Progress in the Reconstruction of Terrain Relief Before Extraction of Rock Materials—The Case of Liban Quarry, Poland
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area and Object of the Study
2.2. Cartographic Data
2.3. Exploratory Spatial Data and Semivariogram Analysis
2.4. Ordinary Kriging
3. Results
3.1. Present Relief
3.2. Reconstruction of the Relief before the Commencement of Mining Operations
3.3. Present and Reconstructed Relief Design
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Dulias, R. The Impact of Mining on the Landscape. A Study of the Upper Silesian Coal Basin in Poland; Springer: Cham, Switzerland, 2016; pp. 1–209. [Google Scholar] [CrossRef]
- Govorushko, S.M. Mining and Mineral Processing. In Natural Processes and Human Impacts. Interactions between Humanity and the Environment; Springer: Dordrecht, The Netherlands, 2011; pp. 485–511. [Google Scholar] [CrossRef]
- Lapčík, V.; Lapčíková, M. Environmental impact assessment of surface mining. J. Pol. Miner. Soc. 2011, 1, 1–10. [Google Scholar]
- Omotehinse, A.O.; Ako, B.D. The environmental implications of the exploration and exploitation of solid minerals in Nigeria with a special focus on Tin in Jos and Coal in Enugu. J. Sustain. Min. 2019, 18, 18–24. [Google Scholar] [CrossRef]
- Xiang, J.; Chen, J.; Sofia, G.; Tian, Y.; Tarolli, P. Open-pit mine geomorphic changes analysis using multi-temporal UAV survey. Environ. Earth Sci. 2018, 77, 220. [Google Scholar] [CrossRef]
- Pande, H.; Sen, A.K.; Garg, R.D. Identification of open cast mining areas using CARTOSAT-I: A case study of Jharia Coal fields. Asian J. Earth Sci. 2011, 4, 29–37. [Google Scholar] [CrossRef]
- Pandey, A.C.; Kumar, A. Analysing topographical changes in open cast coal-mining region of Patratu, Jharkhand using CARTOSAT-I Stereopair satellite images. Geocarto. Int. 2014, 29, 731–744. [Google Scholar] [CrossRef]
- Riquelme, A.; Del Soldato, M.; Tomás, R.; Cano, M.; Bordehore, L.J.; Moretti, S. Digital landform reconstruction using old and recent open access digital aerial photos. Geomorphology 2019, 329, 206–223. [Google Scholar] [CrossRef]
- Boengiu, S.; Ionuş, O.; Marinescu, E. Man-made changes of the relief due to the mining activities within Husnicioara open pit (Mehedinţi County, Romania). Procedia Environ. Sci. 2016, 32, 256–263. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, K.; Chang, K.-J.; Sofia, G.; Tarolli, P. Open-pit mining geomorphic feature characterisation. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 76–86. [Google Scholar] [CrossRef]
- Esposito, E.; Mastrorocco, G.; Salvini, R.; Oliveti, M.; Starita, P. Application of UAV photogrammetry for the multi-temporal estimation of surface extent and volumetric excavation in the Sa Pigada Bianca open-pit mine, Sardinia, Italy. Environ. Earth Sci. 2017, 76, 103. [Google Scholar] [CrossRef]
- Fagiewicz, K. Spatial processes of landscape transformation in mining areas (case study of opencast lignite mines in Morzysław, Niesłusz, Gosławice). Pol. J. Environ. Stud. 2014, 23, 1123–1136. [Google Scholar]
- Festin, E.S.; Tigabu, M.; Chileshe, M.N.; Syampungani, S.; Odén, P.C. Progresses in restoration of post-mining landscape in Africa. J. For. Res. 2019, 30, 381–396. [Google Scholar] [CrossRef] [Green Version]
- Gutti, B.; Aji, M.M.; Magaji, G. Environmental impact of natural resources exploitation in Nigeria and the way forward. JATES 2012, 2, 95–102. [Google Scholar]
- Johansen, K.; Erskine, P.D.; McCabe, M.F. Using Unmanned Aerial Vehicles to assess the rehabilitation performance of open cut coal mines. J. Clean. Prod. 2019, 209, 819–833. [Google Scholar] [CrossRef]
- Lee, S.; Choi, Y. Topographic survey at small-scale open-pit mines using a popular rotary-wing Unmanned Aerial Vehicle (drone). Tunn. Undergr. Sp. Tech. 2015, 25, 462–469. [Google Scholar] [CrossRef]
