Remote Sensing of Mangroves and Estuarine Communities in Central Queensland, Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Image Analysis
2.3. Image Classification
2.4. Accuracy Assessment
2.5. Change Detection
3. Results
3.1. Post Classification Change Analysis
3.2. Image Interpretation
3.3. Thematic Change Dynamics
3.4. Time Series Analysis
4. Discussion
4.1. Change Dynamics in Estuarine Ecosystems
4.2. Comparison with SLATS
4.3. Limitations of the Study
4.4. Implications for the Conservation of Estuarine Ecosystems
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Allgeier, J.E.; Layman, C.A.; Mumby, P.J.; Rosemond, A.D. Biogeochemical implications of biodiversity and community structure across multiple coastal ecosystems. Ecol. Monogr. 2015, 85, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Cloern, J.E.; Abreu, P.C.; Carstensen, J.; Chauvaud, L.; Elmgren, R.; Grall, J.; Greening, H.; Johansson, J.O.; Kahru, M.; Sherwood, E.T.; et al. Human activities and climate variability drive fast-paced change across the world’s estuarine-coastal ecosystems. Glob. Chang. Biol. 2016, 22, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Al-Nasrawi, A.; Hopley, C.; Hamylton, S.; Jones, B. A spatio-temporal assessment of landcover and coastal changes at Wandandian Delta System, Southeastern Australia. J. Mar. Sci. Eng. 2017, 5, 55. [Google Scholar] [CrossRef] [Green Version]
- Ballanti, L.; Byrd, K.; Woo, I.; Ellings, C. Remote sensing for wetland mapping and historical change detection at the Nisqually River Delta. Sustainability 2017, 9, 191. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Lu, D.; Wu, M.; Shao, X.; Wei, J. Examining land cover and greenness dynamics in Hangzhou Bay in 1985–2016 using Landsat time-series data. Remote Sens. 2017, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Lucas, R.; Bunting, P.; Verbesselt, J.; Armston, J. Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, Australia. Remote Sens. Environ. 2015, 158, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Reuter, K.E.; Juhn, D.; Grantham, H.S. Integrated land-sea management: Recommendations for planning, implementation and management. Environ. Conserv. 2016, 43, 181–198. [Google Scholar] [CrossRef]
- Sheaves, M.; Barnett, A.; Bradley, M.; Abrantes, K.G.; Brians, M.; James Cook University. Life History Specific Habitat Utilisation of Tropical Fisheries Species; FRDC Project No 2013-046; James Cook University: Townsville, Australia, 2016. [Google Scholar]
- Peirson, W.; Davey, E.; Jones, A.; Hadwen, W.; Bishop, K.; Beger, M.; Capon, S.; Fairweather, P.; Creese, B.; Smith, T.F.; et al. Opportunistic management of estuaries under climate change: A new adaptive decision-making framework and its practical application. J. Environ. Manag. 2015, 163, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Creighton, C.; Boon, P.I.; Brookes, J.D.; Sheaves, M. Repairing Australia’s estuaries for improved fisheries production—What benefits, at what cost? Mar. Freshw. Res. 2015, 66, 493–507. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.C. The value of estuarine & coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar]
- van der Stocken, T.; Carroll, D.; Menemenlis, D.; Simard, M.; Koedam, N. Global-scale dispersal and connectivity in mangroves. Proc. Natl. Acad. Sci. USA 2019, 116, 915–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, K.; Congalton, R.; Tukman, M. Imagery and GIS: Best Practices for Extracting Information from Imagery; Esri Press: Redlands, CA, USA, 2017. [Google Scholar]
- Ferro-Azcona, H.; Espinoza-Tenorio, A.; Calderón-Contreras, R.; Ramenzoni, V.C.; Gómez País, M.; Mesa-Jurado, M.A. Adaptive capacity and social-ecological resilience of coastal areas: A systematic review. Ocean Coast. Manag. 2019, 173, 36–51. [Google Scholar] [CrossRef]
- Commonwealth of Australia. Reef 2050 Long-Term Sustainability Plan-July 2018; Department of the Environment, Commonwealth of Australia: Canberra, Australia, 2018; pp. 9–13, 92–93. [Google Scholar]
- Fang, X.; Hou, X.; Li, X.; Hou, W.; Nakaoka, M.; Yu, X. Ecological connectivity between land and sea: A review. Ecol. Res. 2018, 33, 51–61. [Google Scholar] [CrossRef]
- Schaffelke, B.; Mellors, J.; Duke, N.C. Water quality in the Great Barrier Reef region: Responses of mangrove, seagrass and macroalgal communities. Mar. Pollut. Bull. 2005, 51, 279–296. [Google Scholar] [CrossRef] [PubMed]
- Spalding, M.D.; Ruffo, S.; Lacambra, C.; Meliane, I.; Hale, L.Z.; Shepard, C.C.; Beck, M.W. The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards. Ocean Coast. Manag. 2014, 90, 50–57. [Google Scholar] [CrossRef]
- Queensland Herbarium. Regional Ecosystem Description Database (REDD) Version 11 (December 2018). Available online: https://apps.des.qld.gov.au/regional-ecosystems/ (accessed on 1 March 2019).
