Land Cover Changes in Open-Cast Mining Complexes Based on High-Resolution Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Remote Sensing Data Sources
2.3. Atmospheric Corrections and Orthorectification
2.4. Elaboration of Remote Sensing Indices
2.5. LiDAR Data Processing
2.6. GEOBIA: Image Segmentation, Multilayer Calibration and Hierarchical Classification
2.7. Detection of Land Cover and Open-Cast Mine Changes
2.8. Classification Accuracy Assessment
2.9. Accuracy Assessment of Land Change
3. Results
3.1. High-Resolution Satellite Image Accuracy Assessment and Estimated Area of Land Change
3.2. Analysis of the Spatial-Temporal Distribution of Land Cover and Land Use Classes
4. Discussion
4.1. Assessment of the High-Resolution Satellite Image Accuracy and the GEOBIA Approach
4.2. Revegetation Analysis from GEOBIA using High-Resolution Satellite Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koruyan, K.; Deliormanli, A.H.; Karaca, Z.; Momayez, M.; Lu, H.; Yalçin, E. Remote sensing in management of mining land and proximate habitat. J. S. Afr. Inst. Min. Metall. 2012, 112, 667–672. [Google Scholar]
- Gastauer, M.; Souza Filho, P.W.M.; Ramos, S.J.; Caldeira, C.F.; Silva, J.R.; Siqueira, J.O.; Furtini Neto, A.E. Mine land rehabilitation in Brazil: Goals and techniques in the context of legal requirements. Ambio 2018, 48, 74–88. [Google Scholar] [CrossRef]
- Matlaba, V.J.; Maneschy, M.C.; Filipe dos Santos, J.; Mota, J.A. Socioeconomic dynamics of a mining town in Amazon: A case study from Canaã dos Carajás, Brazil. Miner. Econ. 2019, 32, 75–90. [Google Scholar] [CrossRef]
- Santos, J.F.; Maia, M.B.; Maneschy, M.C.; Matlaba, V.; Mota, J.A. Redes sociais ao longo da estrada de ferro Carajás na Amazônia Oriental. Finisterra 2018, 109, 149–166. [Google Scholar]
- Skirycz, A.; Castilho, A.; Chaparro, C.; Carvalho, N.; Tzotzos, G.; Siqueira, J.O. Canga biodiversity, a matter of mining. Front. Plant Sci. 2014, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bisone, S.; Chatain, V.; Blanc, D.; Gautier, M.; Bayard, R.; Sanchez, F.; Gourdon, R. Geochemical characterization and modeling of arsenic behavior in a highly contaminated mining soil. Environ. Earth Sci. 2016, 75, 69621. [Google Scholar] [CrossRef]
- International Finance Corporation. Performance Standard 6: Biodiversity Conservation and Sustainable Management of Natural Resources; IFC: Washington, DC, USA, 2012. [Google Scholar]
- Maron, M.; Brownlie, S.; Bull, J.W.; Evans, M.C.; von Hase, A.; Quétier, F.; Watson, J.E.M.; Gordon, A. The many meanings of no net loss in environmental policy. Nat. Sustain. 2018, 1, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Ekstrom, J.; Bennun, L.; Mitchell, R. A Cross-Sector Guide for Implementing the Mitigation Hierarchy; Cambridge: London, UK, 2015. [Google Scholar]
- Bull, J.W.; Suttle, K.B.; Gordon, A.; Singh, N.J.; Milner-Gulland, E.J. Biodiversity offsets in theory and practice. Oryx 2013, 47, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Bull, J.W.; Gordon, A.; Watson, J.E.M.; Maron, M. Seeking convergence on the key concepts in ‘no net loss’ policy. J. Appl. Ecol. 2016, 53, 1686–1693. [Google Scholar] [CrossRef]
- Moffat, K.; Zhang, A. The paths to social licence to operate: An integrative model explaining community acceptance of mining. Resour. Policy 2014, 39, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Gastauer, M.; Caldeira, C.F.; Ramos, S.J.; Trevelin, L.C.; Santiago, A.; Aurélio, M.; Carneiro, C.; Coelho, F.; Silva, R.; Souza-Filho, P.W.M.; et al. Integrating Environmental Variables by Multivariate Ordination enables the Reliable Estimation of Mineland Rehabilitation Status. J. Environ. Manag. 2019, 256, 109894. [Google Scholar] [CrossRef]
