
- Hickey, J.; Gottsmann, J.; del Potro, R. The large-scale surface uplift in the Altiplano-Puna region of Bolivia: A parametric study of source characteristics and crustal rheology using finite element analysis. Geochem. Geophys. Geosyst. 2013, 14, 540–555. [Google Scholar] [CrossRef] [Green Version]
- Walter, T.R.; Motagh, M. Deflation and inflation of a large magma body beneath Uturuncu volcano, Bolivia? Insights from InSAR data, surface lineaments and stress modelling. Geophys. J. Int. 2014, 198, 462–473. [Google Scholar] [CrossRef] [Green Version]
- Gottsmann, J.; Blundy, J.; Henderson, S.; Pritchard, M.E.; Sparks, R.S.J. Thermomechanical modeling of the Altiplano-Puna deformation anomaly: Multiparameter insights into magma mush reorganization. Geosphere 2017, 13, 1042–1065. [Google Scholar] [CrossRef]
- Henderson, S.T.; Pritchard, M.E. Time-dependent deformation of Uturuncu volcano, Bolivia, constrained by GPS and InSAR measurements and implications for source models. Geosphere 2017, 13, 1834–1854. [Google Scholar] [CrossRef] [Green Version]
- Lau, N.; Tymofyeyeva, E.; Fialko, Y. Variations in the long-term uplift rate due to the Altiplano-Puna magma body observed with Sentinel-1 interferometry. Earth Planet. Sci. Lett. 2018, 491, 43–47. [Google Scholar] [CrossRef]
- Stanton, J.M. Galton, Pearson and the Peas: A brief history of linear regression for statistics instructors. J. Stat. Educ. 2001, 9. [Google Scholar] [CrossRef]
- Tizzani, P.; Berardino, P.; Casu, F.; Euillades, P.; Manzo, M.; Ricciardi, G.P.; Zeni, G.; Lanari, R. Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach. Remote Sens. Environ. 2007, 108, 277–289. [Google Scholar] [CrossRef]
- Fedi, M.; Florio, G.; Quarta, T.A.M. Multiridge analysis of potential fields: Geometric method and reduced Euler deconvolution. Geophysics 2009, 74, L53–L56. [Google Scholar] [CrossRef]
- Castaldo, R.; Barone, A.; Fedi, M.; Tizzani, P. Multiridge Method for Studying Ground-Deformation Sources: Application to Volcanic Environments. Sci. Rep. 2018, 8, 13420. [Google Scholar] [CrossRef] [PubMed]
- De Luca, C.; Cuccu, R.; Elefante, S.; Zinno, I.; Manunta, M.; Casola, V.; Rivolta, G.; Lanari, R.; Casu, F. An On-Demand Web Tool for the Unsupervised Retrieval of Earth’s Surface Deformation from SAR Data: The P-SBAS Service within the ESA G-POD Environment. Remote Sens. 2015, 7, 15630–15650. [Google Scholar] [CrossRef] [Green Version]
- De Luca, C.; Zinno, I.; Manunta, M.; Lanari, R.; Casu, F. Large areas surface deformation analysis through a cloud computing P-SBAS approach for massive processing of DInSAR time series. Remote Sens. Environ. 2017, 202, 3–17. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Casu, F.; Elefante, S.; Imperatore, P.; Zinno, I.; Manunta, M.; De Luca, C.; Lanari, R. SBAS-DInSAR Parallel Processing for Deformation Time-Series Computation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 3285–3296. [Google Scholar] [CrossRef]
- Manzo, M.; Ricciardi, G.P.; Casu, F.; Ventura, G.; Zeni, G.; Borgstrom, S.; Berardino, P.; Del Gaudio, C.; Lanari, R. Surface deformation analysis in the Ischia Island (Italy) based on spaceborne radar interferometry. J. Volcanol. Geotherm. Res. 2006, 151, 399–416. [Google Scholar] [CrossRef]
- Florio, G.; Fedi, M. Multiridge Euler deconvolution. Geophys. Prospect. 2014, 62, 333–351. [Google Scholar] [CrossRef]
- Tizzani, P.; Battaglia, M.; Castaldo, R.; Pepe, A.; Zeni, G.; Lanari, R. Magma and fluid migration at Yellowstone Caldera in the last three decades inferred from InSAR, leveling and gravity measurements. J. Geophys. Res. Solid Earth 2015, 120, 2627–2647. [Google Scholar] [CrossRef]