- Reef Catchments Limited. Natural Resource Management Plan, Mackay Whitsunday Isaac 2014–2024; Reef Catchments Limited: Mackay, Australia, 2014; pp. 1–29, 60–87. [Google Scholar]
- Moore, M. Mackay Whitsunday Fish Barrier Prioritisation Report; Catchment Solutions: Mackay, Australia, 2015. [Google Scholar]
- Duke, N.C.; Roelfsema, C.; Tracey, D.; Godson, L. Preliminary Investigation into the Dieback of Mangroves in the Mackay Region: Initial Assessment and Primary Causes; University of Queensland: Brisbane, Australia, 2001. [Google Scholar]
- Sheaves, M.; Brookes, J.; Coles, R.; Freckelton, M.; Groves, P.; Johnston, R.; Winberg, P. Repair and revitalisation of Australia’s tropical estuaries and coastal wetlands: Opportunities and constraints for the reinstatement of lost function and productivity. Mar. Policy 2014, 47, 23–38. [Google Scholar] [CrossRef]
- Olds, A.D.; Connolly, R.M.; Pitt, K.A.; Pittman, S.J.; Maxwell, P.S.; Huijbers, C.M.; Moore, B.R.; Albert, S.; Rissik, D.; Babcock, R.C.; et al. Quantifying the conservation value of seascape connectivity: A global synthesis. Glob. Ecol. Biogeogr. 2015, 25, 3–15. [Google Scholar] [CrossRef]
- Carrasquilla-Henao, M.; Juanes, F. Mangroves enhance local fisheries catches: A global meta-analysis. Fish Fish. 2016, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Manson, F.J.; Loneragan, N.R.; Skilleter, G.A.; Phinn, S.R. An evaluation of the evidence for linkages between mangroves and fisheries. Oceanogr. Mar. Biol. 2005, 43, 485–515. [Google Scholar]
- Adam, P. Salt Marsh Restoration. In Coastal Wetlands, 2nd ed.; Perillo, G.M.E., Wolanski, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 817–861. [Google Scholar] [CrossRef]
- Great Barrier Reef Marine Park Authority. Great Barrier Reef Region Strategic Assessment: Strategic Assessment Report; GBRMPA: Townsville, Australia, 2014; pp. 197–281, 325–327, 441–476. [Google Scholar]
- Creighton, C. Revitalising Australia’s Estuaries; Final Report—2012-036-DLD; Fisheries Research and Development Corporation: Canberra, Australia, 2013; pp. 1–38, 145–165. [Google Scholar]
- DeFries, R.; Karanth, K.K.; Pareeth, S. Interactions between protected areas and their surroundings in human-dominated tropical landscapes. Biol. Conserv. 2010, 143, 2870–2880. [Google Scholar] [CrossRef]
- Jones, D.A.; Hansen, A.J.; Bly, K.; Doherty, K.; Verschuyl, J.P.; Paugh, J.I.; Carle, R.; Story, S.J. Monitoring land use and cover around parks: A conceptual approach. Remote Sens. Environ. 2009, 113, 1346–1356. [Google Scholar] [CrossRef]
- Macintosh, A. The National Greenhouse Accounts & Land Clearing: Do the Numbers Stack Up? Research Paper No. 38; Australia Institute: Canberra, Australia, 2007. [Google Scholar]
- Singh, A. Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Li, G.; Moran, E. Current situation and needs of change detection techniques. Int. J. Image Data Fusion 2014, 5, 13–38. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Haque, M.I.; Basak, R. Land cover change detection using GIS and remote sensing techniques: A spatio-temporal study on Tanguar Haor, Sunamganj, Bangladesh. Egypt. J. Rem. Sens. Space Sci. 2017, 20, 251–263. [Google Scholar] [CrossRef]