- Gastauer, M.; Silva, J.R.; Caldeira Junior, C.F.; Ramos, S.J.; Souza Filho, P.W.M.; Furtini Neto, A.E.; Siqueira, J.O. Mine land rehabilitation: Modern ecological approaches for more sustainable mining. J. Clean. Prod. 2018, 172, 1409–1422. [Google Scholar] [CrossRef]
- Perring, M.P.; Standish, R.J.; Hobbs, R.J. Incorporating novelty and novel ecosystems into restoration planning and practice in the 21st century. Ecol. Process. 2013, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Padmanaban, R.; Bhowmik, A.; Cabral, P. A Remote Sensing Approach to Environmental Monitoring in a Reclaimed Mine Area. ISPRS Int. J. Geo Inf. 2017, 6, 401. [Google Scholar] [CrossRef] [Green Version]
- Townsend, P.A.; Helmers, D.P.; Kingdon, C.C.; McNeil, B.E.; de Beurs, K.M.; Eshleman, K.N. Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976-2006 Landsat time series. Remote Sens. Environ. 2009, 113, 62–72. [Google Scholar] [CrossRef]
- Asner, G.P.; Llactayo, W.; Tupayachi, R.; Luna, E.R. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proc. Natl. Acad. Sci. USA 2013, 110, 18454–18459. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Li, X.; He, H.; Wang, L. A Review of Fine-Scale Land Use and Land Cover Classification in Open-Pit Mining Areas by Remote Sensing Techniques. Remote Sens. 2018, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Sonter, L.J.; Barrett, D.J.; Soares-Filho, B.S.; Moran, C.J. Global demand for steel drives extensive land-use change in Brazil’s Iron Quadrangle. Glob. Environ. Chang. 2014, 26, 63–72. [Google Scholar] [CrossRef]
- Souza-Filho, P.W.M.; de Souza, E.B.; Silva Júnior, R.O.; Nascimento, W.R.; Versiani de Mendonça, B.R.; Guimarães, J.T.F.; Dall’Agnol, R.; Siqueira, J.O. Four decades of land-cover, land-use and hydroclimatology changes in the Itacaiúnas River watershed, southeastern Amazon. J. Environ. Manag. 2016, 167, 175–184. [Google Scholar] [CrossRef]
- Souza-Filho, W.P.; Nascimento, R.W.; Santos, C.D.; Weber, J.E.; Silva, O.R.; Siqueira, O.J. A GEOBIA Approach for Multitemporal Land-Cover and Land-Use Change Analysis in a Tropical Watershed in the Southeastern Amazon. Remote Sens. 2018, 10, 1683. [Google Scholar] [CrossRef] [Green Version]
- Karan, S.K.; Samadder, S.R.; Maiti, S.K. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands. J. Environ. Manag. 2016, 182, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Demirel, N.; Emil, M.K.; Duzgun, H.S. Landuse change detection in a surface coal mine using multi-temporal high-resolution satellite images. Int. J. Min. Reclam. Environ. 2011, 25, 342–349. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Gallant, A.L.; Shi, H.; Zhu, Z. Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data. Remote Sens. Environ. 2016, 185, 258–270. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Chen, Y.; Zhang, S.; Li, X. Remote Sensing Extraction Method of Tailings Ponds in Ultra-Low-Grade Iron Mining Area Based on Spectral Characteristics and Texture Entropy. Entropy 2018, 20, 345. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Yang, Y.; Erskine, P.D.; Lechner, A.M.; Mulligan, D.; Zhang, S.; Wang, Z. Detecting the dynamics of vegetation disturbance and recovery in surface mining area via Landsat imagery and LandTrendr algorithm. J. Clean. Prod. 2018, 178, 353–362. [Google Scholar] [CrossRef]
- Isidro, M.C.; McIntyre, N.; Lechner, M.A.; Callow, I. Applicability of Earth Observation for Identifying Small-Scale Mining Footprints in a Wet Tropical Region. Remote Sens. 2017, 9, 945. [Google Scholar] [CrossRef] [Green Version]