- Pepe, S.; Castaldo, R.; De Novellis, V.; D’Auria, L.; De Luca, C.; Casu, F.; Sansosti, E.; Tizzani, P. New insights on the 2012–2013 uplift episode at Fernandina Volcano (Galapagos). Geophys. J. Int. 2017, 211, 673–685. [Google Scholar] [CrossRef]
- Milano, M.; Fedi, M.; Fairhead, J.D. The deep crust beneath the Trans-European Suture Zone from a multiscale magnetic model. JGR Solid Earth 2016, 121, 6276–6292. [Google Scholar] [CrossRef]
- Baranov, W. Potential Fields and Their Transformations in Applied Geophysics; Geopublication Associates: Berlin-Stuttgart, Germany, 1975. [Google Scholar]
- Blakely, R.J. Potential Theory in Gravity and Magnetic Applications; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Mogi, K. Relation between eruptions of various volcanoes and the deformations of ground surface around them. Bull. Earthq. Res. 1958, 36, 99–134. [Google Scholar]
- Ridsdill-Smith, T.A. Wavelet Design of Time-Varying Filters. In Proceedings of the Fifth International Symposium on Signal Processing and its Applications, Brisbane, QLD, Australia, 22–25 August 1999. [Google Scholar]
- Rao, D.A.; Ram Babu, H.V.; Sanker Narayan, P.V. Interpretation of magnetic anomalies due to dikes: The complex gradient method. Geophysics 1981, 46, 1572–1578. [Google Scholar] [CrossRef]
- Gupta, V.K.; Ramani, N. Optimum second vertical derivatives in geologic mapping and mineral exploration. Geophysics 1982, 47, 1706–1715. [Google Scholar] [CrossRef]
- Butler, D.K. Microgravimetric and gravity gradient techniques for detection of subsurface cavities. Geophysics 1984, 49, 1084–1096. [Google Scholar] [CrossRef]
- Reid, A.B.; Allsop, J.M.; Granser, H.; Millett, A.J.; Somerton, I.W. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 1990, 55, 80–91. [Google Scholar] [CrossRef]
- Fedi, M.; Florio, G. Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophys. Prospect. 2001, 49, 40–58. [Google Scholar] [CrossRef]
- Fedi, M.; Florio, G. Determination of the maximum-depth to potential field sources by a maximum structural index method. J. Appl. Geophys. 2013, 88, 154–160. [Google Scholar] [CrossRef]
- Cooper, G.R.J.; Cowan, D.R. Filtering using variable order vertical derivatives. Comput. Geosci. 2004, 30, 455–459. [Google Scholar] [CrossRef]
Authors | Studies | Description of the Retrieved Results |
---|---|---|
Chmielowski et al., [8] | Receiver function analysis (1996–1997) | Low-velocity zone at ≈19 km depth b.g.l.. |
Zandt et al., [15] | Teleseismic and local receiver function analysis (1996–1997) | Low-velocity zone at ≈20 km depth b.g.l.. |
Pritchard et al., [26] | Deformation modeling (1992–2000) | Source of deformation modeled as sphere, horizontal and vertical ellipsoid, point and finite crack, at depth of 17.3 km, 18.8 and 18.2 km, 25 and 12 km, respectively. |
Sparks et al., [9] | Petrological analysis | Shallow magma storage at a depth >1.5 km; dacite magma intrusion at a depth > 17 km. |
Fialko et al., [27] | Deformation modeling (1992–2010) | Source of deformation modeled as an ascending diapir at a depth >15 km. |
Jay et al., [21] | Seismicity and ambient noise tomography (2009–2010) | Low-velocity zone at ≈0 km associated to hydrothermal processes. |
del Potro et al., [20] | Gravity modeling (2010–2011) | Vertically elongated low-density 3D structures rooted at the top of the APMB at 15 km depth. |
Henderson et al., [28] | Deformation modeling (1992–2011) | Source of deformation modeled as a point-sphere at depth of 19–20 km. |