- Jones, T.; Glass, L.; Gandhi, S.; Ravaoarinorotsihoarana, L.; Carro, A.; Benson, L.; Ratsimba, H.; Giri, C.; Randriamanatena, D.; Cripps, G. Madagascar’s mangroves: Quantifying nation-wide and ecosystem specific dynamics, and detailed contemporary mapping of distinct ecosystems. Remote Sens. 2016, 8, 106. [Google Scholar] [CrossRef] [Green Version]
- Richards, J.A.; Jia, X. Remote Sensing Digital Image Analysis: An Introduction, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–78, 137–160, 193–238, 295–328, 389–413, 423–428. [Google Scholar]
- Barik, K.K.; Mitra, D.; Annadurai, R.; Tripathy, J.K.; Nanda, S. Geospatial analysis of coastal environment: A case study on Bhitarkanika mangroves, East coast of India. Indian J. Geo-Mar. Sci. 2016, 45, 492–498. [Google Scholar]
- Xu, C.; Pu, L.; Zhu, M.; Li, J.; Chen, X.; Wang, X.; Xie, X. Ecological security and ecosystem services in response to land use change in the coastal area of Jiangsu, China. Sustainability 2016, 8, 816. [Google Scholar] [CrossRef] [Green Version]
- Folkers, A.; Rohde, K.; Delaney, K.; Flett, I. Mackay Whitsunday Water Quality Improvement Plan 2014–2021; Reef Catchments (Mackay Whitsunday Isaac) Limited: Mackay, Australia, 2014; pp. 11–33, 43–63, 107. [Google Scholar]
- Pascoe, S.; Innes, J.; Tobin, R.; Stoeckle, N.; Paredes, S.; Dauth, K. Beyond GVP: The Value of Inshore Commercial Fisheries to Fishers and Consumers in Regional Communities on Queensland’s East Coast; FRDC Project No 2013-301; Fisheries Research and Development Corporation: Canberra, Australia, 2016; pp. 1–79. [Google Scholar]
- Webley, J.; McInnes, K.; Teixeira, D.; Lawson, A.; Quinn, R. Statewide Recreational Fishing Survey 2013-14; Department of Agriculture and Fisheries: Brisbane, Australia, 2015; pp. 82–83. [Google Scholar]
- Reef Catchments. State of the Region Report, Mackay Whitsunday Isaac; Reef Catchments: Mackay, Australia, 2013. [Google Scholar]
- Department of the Environment. Directory of Important Wetlands in Australia, Sarina Inlet-Ince Bay Aggregation-QLD053. Available online: https://www.environment.gov.au/cgi-bin/wetlands/report.pl (accessed on 1 March 2019).
- IUCN. World Database on Protected Areas Cape Palmerston-Rocky Dam in Australia. Available online: https://protectedplanet.net/23846 (accessed on 1 March 2019).
- Duke, N.C.; Larkum, A.W.D. Mangroves and Seagrasses. In The Great Barrier Reef: Biology, Environment and Management; Hutchings, P., Kingsford, M., Eds.; CSIRO Publishing: Collingwood, Australia, 2008; pp. 1–18. [Google Scholar]
- Bureau of Meteorology. Australian Hydrological Geospatial Fabric (Geofabric) Product Guide Version 3.0; Bureau of Meteorology: Canberra, Australia, 2015. [Google Scholar]
- USGS. Landsat Collection 1 Level 1 Product Definition Version 1.0; United States Geological Survey: South Dakota, USA, 2017. [Google Scholar]
- Lyons, M.B.; Phinn, S.R.; Roelfsema, C.M. Long term land cover and seagrass mapping using Landsat and object-based image analysis from 1972 to 2010 in the coastal environment of South East Queensland, Australia. ISPRS J. Photogramm. Remote Sens. 2012, 71, 34–46. [Google Scholar] [CrossRef]
- Bureau of Meteorology. Tide Predictions for Australia, South Pacific and Antarctica. Available online: http://www.bom.gov.au/australia/tides/ (accessed on 1 March 2019).
