Responses of Water Use Efficiency to Drought in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Analysis
3. Results
3.1. Spatial and Temporal Variations of Drought in Southwest China
3.2. Spatial and Temporal Variations of WUE in Southwest China
3.3. Responses of WUE to Drought in Southwest China
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ito, A.; Inatomi, M. Water-use efficiency of the terrestrial biosphere: A model analysis focusing on interactions between the global carbon and water cycles. J. Hydrometeorol. 2012, 13, 681–694. [Google Scholar] [CrossRef]
- Aguilos, M.; Stahl, C.; Burban, B.; Herault, B.; Courtois, E.A.; Coste, S.; Wagner, F.; Ziegler, C.; Takagi, K.; Bonal, D. Interannual and seasonal variations in ecosystem transpiration and water use efficiency in a tropical rainforest. Forests 2019, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Yang, Y.T.; Shang, S.H. Evaluation on irrigation efficiency of irrigation district in arid region based on evapotranspiration estimated from remote sensing data. Trans. Chin. Soc. Agric. Eng. 2013, 29, 95–101. [Google Scholar]
- Keenan, T.F.; Hollinger, D.Y.; Bohrer, G.; Dragoni, D.; Munger, J.W.; Schmid, H.P.; Richardson, A.D. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 2013, 499, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Guerrieri, R.; Belmecheri, S.; Ollinger, S.V.; Asbjornsen, H.; Jennings, K.A.; Xiao, J.F.; Stocker, B.D.; Martin, M.E.; Hollinger, D.Y.; Brachogarrillo, R.; et al. Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proc. Natl. Acad. Sci. USA 2019, 116, 16909–16914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.J.; Yu, G.R.; Wang, Q.F.; Hu, Z.M.; Zheng, H.; Li, S.G.; Sun, X.M.; Zhang, Y.P.; Yan, J.H.; Wang, H.M.; et al. Spatial variability of water use efficiency in China’s terrestrial ecosystems. Glob. Planet. Chang. 2015, 129, 37–44. [Google Scholar] [CrossRef]
- Wang, M.J.; Chen, Y.H.; Wu, X.C.; Bai, Y. Forest-type-dependent water use efficiency trends across the northern hemisphere. Geophys. Res. Lett. 2018, 45, 8283–8293. [Google Scholar] [CrossRef]
- Liu, Y.B.; Xiao, J.F.; Ju, W.M.; Zhou, Y.L.; Wang, S.Q.; Wu, X.C. Water use efficiency of China’s terrestrial ecosystems and responses to drought. Sci. Rep. 2015, 5, 13799. [Google Scholar] [CrossRef]
- Guo, L.M.; Sun, F.B.; Liu, W.B.; Zhang, Y.G.; Wang, H.; Cui, H.J.; Wang, H.Q.; Zhang, J.; Du, B.X. Response of ecosystem water use efficiency to drought over China during 1982–2015: Spatiotemporal variability and resilience. Forests 2019, 10, 598. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.T.; Guan, H.D.; Batelaan, O.; Mcvicar, T.R.; Long, D.; Piao, S.L.; Liang, W.; Liu, B.; Jin, Z.; Simmons, C.T. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Sci. Rep. 2016, 6, 23284. [Google Scholar] [CrossRef] [Green Version]
- Schwalm, C.R.; Anderegg, W.R.L.; Michalak, A.M.; Fisher, J.B.; Biondi, F.; Koch, G.W.; Litvak, M.E.; Ogle, K.; Shaw, G.D.; Wolf, A.; et al. Global patterns of drought recovery. Nature 2017, 7666, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Trenberth, K.E.; Dai, A.; Gerard, V.D.S.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Chang. 2013, 4, 17–22. [Google Scholar] [CrossRef]