- Monjezi, M.; Shahriar, K.; Dehghani, H.; Samimi Namin, F. Environmental impact assessment of open pit mining in Iran. Environ. Geol. 2009, 58, 205–216. [Google Scholar] [CrossRef]
- Nascimento, F.S.; Gastauer, M.; Souza-Filho, P.W.M.; Nascimento, W.R.; Santos, D.C.; Costa, M.F. Land cover changes in open-cast mining complexes based on high-resolution remote sensing data. Remote Sens. 2020, 12, 611. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhao, H.; Yin, P.; Bu, N.; Li, G. Impact of underground coal mining on regional landscape pattern change based on life cycle: A case study in Peixian, China. Pol. J. Environ. Stud. 2019, 28, 4455–4465. [Google Scholar] [CrossRef]
- Jaskulski, M.; Nowak, T. Transformations of landscape topography of the Bełchatów Coal Mine (central Poland) and the surrounding area based on DEM analysis. ISPRS Int. J. Geo-Inf. 2019, 8, 403. [Google Scholar] [CrossRef] [Green Version]
- Ross, M.R.V.; McGlynn, B.L.; Bernhardt, E.S. Deep impact: Effects of mountaintop mining on surface topography, bedrock structure, and downstream waters. Environ. Sci. Technol. 2016, 50, 2064–2074. [Google Scholar] [CrossRef] [Green Version]
- Rossi, P.; Mancini, F.; Dubbini, M.; Mazzone, F.; Capra, A. Combining nadir and oblique UAV imagery to reconstruct quarry topography: Methodology and feasibility analysis. Eur. J. Remote Sens. 2017, 50, 211–221. [Google Scholar] [CrossRef]
- Tyczyńska, M.; Chmielowiec, S. Geomorphological Map (9), 1:50,000. In Atlas of Cracow; Trafas, K., Hess, M., Eds.; PPWK: Warsaw–Wroclaw, Poland, 1988. [Google Scholar]
- Tactical Map of Poland; 1:100,000, sheet Cracow, LINE 48 COLUMN 30; WIG: Warsaw, Poland, 1934.
- Topographic Map of Poland; 1:10,000, sheet Kraków–Wola Duchacka; OPGK: Rzeszów, Poland, 1997.
- Górecki, J.; Sermet, E. Quarries of Cracow—An underestimated heritage. In History of Mining—An Element of European Culutral Heritage; Zagożdżon, P.P., Madziarz, M., Eds.; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2010; Volume 3, pp. 131–133. [Google Scholar]
- Jakubowicz, W.; Ostrowska-Gill, B.; Piękoś, L. Proposal to Include the “Krzemionki” Mining Area for a Limestone Deposit; “Biprocemwap” Cement, Lime and Gypsum Industry Engineering Office in Cracow, Ministry of Construction, Spatial and Municipal Management in Warsaw, Cement Plant “Nowa Huta” in Cracow, Lime Mine “Za Torem” in Cracow: Cracow, Poland, 1987. [Google Scholar]
- Zarychta, R. The post-mining landscape of the Liban quarry in Cracow. Pol. Geol. Rev. 2019, 67, 1002–1011. [Google Scholar] [CrossRef]
- Galicia and Bucovina—Second Military Survey of the Habsburg Empire. Europe in the XIX. Century, Mapire—The Historical Map Portal, 1861–1864. Available online: https://mapire.eu/en/map/secondsurvey-galicia/ (accessed on 11 February 2020).
- Habsburg Empire—Third Military Survey. 1:25,000; Europe in the XIX. Century, Mapire—The Historical Map Portal, 1869–1887. Available online: https://mapire.eu/en/map/thirdsurvey25000/ (accessed on 11 February 2020).
- Hoefern, K. Map of Cracow, Kazimierz and Podgórze; The National Archives in Krakow: Cracow, Poland, 1779. [Google Scholar]
- Kocziczka, A. Plan Von Krakau Mit Podgorze und der Nächsten Umgebung; 1:10,800; Olmütz: Cracow, Poland, 1847. [Google Scholar]
- Marga, A. Encvirons de Cracovie, 1:80,000. In Géographie militaire. Deuxième partie. Principaux États de l’Europe. Atlas; Fontainebleau: Paris, France, 1881. [Google Scholar]
- Plan of Cracow Surrounding Area; 1:36,500; D.E. Friedlein: Cracow, Poland, 1830.
- Situations Plan der Stadt–Krakau; The Historical Museum of the City of Kraków: Cracow, Poland, 1794.
- Situations Plan der Stadt Krakau und ihrer Vorstädten; 1:12,600; Center for Urban History of East Central Europe, Austrian War Archive (Kriegsarchiv): Vienna, Austria, 1797; Available online: https://www.lvivcenter.org/en/umd/map/?ci_mapid=117 (accessed on 11 February 2020).