- Kuenzer, C.; Bluemel, A.; Gebhardt, S.; Quoc, T.V.; Dech, S. Remote sensing of mangrove ecosystems: A review. Remote Sens. 2011, 3, 878–928. [Google Scholar] [CrossRef] [Green Version]
- Neldner, V.J.; Niehus, R.E.; Wilson, B.A.; McDonald, W.J.F.; Ford, A.J.; Accad, A. The Vegetation of Queensland: Descriptions of Broad Vegetation Groups. Version 4.0; Queensland Herbarium, Department of Environment and Science: Brisbane, Australia, 2019. [Google Scholar]
- Australian Bureau of Agricultural and Resource Economics and Sciences. Guidelines for Land Use Mapping in Australia: Principles, Procedures and Definitions, 4th ed.; Australian Bureau of Agricultural and Resource Economics and Sciences: Canberra, Australia, 2011. [Google Scholar]
- Long, J.B.; Giri, C. Mapping the Philippines’ mangrove forests using Landsat imagery. Sensors 2011, 11, 2972–2981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto-Berelov, M.; Hislop, S. Approaches Used for Pixel Based Time Series Analysis of Landsat Data: Literature Review; RMIT University: Melbourne, Australia, 2016. [Google Scholar]
- Vogelmann, J.E.; Gallant, A.L.; Shi, H.; Zhu, Z. Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data. Remote Sens. Environ. 2016, 185, 258–270. [Google Scholar] [CrossRef] [Green Version]
- Abdul Aziz, A.; Phinn, S.; Dargusch, P.; Omar, H.; Arjasakusuma, S. Assessing the potential applications of Landsat image archive in the ecological monitoring and management of a production mangrove forest in Malaysia. Wetl. Ecol. Manag. 2015, 23, 1049–1066. [Google Scholar] [CrossRef]
- Nguyen, H.-H.; McAlpine, C.; Pullar, D.; Johansen, K.; Duke, N.C. The relationship of spatial–temporal changes in fringe mangrove extent and adjacent land-use: Case study of Kien Giang coast, Vietnam. Ocean Coast. Manag. 2013, 76, 12–22. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.; Pearson Education: Glenview, IL, USA, 2015; pp. 501–582. [Google Scholar]
- El-Hattab, M.M. Applying post classification change detection technique to monitor an Egyptian coastal zone (Abu Qir Bay). Egypt. J. Rem. Sens. Space Sci. 2016, 19, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Ajai; Bahuguna, A.; Chauhan, H.B.; Sen Sarma, K.; Bhattacharya, S.; Ashutosh, S.; Pandey, C.N.; Thangaradjou, T.; Gnanppazham, L.; Selvam, V.; et al. Mangrove inventory of India at community level. Natl. Acad. Sci. Lett. 2013, 36, 67–77. [Google Scholar] [CrossRef]
- Saintilan, N.; Rogers, K.; Kelleway, J.J.; Ens, E.; Sloane, D.R. Climate change impacts on the coastal wetlands of Australia. Wetlands 2018, 38, 1–10. [Google Scholar] [CrossRef]
- Kanniah, K.; Sheikhi, A.; Cracknell, A.; Goh, H.; Tan, K.; Ho, C.; Rasli, F. Satellite images for monitoring mangrove cover changes in a fast growing economic region in Southern Peninsular Malaysia. Remote Sens. 2015, 7, 14360–14385. [Google Scholar] [CrossRef] [Green Version]
- Tran, L.X.; Fischer, A. Spatiotemporal changes and fragmentation of mangroves and its effects on fish diversity in Ca Mau Province (Vietnam). J. Coast Conserv. 2017, 21, 355–368. [Google Scholar] [CrossRef]
- Olds, A.D.; Albert, S.; Maxwell, P.S.; Pitt, K.A.; Connolly, R.M. Mangrove-reef connectivity promotes the effectiveness of marine reserves across the western Pacific. Glob. Ecol. Biogeogr. 2013, 22, 1040–1049. [Google Scholar] [CrossRef] [Green Version]
- Eyoh, A.; Ebom, O. Spatio-temporal analysis of land use/land cover change trend of Akwa Ibom State, Nigeria from 1986–2016 using remote sensing and GIS. Intl. J. Sci. Res. 2015, 5, 1805–1809. [Google Scholar] [CrossRef]
- Jones, T.; Ratsimba, H.; Ravaoarinorotsihoarana, L.; Glass, L.; Benson, L.; Teoh, M.; Carro, A.; Cripps, G.; Giri, C.; Gandhi, S.; et al. The dynamics, ecological variability and estimated carbon stocks of mangroves in Mahajamba Bay, Madagascar. J. Mar. Sci. Eng. 2015, 3, 793–820. [Google Scholar] [CrossRef] [Green Version]