- Mohammad, A.H.; Jung, H.C.; Odeh, T.; Bhuiyan, C.; Hussein, H. Understanding the impact of droughts in the Yarmouk Basin, Jordan: Monitoring droughts through meteorological and hydrological drought indices. Arab. J. Geosci. 2018, 11, 103. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Xiao, J.F.; Zhou, Y.; Zheng, Y.; Li, J.; Xiao, H. Drought events and their effects on vegetation productivity in China. Ecosphere 2016, 7, 01591. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Swain, D.L.; Touma, D. Anthropogenic warming has increased drought risk in california. Proc. Natl. Acad. Sci. USA 2015, 112, 3931–3936. [Google Scholar] [CrossRef] [Green Version]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogee, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef]
- Klumpp, K.; Soussana, J.F.; Falcimagne, R. Effects of past and current disturbance on carbon cycling in grassland mesocosms. Agric. Ecosyst. Environ. 2007, 121, 59–73. [Google Scholar] [CrossRef]
- Ahmadi, B.; Moradkhani, H. Revisiting hydrological drought propagation and recovery considering water quantity and quality. Hydrol. Process. 2019, 33, 1492–1505. [Google Scholar] [CrossRef]
- Downingm, C.G. The evaporation of drops of pure liquids at elevated temperatures: Rates of evaporation and wet-bulb temperatures. AIChE J. 2010, 12, 760–766. [Google Scholar] [CrossRef]
- Xie, Z.H.; Wang, L.Y.; Jia, B.H.; Yuan, X. Measuring and modeling the impact of a severe drought on terrestrial ecosystem CO2 and water fluxes in a subtropical forest. J. Geophys. Res. 2016, 121, 2576–2587. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.C.; Li, X.Y.; Chen, Y.H.; Bai, Y.; Tong, Y.Q.; Wang, P.; Liu, H.Y.; Wang, M.J.; Shi, F.Z.; Zhang, C.C.; et al. Atmospheric water demand dominates daily variations in water use efficiency in alpine meadows, northeastern Tibetan Plateau. J. Geophys. Res. Biogeosci. 2019, 124, 2174–2185. [Google Scholar] [CrossRef]
- Wang, W.; Wang, W.J.; Li, J.S.; Wu, H.; Xu, C.; Liu, T. The impact of sustained drought on vegetation ecosystem in Southwest China based on remote sensing. Procedia Environ. Sci. 2010, 2, 1679–1691. [Google Scholar] [CrossRef] [Green Version]
- Salehyan, I. Climate change and conflict: Making sense of disparate findings. Polit. Geogr. 2014, 43, 1–5. [Google Scholar] [CrossRef]
- Buhaug, H.; Nordkvelle, J.; Bernauer, T.; Bohmelt, T.; Brzoska, M.; Busby, J.W.; Ciccone, A.; Fjelde, H.; Gartzke, E.; Gleditsch, N.P.; et al. One effect to rule them all? A comment on climate and conflict. Clim. Chang. 2014, 127, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Wang, R. Discrimination of drought occurrence for rainfed spring wheat in semi-arid area based on pattern recognition. Trans. Chin. Soc. Agric. Eng. 2014, 30, 124–132. [Google Scholar]
- Huang, L.; He, B.; Han, L.; Liu, J.J.; Wang, H.Y.; Chen, Z.Y. A global examination of the response of ecosystem water-use efficiency to drought based on MODIS data. Sci. Total Environ. 2017, 601, 1097–1107. [Google Scholar] [CrossRef]
- Li, X.Y.; Li, Y.; Chen, A.P.; Gao, M.D.; Slette, I.J.; Piao, S.L. The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China. Agric. For. Meteorol. 2019, 269, 239–248. [Google Scholar] [CrossRef]
- Ngugi, M.R.; Hunt, M.A.; David, D.; Ryan, P.; Dart, P.J. Effects of soil water availability on water use efficiency of Eucalyptus cloeziana and Eucalyptus argophloia plants. Aust. J. Bot. 2003, 51, 159–166. [Google Scholar] [CrossRef]
- Niu, S.L.; Peng, Y.; Jiang, G.M.; Li, Y.G.; Gao, L.M.; Liu, M.Z.; Cui, H.X.; Ding, L. Differential responses to simulated precipitation exhibited by a typical shrub and a herb coexisted in hunshandak sandy land. Acta Bot. Sin. 2004, 46, 1170–1177. [Google Scholar]