Hickey et al., [29] | Deformation modeling (1996–2010) | Source of deformation modeled as prolate ellipsoid, oblate ellipsoid and sphere, at a depth of 20.6 km, 32.8 km, 30.4 km b.g.l., respectively. |
Muir et al., [11] | Geochemical analysis | Pre-eruptive magma storage at maximum 1.9–5.7 km depth b.g.l.. |
Walter et al., [30] | Deformation modeling (2003–2009) | Source of deformation modeled as an inflating flat-topped body at 17–18 ± 9 km depth. |
Lineament stress modeling | Stress source modeled as a deflating flat-topped body at 13–14 ± 2 km depth. | |
Ward et al., [17] | Surface wave dispersion and receiver function analysis | Low velocity zone with oblate-spheroidal shape at a depth of 4–25 km. |
Comeau et al., [23] | Magnetotelluric 2D modeling (2011–2013) | Low-resistivity zone at 18–19 km depth. |
Alvizuri et al., [22] | Earthquake clustering analysis (2010–2012) | Several events located at 4–6 km depth. |
Comeau et al., [24] | Magnetotelluric 3D modeling (2011–2013) | Low-resistivity zone at 3–5 and 14 +1/−3 km depth. |
Gottsmann et al., [31] | Numerical deformation modeling (1992–2015) | Modeled source composed by: hybrid column from 0 to 14 km depth; magmatic column from 6 to 14 km depth; APMB from 13 to 25 km depth. |
Henderson et al., [32] | Deformation modeling (1992–2015) | Source of deformation modeled as a dipole which shallow pole is located at variable depth from 15.4 to 30.4 km. |
Kukarina et al., [16] | Seismic tomography (2010–2012) | Deep large tooth-shaped Vp/Vs anomaly from 1–2 to 75–76 km depth. |
McFarlin et al., [19] | Seismicity, receiver function analysis (2010–2012) | Low-velocity zone localized from 6 to 22 km depth with variable thickness. |
Lau et al., [33] | Deformation modeling (2014–2017) | Source of deformation at 2.12 km depth associated with hydrothermal processes. |
Study | Period | Depth [km] | Source Type |
---|---|---|---|
Pritchard et al., [26] | 1992–2000 | 17.3 18.8 18.2 25 12 | Sphere Horizontal Ellipsoid Vertical Ellipsoid Point Crack Finite Crack |
Fialko et al., [27] | 1992–2010 | >15 | Prolate spheroid and tabular body |
Henderson et al., [28] | 1992–2011 | 19–20 | Point-spherical |
Hickey et al., [29] | 1996–2010 | 20.6 (18–25) b.g.l. 32.8 (30–35) b.g.l. 30.4 (28–33) b.g.l. | Prolate spheroid Oblate spheroid Sphere |
Walter et al., [30] | 2003–2009 | 17–18 ± 9 | Inflating flat-topped body |
Gottsmann et al., [31] | 1992–2011 | 6–14 (top and bottom) 13–25 (top and bottom) | Magmatic column APMB |
Henderson et al., [32] | 1992–2011 | 15.4–30.4 | Point source (top of a dipole source) |
This study | 2005–2008 2006–2007 | 18.7 ± 0.8 4.5 ± 0.5 | Deep inflation body Shallow inflation body |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barone, A.; Fedi, M.; Tizzani, P.; Castaldo, R. Multiscale Analysis of DInSAR Measurements for Multi-Source Investigation at Uturuncu Volcano (Bolivia). Remote Sens. 2019, 11, 703. https://doi.org/10.3390/rs11060703
Barone A, Fedi M, Tizzani P, Castaldo R. Multiscale Analysis of DInSAR Measurements for Multi-Source Investigation at Uturuncu Volcano (Bolivia). Remote Sensing. 2019; 11(6):703. https://doi.org/10.3390/rs11060703
Chicago/Turabian StyleBarone, Andrea, Maurizio Fedi, Pietro Tizzani, and Raffaele Castaldo. 2019. "Multiscale Analysis of DInSAR Measurements for Multi-Source Investigation at Uturuncu Volcano (Bolivia)" Remote Sensing 11, no. 6: 703. https://doi.org/10.3390/rs11060703
APA StyleBarone, A., Fedi, M., Tizzani, P., & Castaldo, R. (2019). Multiscale Analysis of DInSAR Measurements for Multi-Source Investigation at Uturuncu Volcano (Bolivia). Remote Sensing, 11(6), 703. https://doi.org/10.3390/rs11060703