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duke, N.C.; Kovacs, J.M.; Griffiths, A.D.; Preece, L.; Hill, D.J.E.; van Oosterzee, P.; Mackenzie, J.; Morning, H.S.; Burrows, D. Large-scale dieback of mangroves in Australia. Mar. Freshw. Res. 2017, 68, 1816–1829. [Google Scholar] [CrossRef]
- Hickey, S.M.; Phinn, S.R.; Callow, N.J.; Van Niel, K.P.; Hansen, J.E.; Duarte, C.M. Is climate change shifting the poleward limit of mangroves? Estuaies Coasts 2017, 40, 1215–1226. [Google Scholar] [CrossRef]
- Rodriguez, W.; Feller, I.C.; Cavanaugh, K.C. Spatio-temporal changes of a mangrove–saltmarsh ecotone in the northeastern coast of Florida, USA. Glob. Ecol. Conserv. 2016, 7, 245–261. [Google Scholar] [CrossRef]
- Asbridge, A.; Lucas, R.; Accad, A.; Dowling, R. Mangrove response to environmental changes predicted under varying climates: Case studies from Australia. Curr. For. Rep. 2015, 1, 178–194. [Google Scholar] [CrossRef] [Green Version]
- Hoque, M.A.-A.; Phinn, S.; Roelfsema, C. A systematic review of tropical cyclone disaster management research using remote sensing and spatial analysis. Ocean Coast. Manag. 2017, 146, 109–120. [Google Scholar] [CrossRef]
- McInnes, K. Wet Tropics Cluster Report, Climate Change in Australia: Projections for Australia’s Natural Resource Management Regions; CSIRO and Bureau of Meteorology: Canberra, Australia, 2015. [Google Scholar]
- Al-Hamdan, M.Z.; Oduor, P.; Flores, A.I.; Kotikot, S.M.; Mugo, R.; Ababu, J.; Farah, H. Evaluating land cover changes in Eastern and Southern Africa from 2000 to 2010 using validated Landsat and MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 8–26. [Google Scholar] [CrossRef]
- Chen, C.-F.; Son, N.-T.; Chang, N.-B.; Chen, C.-R.; Chang, L.-Y.; Valdez, M.; Centeno, G.; Thompson, C.; Aceituno, J. Multi-decadal mangrove forest change detection and prediction in Honduras, Central America, with Landsat Imagery and a markov chain model. Remote Sens. 2013, 5, 6408–6426. [Google Scholar] [CrossRef] [Green Version]
- Kingsford, R. Flow alteration and its effect on Australia’s riverine vegetation. In Vegetation of Australian Riverine Landscapes: Biology, Ecology and Management; Capon, S., James, C., Eds.; CSIRO Publishing: Clayton South, Australia, 2016; pp. 261–268. [Google Scholar]
- Greet, J.; Cousens, R.D.; Webb, J.A. More exotic and fewer native plant ppecies: Riverine vegetation patterns pssociated with altered seasonal flow patterns. River Res. Appl. 2013, 29, 686–706. [Google Scholar] [CrossRef]
- Greet, J.O.E.; Webb, J.A.; Cousens, R.D. The importance of seasonal flow timing for riparian vegetation dynamics: A systematic review using causal criteria analysis. Freshw. Biol. 2011, 56, 1231–1247. [Google Scholar] [CrossRef]
- Das, R.T.; Pal, S. Exploring geospatial changes of wetland in different hydrological paradigms using water presence frequency approach in Barind Tract of West Bengal. Spat. Inf. Res. 2017, 25, 467–479. [Google Scholar] [CrossRef]
- Antwi, E.K.; Boakye-Danquah, J.; Asabere, S.B.; Yiran, G.A.B.; Loh, S.K.; Awere, K.G.; Abagale, F.K.; Asubonteng, K.O.; Attua, E.M.; Owusu, A.B. Land use and landscape structural changes in the ecoregions of Ghana. J. Disaster Res. 2014, 9, 452–467. [Google Scholar] [CrossRef] [Green Version]
- Gonneea, M.E.; Maio, C.V.; Kroeger, K.D.; Hawkes, A.D.; Mora, J.; Sullivan, R.; Madsen, S.; Buzard, R.M.; Cahill, N.; Donnelly, J.P. Salt marsh ecosystem restructuring enhances elevation resilience and carbon storage during accelerating relative sea-level rise. Estuar. Coast. Shelf Sci. 2019, 217, 56–68. [Google Scholar] [CrossRef]
- Wegscheidl, C.J.; Sheaves, M.; McLeod, I.M.; Hedge, P.T.; Gillies, C.L.; Creighton, C. Sustainable management of Australia’s coastal seascapes: A case for collecting and communicating quantitative evidence to inform decision-making. Wetl. Ecol. Manag. 2016, 25, 3–22. [Google Scholar] [CrossRef]
- Ward, D.P.; Petty, A.; Setterfield, S.A.; Douglas, M.M.; Ferdinands, K.; Hamilton, S.K.; Phinn, S. Floodplain inundation and vegetation dynamics in the Alligator Rivers region (Kakadu) of northern Australia assessed using optical and radar remote sensing. Remote Sens. Environ. 2014, 147, 43–55. [Google Scholar] [CrossRef]