- Wells, N.; Goddard, S.; Hayes, M.J. A self-calibrating palmer drought severity index. J. Clim. 2004, 17, 2335–2351. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.S.; Reeves, M.C.; Hashimoto, H. A continuous satellite-derived measure of global terrestrial primary production. BioScience 2004, 54, 547–560. [Google Scholar] [CrossRef]
- Zhao, M.S.; Heinsch, F.A.; Nemani, R.R.; Running, S.W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 2005, 95, 164–176. [Google Scholar] [CrossRef]
- Mu, Q.Z.; Heinsch, F.A.; Zhao, M.S.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Mu, Q.Z.; Zhao, M.S.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Tao, J.B.; Mishra, D.; Cotten, D.L.; Oconnell, J.J.; Leclerc, M.Y.; Nahrawi, H.; Zhang, G.S.; Pahari, R. A comparison between the MODIS product (MOD17A2) and a tide-robust empirical GPP model evaluated in a georgia wetland. Remote Sens. 2018, 10, 1831. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Running, S.; Zhao, M.S.; Costa, M.H.; Kirschbaum, A.A.; Ham, J.M.; Saleska, S.R.; et al. Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens. Environ. 2006, 102, 282–292. [Google Scholar] [CrossRef]
- Xue, B.L.; Guo, Q.H.; Otto, A.; Xiao, J.F.; Tao, S.L.; Li, L. Global patterns, trends, and drivers of water use efficiency from 2000 to 2013. Ecosphere 2015, 6, 1–18. [Google Scholar] [CrossRef]
- Zscheischler, J.; Mahecha, M.D.; Von, B.T.; Harmeling, S.; Jung, M.; Rammig, A.; Randerson, T.J.; Scholkopf, B.; Seneviratne, I.S.; Tomelleri, E.; et al. A few extreme events dominate global interannual variability in gross primary production. Environ. Res. Lett. 2014, 9, 036001. [Google Scholar] [CrossRef] [Green Version]
- Wolf, S.; Keenan, T.F.; Fisher, J.B.; Baldocchi, D.D.; Desai, A.R.; Richardson, A.D.; Scott, R.S.; Law, B.E.; Litvak, M.E.; Brunsell, N.A.; et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl. Acad. Sci. USA 2016, 113, 5880–5885. [Google Scholar] [CrossRef] [Green Version]
- Mu, Q.; Zhao, M.; Running, S.W. MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3); Algorithm Theoretical Basis Document, Collection. 5; Numerical Terradynamic Simulation Group, University of Montana: Missoula, MT, USA, 2013. [Google Scholar]
- Velpuri, N.M.; Senay, G.B.; Singh, R.K.; Bohms, S.; Verdin, J.P. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET. Remote Sens. Environ. 2013, 139, 35–49. [Google Scholar] [CrossRef]
- Kim, H.W.; Hwang, K.; Mu, Q.; Lee, S.O.; Choi, M. Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia. KSCE J. Civ. Eng. 2012, 16, 229–238. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; U.S. Department of Commerce Weather Bureau Research Paper; U.S. Government Printing Office: Washington, DC, USA, 1965; Volume 45, p. 58.
- Wang, Z.; Li, J.; Huang, Z. Spatiotemporal variations analysis of meteorological drought in China based on scPDSI. Trans. Chin. Soc. Agric. Eng. 2016, 32, 161–168. [Google Scholar]
- Sun, H.Y.; Liu, C.M.; Zhang, X.Y.; Shen, Y.J.; Zhang, Y.Q. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agric. Water Manag. 2006, 85, 211–218. [Google Scholar] [CrossRef]
- Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the ann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Ponce Campos, G.E.; Moran, M.S.; Huete, A.; Zhang, Y.G.; Bresloff, C.J.; Huxman, T.E.; Eamus, D.; Bosch, D.D.; Buda, A.R.; Gunter, S.A.; et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 2013, 494, 349–352. [Google Scholar] [CrossRef]
- Samanta, A.; Ganguly, S.; Hashimoto, H.; Devadiga, S.; Vermote, E.F.; Knyazikhin, Y.; Nemani, R.R.; Myneni, R.B. Amazon forests did not green-up during the 2005 drought. Geophys. Res. Lett. 2010, 37, 05401. [Google Scholar] [CrossRef]