- Demirel, N.; Emil, M.K.; Duzgun, H.S. Surface coal mine area monitoring using multi-temporal high-resolution satellite imagery. Int. J. Coal Geol. 2011, 86, 3–11. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Strager, M.P.; Pal, M. Combining RapidEye Satellite Imagery and Lidar for Mapping of Mining and Mine Reclamation. Photogramm. Eng. Remote Sens. 2014, 2, 179–189. [Google Scholar] [CrossRef]
- Piló, L.B.; Auler, A.S.; Martins, F. Carajás National Forest: Iron Ore Plateaus and Caves in Southeastern Amazon. In Landscapes and Landforms of Brazil; Vieira, B.C., Salgado, A.A.R., Santos, L.J.C., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 273–283. ISBN 978-94-017-8023-0. [Google Scholar]
- Viana, P.L.; Mota, N.F.D.O.; Gil, A.D.S.B.; Salino, A.; Zappi, D.C.; Harley, R.M.; Ilkiu-Borges, A.L.; Secco, R.D.S.; Almeida, T.E.; Watanabe, M.T.C.; et al. Flora das cangas da Serra dos Carajás, Pará, Brasil: História, área de estudos e metodologia. Rodriguésia 2016, 67, 1107–1124. [Google Scholar] [CrossRef]
- de Mota, N.F.O.; Silva, L.V.C.; Martins, F.D.; Viana, P.L. Vegetação sobre sistemas ferruginosos da Serra dos Carajás. In Geossistemas ferruginosos do Brasil: Áreas prioritárias para conservação da diversidade geológica e biológica, patrimônio cultural e serviços ambientais; Carmo, F.F., Kamino, L.H., Eds.; 3iEditora: Belo Horizonte, Brazil, 2015; pp. 289–315. [Google Scholar]
- Resende, N.P. Carajás: Memória da descoberta; Editora Gráfica Stampa: Rio de Janeiro, Brazil, 2009. [Google Scholar]
- Paradella, W.R.; Ferretti, A.; Mura, J.C.; Colombo, D.; Gama, F.F.; Tamburini, A.; Santos, A.R.; Novali, F.; Galo, M.; Camargo, P.O.; et al. Mapping surface deformation in open pit iron mines of Carajás Province (Amazon Region) using an integrated SAR analysis. Eng. Geol. 2015, 193, 61–78. [Google Scholar] [CrossRef] [Green Version]
- PCI. Geomatica Image processing with Focus. In Geomatica I Course Guide, Version 0.2; PCI Geomatica Enterprises: Markham, ON, Canada, 2015; pp. 59–79. [Google Scholar]
- PCI. Geomatica Geomatica Orthoengine: Course Exercises; PCI Geomatica Enterprises: Markham, ON, Canada, 2015; p. 172. [Google Scholar]
- Tarpley, J.D.; Schneider, S.R.; Money, R.L. Global Vegetation Indices from the NOAA-7 Meteorological Satellite. J. Clim. Appl. Meteorol. 1984, 23, 491–494. [Google Scholar] [CrossRef]
- McFEETERS, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis—Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef] [Green Version]
- Desclée, B.; Bogaert, P.; Defourny, P. Forest change detection by statistical object-based method. Remote Sens. Environ. 2006, 102, 1–11. [Google Scholar] [CrossRef]
- Duveiller, G.; Defourny, P.; Desclée, B.; Mayaux, P. Deforestation in Central Africa: Estimates at regional, national and landscape levels by advanced processing of systematically-distributed Landsat extracts. Remote Sens. Environ. 2008, 112, 1969–1981. [Google Scholar] [CrossRef]
- Souza-Filho, P.W.M.; Giannini, T.C.; Jaffé, R.; Giulietti, A.M.; Santos, D.C.; Nascimento, W.R., Jr.; Guimarães, J.T.F.; Costa, M.F.; Imperatriz-Fonseca, V.L.; Siqueira, J.O. Mapping and quantification of ferruginous outcrop savannas in the Brazilian Amazon: A challenge for biodiversity conservation. PLoS ONE 2019, 14, e0211095. [Google Scholar] [CrossRef] [Green Version]
- Raši, R.; Bodart, C.; Stibig, H.-J.; Eva, H.; Beuchle, R.; Carboni, S.; Simonetti, D.; Achard, F. An automated approach for segmenting and classifying a large sample of multi-date Landsat imagery for pan-tropical forest monitoring. Remote Sens. Environ. 2011, 115, 3659–3669. [Google Scholar] [CrossRef]
- Baatz, M.; Schäpe, A. Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale Image Segmentation. 2000. Available online: http://www.agit.at/papers/2000/baatz_FP_12.pdf (accessed on 23 December 2012).