- Jones, C.; Vesk, P. Grazing. In Vegetation of Australian Riverine Landscapes: Biology, Ecology and Management; Capon, S., James, C., Eds.; CSIRO Publishing: Clayton South, Australia, 2016; Chapter 17; pp. 307–323. [Google Scholar]
- Brock, M.A. Australian wetland plants and wetlands in the landscape: Conservation of diversity and future management. Aquat. Ecosyst. Health Manag. 2003, 6, 29–40. [Google Scholar] [CrossRef]
- Toure, M.A.; Ndiaye, M.L.; Traore, V.B.; Faye, G.; Cisse, B.; Ndiaye, A.; Wade, C.T. Using of Landsat images for land use changes detection in the ecosystem: A case study of the Senegal River Delta. Int. J. Environ. Agric. Biotechnol. 2016, 1, 200–209. [Google Scholar]
- Department of Environment and Science. Land Cover Change in Queensland 2016–17-and-2017–18: A Statewide Landcover and Trees Study (SLATS) Summary Report; Department of Environment and Science: Brisbane, Australia, 2018. [Google Scholar]
- Simmons, B.A.; Law, E.A.; Marcos-Martinez, R.; Bryan, B.A.; McAlpine, C.; Wilson, K.A. Spatial and temporal patterns of land clearing during policy change. Land Use Policy 2018, 75, 399–410. [Google Scholar] [CrossRef]
- Department of Environment and Science. Statewide Landcover and Trees Study (SLATS): Overview of Method; Department of Environment and Science: Brisbane, Australia, 2018. [Google Scholar]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Foody, G.M. Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sens. Environ. 2010, 114, 2271–2285. [Google Scholar] [CrossRef] [Green Version]
- Younes Cárdenas, N.; Joyce, K.E.; Maier, S.W. Monitoring mangrove forests: Are we taking full advantage of technology? Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Tian, Q. A mangrove recognition index for remote sensing of mangrove forest from space. Curr. Sci. 2013, 105, 1149–1155. [Google Scholar]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Lucas, R.; Lule, A.V.; Rodríguez, M.T.; Kamal, M.; Thomas, N.; Asbridge, E.; Kuenzer, C. Spatial ecology of mangrove forests: A remote sensing perspective. In Mangrove Ecosystems: A Global Biogeographic Perspective; Rivera-Monroy, V.H., Lee, S.Y., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 87–112. [Google Scholar]
- Rogers, K.; Boon, P.I.; Branigan, S.; Duke, N.C.; Field, C.D.; Fitzsimons, J.A.; Kirkman, H.; Mackenzie, J.R.; Saintilan, N. The state of legislation and policy protecting Australia’s mangrove and salt marsh and their ecosystem services. Mar. Policy 2016, 72, 139–155. [Google Scholar] [CrossRef]
- Phinn, S.; Joyce, K.; Scarth, P.; Roelfsema, C. The role of integrated information acquisition and management in the analysis of coastal ecosystem change. In Remote Sensing of Aquatic Coastal Ecosystem Processes: Science and Management Applications; Richardson, L.L., LeDrew, E.F., Eds.; Springer: Dordrecht, The Netherlands, 2006; Volume 9, pp. 217–249. [Google Scholar]
- Watson, J.E.; Evans, M.C.; Carwardine, J.; Fuller, R.A.; Joseph, L.N.; Segan, D.B.; Taylor, M.F.; Fensham, R.J.; Possingham, H.P. The capacity of Australia’s protected-area system to represent threatened species. Conserv. Biol. 2011, 25, 324–332. [Google Scholar] [CrossRef]
- Jones, K.R.; Venter, O.; Fuller, R.A.; Allan, J.R.; Maxwell, S.L.; Negret, P.J.; Watson, J.E.M. One-third of global protected land is under intense human pressure. Science 2018, 360, 788–791. [Google Scholar] [CrossRef] [Green Version]
- Department of the Environment. Broad Leaf Tea-Tree (Melaleuca Viridiflora) Woodlands in High Rainfall Coastal North Queensland. In Community and Species Profile and Threats Database. Available online: http://www.environment.gov.au/sprat (accessed on 1 March 2019).
- Department of the Environment. Subtropical and temperate coastal saltmarsh. In Community and Species Profile and Threats Database. Available online: http://www.environment.gov.au/sprat (accessed on 1 March 2019).