- Gang, C.C.; Wang, Z.Q.; Chen, Y.Z.; Yang, Y.; Li, J.L.; Cheng, J.M.; Qi, J.Q.; Odeh, I.O.A. Drought-induced dynamics of carbon and water use efficiency of global grasslands from 2000 to 2011. Ecol. Indic. 2016, 67, 788–797. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Shan, L.; Xu, Q. Background analysis of chromosome controling genetic of water use efficiency of Triticum. Acta Cen. Sin. 2000, 27, 240–246. [Google Scholar]
- Zhang, X. The study of stable carbon isotope composition in desert plants of Junggar Basin. J. Desert Res. 2007, 27, 972–976. [Google Scholar]
- Feng, M.S. Impact of the continuous drought on the depth of dry soil layer and on the existence of plants. Arid Zone Res. 2002, 19, 71–74. [Google Scholar]
- Hernandezsantana, V.; Rodriguezdominguez, C.M.; Fernandez, J.E.; Diazespejo, A. Role of leaf hydraulic conductance in the regulation of stomatal conductance in almond and olive in response to water stress. Tree Physiol. 2016, 36, 725–735. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.T.; Luo, G.P. Spatio-temporal characteristics of evapotranspiration and water use efficiency in grasslands of Xinjiang. J. Plant. Ecol. 2017, 41, 506–518. [Google Scholar]
- Kuglitsch, F.G.; Reichstein, M.; Beer, C.; Carrara, A.; Ceulemans, R.; Granier, A.; Janssens, I.A.; Koestner, B.; Lindroth, A.; Loustau, D.; et al. Characterisation of ecosystem water-use efficiency of European forests from eddy-covariance measurements. BGD 2008, 5, 4481–4519. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.R.; He, X.L.; Bateni, S.M.; Auligne, T.; Liu, S.M.; Xu, Z.W.; Zhou, J.; Mao, K.B. Mapping regional turbulent heat fluxes via variational assimilation of land surface temperature data from polar orbiting satellites. Remote Sens. Environ. 2019, 221, 444–461. [Google Scholar] [CrossRef]
- Xu, T.R.; Guo, Z.X.; Liu, S.M.; He, X.L.; Meng, Y.F.Y.; Xu, Z.W.; Xia, Y.L.; Xiao, J.F.; Zhang, Y.; Ma, Y.F.; et al. Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale. J. Geophys. Res. Atmos. 2018, 123, 8674–8690. [Google Scholar] [CrossRef]
- Xu, T.R.; Guo, Z.X.; Xia, Y.L.; Ferreira, V.G.; Liu, S.M.; Wang, K.; Yao, Y.J.; Zhang, X.J.; Zhao, C.S. Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States. J. Hydrol. 2019, 578, 124105. [Google Scholar] [CrossRef]
- Qi, X.H.; Zhu, Y.; Zhou, Y.P. Effects of drought on ecosystem carbon and water processes: A review at different scales. Prog. Geogr. 2010, 25, 12–20. [Google Scholar]
- Zhang, L.; Xiao, J.F.; Li, J.; Wang, K.; Lei, L.P.; Guo, H.D. The 2010 spring drought reduced primary productivity in southwestern China. Environ. Res. Lett. 2012, 7, 045706. [Google Scholar] [CrossRef] [Green Version]
- Chaves, M.M.; Maroco, J.; Pereira, J.S. Understanding plant responses to drought—From genes to the whole plant. Funct. Plant Biol. 2003, 30, 239–264. [Google Scholar] [CrossRef]
- Niu, S.L.; Wu, M.Y.; Han, Y.; Xia, J.Y.; Li, L.H.; Wan, S.Q. Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytol. 2008, 177, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, B.; Ahmadalipour, A.; Tootle, G.A.; Moradkhani, H. Remote sensing of water use efficiency and terrestrial drought rcovery across the contiguous United States. Remote Sens. 2019, 11, 731. [Google Scholar] [CrossRef] [Green Version]
- Heumann, B.W.; Seaquist, J.W.; Eklundh, L.; Jonsson, P. AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote Sens. Environ. 2007, 108, 85–392. [Google Scholar] [CrossRef]