- Liu, D.; Toman, E.; Fuller, Z.; Chen, G.; Londo, A.; Zhang, X.; Zhao, K. Integration of historical map and aerial imagery to characterize long-term land-use change and landscape dynamics: An object-based analysis via Random Forests. Ecol. Indic. 2018, 95, 595–605. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford Univ. Press: New York, NY, USA, 1997; pp. 1–483. [Google Scholar]
- Clark, I. Practical Geostatistics; Elsevier Applied Science: London, UK, 1987; pp. 1–129. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Pebesma, E.J. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 2004, 30, 683–691. [Google Scholar] [CrossRef]
- Gräler, B.; Pebesma, E.; Heuvelink, G. Spatio-temporal interpolation using gstat. RFID J. 2016, 8, 204–218. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; John Wiley & Sons: Chichester, UK, 2007; pp. 1–332. [Google Scholar] [CrossRef] [Green Version]
- Midgley, N.G.; Tonkin, T.N. Reconstruction of former glacier surface topography from archive oblique aerial images. Geomorphology 2017, 282, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Nuth, C.; Kohler, J.; Aas, H.F.; Brandt, O.; Hagen, J.O. Glacier geometry and elevation changes on Svalbard (1936–90): A baseline dataset. Ann. Glaciol. 2007, 46, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, R.; Nayak, A.K.; Shahid, M.; Raja, R.; Panda, B.B.; Mohanty, S.; Kumar, A.; Lal, B.; Gautam, P.; Sahoo, R.N. Characterizing spatial variability of soil properties in salt affected coastal India using geostatistics and kriging. Arab. J. Geosci. 2015, 8, 10693–10703. [Google Scholar] [CrossRef]
- Robinson, T.P.; Metternicht, G. Testing the performance of spatial interpolation techniques for mapping soil properties. Comput. Electron. Agric. 2006, 50, 97–108. [Google Scholar] [CrossRef]
- Yan, P.; Peng, H.; Yan, L.; Lin, K. Spatial variability of soil physical properties based on GIS and geo-statistical methods in the red beds of the Nanxiong Basin, China. Pol. J. Environ. Stud. 2019, 28, 2961–2972. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Y.; Xiao, W.; Hu, Z. A review of UAV monitoring in mining areas: Current status and future perspectives. Int. J. Coal Sci. Technol. 2019, 6, 320–333. [Google Scholar] [CrossRef] [Green Version]
Descriptive Statistics | Measurement Data | Box–Cox Transformation |
---|---|---|
N | 1378 | 1378 |
Minimum | 220 | 33.49 |
Maximum | 256.25 | 36.59 |
Mean | 240.16 | 35.23 |
Standard error | 0.26 | 0.02 |
Variance | 91.23 | 0.66 |
Standard deviation | 9.55 | 0.81 |
Median | 241.25 | 35.33 |
Skewness | −0.24 | −0.26 |
Kurtosis | −6.06 | −6.08 |
Semivariogram Parameters | ||
---|---|---|
Semivariogram | ||
Model | Gaussian | |
Nugget effect | 0.0003 | |
Sill | 0.0016 | |
Anisotropy | ||
Major range (m) | 60 | |
Minor range (m) | 30.47 | |
Direction | 87.54 | |
Anisotropy factor | 1.97 | |
Search ellipse | ||
Maximum neighbors | 20 | |
Minimum neighbors | 4 | |
Sector type | 4 sectors with 45° offset | |
Angle | 87.54 | |
Major semiaxis | 60 | |
Minor semiaxis | 30.47 |
Type of Errors | Code | Value |
---|---|---|
Mean Error | ME | 0.004 |
Root Mean Square Error | RMSE | 0.28 |
Root Mean Square Standardized Error | RMSSE | 0.98 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarychta, R.; Zarychta, A.; Bzdęga, K. Progress in the Reconstruction of Terrain Relief Before Extraction of Rock Materials—The Case of Liban Quarry, Poland. Remote Sens. 2020, 12, 1548. https://doi.org/10.3390/rs12101548
Zarychta R, Zarychta A, Bzdęga K. Progress in the Reconstruction of Terrain Relief Before Extraction of Rock Materials—The Case of Liban Quarry, Poland. Remote Sensing. 2020; 12(10):1548. https://doi.org/10.3390/rs12101548
Chicago/Turabian StyleZarychta, Roksana, Adrian Zarychta, and Katarzyna Bzdęga. 2020. "Progress in the Reconstruction of Terrain Relief Before Extraction of Rock Materials—The Case of Liban Quarry, Poland" Remote Sensing 12, no. 10: 1548. https://doi.org/10.3390/rs12101548
APA StyleZarychta, R., Zarychta, A., & Bzdęga, K. (2020). Progress in the Reconstruction of Terrain Relief Before Extraction of Rock Materials—The Case of Liban Quarry, Poland. Remote Sensing, 12(10), 1548. https://doi.org/10.3390/rs12101548