- McLeod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Abbot, J.; Marohasy, J. Has the herbicide diuron caused mangrove dieback? A re-examination of the evidence. Hum. Ecol. Risk Assess. Int. J. 2011, 17, 1077–1094. [Google Scholar] [CrossRef]
- Duke, N.C.; Bell, A.M.; Pederson, D.K.; Roelfsema, C.M.; Bengtson Nash, S. Herbicides implicated as the cause of severe mangrove dieback in the Mackay region, NE Australia: Consequences for marine plant habitats of the GBR World Heritage Area. Mar. Pollut. Bull. 2005, 51, 308–324. [Google Scholar] [CrossRef] [PubMed]
- Lucas, R.; Finlayson, C.M.; Bartolo, R.; Rogers, K.; Mitchell, A.; Woodroffe, C.D.; Asbridge, E.; Ens, E. Historical perspectives on the mangroves of Kakadu National Park. Mar. Freshw. Res. 2018, 69, 1047–1063. [Google Scholar] [CrossRef]
- Barbier, E.B. The value of coastal wetland ecosystem services. In Coastal Wetlands: An Integrated Ecosystem Approach, 2nd ed.; Perillo, G.M.E., Wolanski, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 947–964. [Google Scholar]
- Sippo, J.Z.; Lovelock, C.E.; Santos, I.R.; Sanders, C.J.; Maher, D.T. Mangrove mortality in a changing climate: An overview. Estuar. Coast. Shelf Sci. 2018, 215, 241–249. [Google Scholar] [CrossRef]
- Emanuel, K.A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA 2013, 110, 12219–12224. [Google Scholar] [CrossRef] [Green Version]
- CSIRO; Bureau of Meteorology. Climate Change in Australia: Projections for Australia’s Natural Resource Management Regions; CSIRO and Bureau of Meteorology: Canberra, Australia, 2015. [Google Scholar]
- Waterhouse, J.; Schaffelke, B.; Bartley, R.; Eberhard, R.; Brodie, J.; Star, M.; Thorburn, P.; Rolfe, J.; Ronan, M.; Taylor, B.; et al. 2017 Scientific Consensus Statement: Land Use Impacts on Great Barrier Reef Water Quality and Ecosystem Condition; Queensland Government: Brisbane, Australia, 2017. [Google Scholar]
Regional Ecosystem | Extent in Reserves | Description | Structure |
---|---|---|---|
8.1.4 | Low | Schoenoplectus subulatus and/or Eleocharis dulcis sedgeland or Paspalum vaginatum tussock grassland | Sedgeland |
8.1.5 | Low | Melaleuca spp and/or Eucalyptus tereticornis and/or Corymbia tessellaris with a ground stratum of salt tolerant grasses and sedges, in a narrow zone adjoining tidal ecosystems | Woodland |
8.2.2 | Low | Semi-evergreen microphyll vine thicket to vine forest on coastal dunes | Closed forest |
8.3.1 | Low | Semi-deciduous to evergreen notophyll to mesophyll vine forest and/or sclerophyll emergent forest, fringing streams or in the vicinity of water courses | Closed forest, riverine wetland or fringing riverine wetland |
8.3.2 | Low | Melaleuca viridiflora var. viridiflora on seasonally inundated alluvial plains with impeded drainage | Woodland on floodplain |
8.3.4 | Low | Freshwater wetlands with permanent water and aquatic vegetation | Forbland, palustrine wetland (e.g., vegetated swamp) |
8.3.5 | Low | Eucalyptus platyphylla and/or Lophostemon suaveolens and/or Corymbia clarksoniana woodland on alluvial plains | Open Forest |
8.5.3 | Low | Eucalyptus drepanophylla and/or Corymbia clarksoniana and/or E. platyphylla and/or C. dallachiana and/or Melaleuca viridiflora woodland on broad low rises and gently sloping tertiary sand planes | Woodland |
8.12.26 | Low | Corymbia tessellaris and/or Eucalyptus tereticornis open forest on hill slopes of islands and coastal areas on Mesozoic-to-Proterozoic igneous rocks, as well as tertiary acid-to-intermediate volcanic rocks; habitat for the Proserpine Rock Wallaby | Open Forest |
8.12.27 | Low | Corymbia tessellaris and/or Eucalyptus tereticornis and/or C. intermedia and/or C. clarksoniana open forest with a secondary tree layer of Livistona decora on low hills on Mesozoic-to-Proterozoic igneous rocks | Open Forest |
Image Date | Identifier | Observed Sea Level (m) |
---|---|---|
13 August 2004 | Path 92 Row 75 | 4.361 |
3 August 2006 | Path 92 Row 75 | 2.871 |
28 September 2009 | Path 92 Row 75 | 4.582 |