- Huang, M.T.; Piao, S.L.; Sun, Y.; Ciais, P.; Cheng, L.; Mao, J.F.; Poulter, B.; Shi, X.Y.; Zeng, Z.Z.; Wang, T.P. Change in terrestrial ecosystem water-use efficiency over the last three decades. Glob. Chang. Biol. 2015, 21, 2366–2378. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Ding, J.; Qin, Y. Response of water use efficiency of Central Asia ecosystem to drought based on remote sensing data. Trans. Chin. Soc. Agric. Eng. 2018, 34, 145–152. [Google Scholar]
- Galiano, L.; Martínez-Vilalta, J.; Lloret, F. Drought-induced multifactor decline of scots pine in the pyrenees and potential vegetation change by the expansion of co-occurring oak species. Ecosystems 2010, 13, 978–991. [Google Scholar] [CrossRef]
- White, A.B.; Springer, E.P.; Vivoni, E.R. The transformation of a semiarid ecosystem due to severe drought and how it has influenced the hydrologic cycle across varying scales. In Proceedings of the American Geophysical Union Fall Meeting, San Francisco, CA, USA, 15–19 December 2008. [Google Scholar]
- Yang, Y.T.; Donohue, R.J.; Mcvicar, T.R.; Roderick, M.L. An analytical model for relating global terrestrial carbon assimilation with climate and surface conditions using a rate limitation framework. Geophys. Res. Lett. 2015, 42, 9825–9835. [Google Scholar] [CrossRef] [Green Version]
Data | Name | Spatial Resolution | Temporal Resolution | Period | References |
---|---|---|---|---|---|
Climate Data | Temperature | 1 km | Monthly | 2000–2017 | China Meteorological Data Service Center |
Precipitation | 1 km | Monthly | 2000–2017 | ||
Geographic data | DEM | 1 km | -- | 2000 | SRTM 90m DEM Digital Elevation Database |
Land Cover | 1 km | -- | 2010 | Data center of resources and environmental sciences, Chinese academy of sciences | |
Remote sensing products | GPP | 1 km | Monthly | 2000–2017 | MOD17A2 |
ET | 1 km | Monthly | 2000–2017 | MOD16A2 | |
Drought index | scPDSI | 0.5° | Monthly | 2000–2017 | Climatic Research Unit |
scPDSI | Wet or Dry Conditions |
---|---|
≥4 | Extreme humid |
3–4 | Severe humid |
2–3 | Moderate humid |
1–2 | Slight humid |
−1–1 | Normal |
−2–−1 | Slight drought |
−3–−2 | Moderate drought |
−4–−3 | Severe drought |
≤−4 | Extreme drought |
Vegetation Type | ∆WUE2006 < 0 | ∆WUE2006 > 0 | ∆WUE2010 < 0 | ∆WUE2010 > 0 |
---|---|---|---|---|
Forests | 44.7% | 55.3% | 46.4% | 53.6% |
Shrublands | 29.8% | 70.2% | 50.6% | 49.4% |
Grasslands | 20.9% | 79.1% | 46.0% | 54.0% |
Croplands | 19.1% | 80.9% | 78.8% | 21.2% |
All | 27.7% | 72.3% | 56.4% | 43.6% |
TIME | WUE2007–scPDSI2006 | WUE2007–scPDSI2007 | WUE2011–scPDSI2010 | WUE2011–scPDSI2011 |
---|---|---|---|---|
R2 | 0.45 | 0.37 | 0.44 | 0.36 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Xu, T.; Xiao, J.; Liu, S.; Mao, K.; Song, L.; Yao, Y.; He, X.; Feng, H. Responses of Water Use Efficiency to Drought in Southwest China. Remote Sens. 2020, 12, 199. https://doi.org/10.3390/rs12010199
Zhao J, Xu T, Xiao J, Liu S, Mao K, Song L, Yao Y, He X, Feng H. Responses of Water Use Efficiency to Drought in Southwest China. Remote Sensing. 2020; 12(1):199. https://doi.org/10.3390/rs12010199
Chicago/Turabian StyleZhao, Jingxue, Tongren Xu, Jingfeng Xiao, Shaomin Liu, Kebiao Mao, Lisheng Song, Yunjun Yao, Xinlei He, and Huaize Feng. 2020. "Responses of Water Use Efficiency to Drought in Southwest China" Remote Sensing 12, no. 1: 199. https://doi.org/10.3390/rs12010199
APA StyleZhao, J., Xu, T., Xiao, J., Liu, S., Mao, K., Song, L., Yao, Y., He, X., & Feng, H. (2020). Responses of Water Use Efficiency to Drought in Southwest China. Remote Sensing, 12(1), 199. https://doi.org/10.3390/rs12010199