7 August 2013 | Path 92 Row 75 | 4.736 |
12 August 2015 | Path 92 Row 75 | 4.572 |
27 April 2017 | Path 92 Row 75 | 6.66 |
Class | Class Type | Class Description |
---|---|---|
1 | Cropping/Grazing | Lands covered with temporary crops followed by harvest and a bare soil period/pasture land used for grazing cattle |
2 | Oceanic | Coastal seawater occurring along the coastline and seaward, including the estuaries and mouths of rivers and streams |
3 | Sand beach | Smooth, sloping accumulations of sand and gravel along the shoreline |
4 | Estuarine wetland | Coastal tree swamps that are non-tidal, wooded wetlands and are covered or saturated by water for all or part of the year; includes emergent vegetation, riparian vegetations, and riverine and palustrine wetlands (e.g., vegetated swamps). Covers the habitat types of Melaleuca spp. and Eucalyptus spp, |
5 | Open forest | Grades from woodland species 18–30 m tall to open forest up to 50 m tall, e.g., Eucalyptus tereticornis, Eucalyptus platyphylla on parallel dunes, alluvial plains, undulating low hills, lowlands and foothills, frequently with a shrub layer of Acacia spp. |
6 | Mangrove forest | Closed forest to open shrubland of mangrove species, the seaward edge and fringe of waterways dominated by Rhizophora stylosa, with Ceriops tagel and Bruguiera spp in the lower intertidal. Situated on marine clay plains and estuaries |
7 | Saltpan | Samphire open forbland on saltpans and plains adjacent to mangroves |
8 | Bare mudflat | Tidal flats of coastal wetland areas where sediments have been deposited by tides and rivers/streams, composed of estuarine silts, clays, and marine animal detritus |
9 | Saltmarsh grass | Sporobolus virginicus tussock grassland and other ground layer species on marine sediments; usually forms a narrow belt between mangroves and alluvial communities in the upper coastal intertidal zone between land and open saltwater or brackish water that is regularly flooded by the tides |
Land Class Name | Producer’s Accuracy (%) | User’s Accuracy (%) | ||
---|---|---|---|---|
2004 | 2017 | 2004 | 2017 | |
Cropping_Grazing | 0.84 | 0.84 | 0.83 | 0.91 |
Oceanic | 0.92 | 0.97 | 1.00 | 1.00 |
Sand beach | 1.00 | 0.83 | 1.00 | 0.50 |
Open forest | 0.86 | 0.95 | 0.98 | 1.00 |
Mangrove forest | 0.81 | 0.87 | 0.95 | 0.96 |
Estuarine wetland | 0.72 | 0.90 | 0.72 | 0.69 |
Saltpan | 1.00 | 0.96 | 1.00 | 0.86 |
Bare mudflat | 1.00 | 0.93 | 0.51 | 1.00 |
Saltmarsh grass | 0.92 | 1.00 | 0.39 | 0.67 |
Producer’s accuracy | 0.89 | 0.94 | ||
Overall accuracy | 0.95% | 100% | ||
Kappa coefficient | 0.85 | 0.92 |
Land Use Class | Pixel Count 2017 | Area in 2017 (Ha) | Percent Area in 2017 (%) | Percent Area Increase (Decrease) from 2004 to 2017 (%) | Increase (Decrease) from 2004 to 2017 (Ha) |
---|---|---|---|---|---|
Mangrove forest | 40,018 | 3601 | 5.53 | −3.31 | −1147 |
Estuarine wetland | 37,643 | 3388 | 5.21 | −3.88 | −1496 |
Saltmarsh grass | 25,860 | 2327 | 3.57 | −3.65 | −1551 |
Bare mudflat | 18,925 | 1703 | 2.6 | −5.49 | −2627 |
Saltpan | 41,980 | 3778 | 5.8 | 1.69 | 1565 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chamberlain, D.; Phinn, S.; Possingham, H. Remote Sensing of Mangroves and Estuarine Communities in Central Queensland, Australia. Remote Sens. 2020, 12, 197. https://doi.org/10.3390/rs12010197
Chamberlain D, Phinn S, Possingham H. Remote Sensing of Mangroves and Estuarine Communities in Central Queensland, Australia. Remote Sensing. 2020; 12(1):197. https://doi.org/10.3390/rs12010197
Chicago/Turabian StyleChamberlain, Debbie, Stuart Phinn, and Hugh Possingham. 2020. "Remote Sensing of Mangroves and Estuarine Communities in Central Queensland, Australia" Remote Sensing 12, no. 1: 197. https://doi.org/10.3390/rs12010197
APA StyleChamberlain, D., Phinn, S., & Possingham, H. (2020). Remote Sensing of Mangroves and Estuarine Communities in Central Queensland, Australia. Remote Sensing, 12(1), 197. https://doi.org/10.3390/rs12010197