- Rejaur Rahman, M.; Saha, S.K. Multi-resolution segmentation for object-based classification and accuracy assessment of land use/land cover classification using remotely sensed data. J. Indian Soc. Remote Sens. 2008, 36, 189–201. [Google Scholar] [CrossRef]
- Lu, D.; Batistella, M.; Li, G.; Moran, E.; Hetrick, S.; Freitas, C.D.C.; Dutra, L.V.; Sant’Anna, S.J.S. Land use/cover classification in the Brazilian Amazon using satellite images. Pesqui. Agropecu. Bras. 2012, 47, 10–1590. [Google Scholar] [CrossRef] [PubMed]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.; Taylor & Francis: London, UK, 2008. [Google Scholar]
- Pontius, R.G., Jr.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Gallego, F.J. Remote sensing and land cover area estimation. Int. J. Remote Sens. 2004, 25, 3019–3047. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Puertas, O.L.; Brenning, A.; Meza, F.J. Balancing misclassification errors of land cover classification maps using support vector machines and Landsat imagery in the Maipo river basin (Central Chile, 1975–2010). Remote Sens. Environ. 2013, 137, 112–123. [Google Scholar] [CrossRef]
- Johansen, K.; Erskine, P.D.; McCabe, M.F. Using Unmanned Aerial Vehicles to assess the rehabilitation performance of open cut coal mines. J. Clean. Prod. 2019, 209, 819–833. [Google Scholar] [CrossRef]
- Kimball, S.; Lulow, M.; Sorenson, Q.; Balazs, K.; Fang, Y.-C.; Davis, S.J.; O’Connell, M.; Huxman, T.E. Cost-effective ecological restoration. Restor. Ecol. 2015, 23, 800–810. [Google Scholar] [CrossRef]
- Chazdon, R.L. Tropical forest regeneration. Bol. Mus. Para. Emílio Goeldi. Cienc. Nat 2012, 7, 195–218. [Google Scholar]
- Chen, J.; Li, K.; Chang, K.-J.; Sofia, G.; Tarolli, P. Open-pit mining geomorphic feature characterisation. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 76–86. [Google Scholar] [CrossRef]
Satellite Acquisition date | WorldView-3 1 August 2015 | GeoEye 1 July 2012 | Ikonos 23 May 2011; 22 July 2013 |
---|---|---|---|
Spectral Resolution | |||
Coastal | 400–450 nm | --- | --- |
Blue | 450–510 nm | 450–520 nm | 450–520 nm |
Green | 510–580 nm | 520–600 nm | 520–600 nm |
Yellow | 585–625 nm | --- | --- |
Red | 630–690 nm | 625–695 nm | 630–690 nm |
Red Edge | 705–745 nm | --- | --- |
Near Infrared 1 | 770–895 nm | 760–900 nm | 760–900 nm |
Near Infrared 2 | 860–1040 nm | ||
Panchromatic | 450–800 nm | 450–900 nm | 450–900 nm |
Spatial Resolution | |||
Panchromatic | 0.3 m | 0.5 m | 1 m |
Multispectral | 1.24 m | 2 m | 4 m |
Radiometric Quantification | 11 bits per pixel | 11 bits per pixel | 11 bits per pixel |
Scene Size | 13.1 km | 15.2 km | 11.3 km |
Class | Layer | Ikonos 2011 | GeoEye 2012 | Ikonos 2013 | WorldView 2015 |
---|---|---|---|---|---|
Forests | B1: Red | - | 0–1.9 | - | - |
B2: Green | 2.1–5.5 * | 2.1–5.5 * | 2.1–5.5 * | 1.7–38 * | |
B3: Blue | 2.8–6.3 * | 1.8–6.3 * | 2.5–7.3 * | 0.9–6.3 * | |
B4: Infrared | - | - | - | - | |
B5: NDVI | 0.85–1 | 0.76–1 | 0.65–1 | 0.81–1 | |
B6: NDWI | - | - | - | - | |
B7: DTM | - | - | - | - | |
B8: SM | - | - | - | - | |
Cangas | B1: Red | 1.3–2.7 | 1.3–2.7 | 1.3–3.4 | 1.3–2.5 |
B2: Green | 3.8–5.75 * | 3.8–5.75 * | 3.8–5.75 * | 3.1–5.75 * | |
B3: Blue | 4.5–8.4 * | 4.5–7.4 * | 4.5–9.3 * | 4.5–7.4 * | |
B4: Infrared | 18–26 * | 10–18.5 * | 10–18 * | 10–18.5 * | |
B5: NDVI | 0.78–0.88 | - | - | 0.64–0.8 | |
B6: NDWI | −0.7–−0.4 | - | - | −0.47–−0.33 | |
B7: DTM | - | - | - | 562–700 | |
B8: SM | 0–17.5 * | 0–17.1 * | 0–17.5 * | 0–23 * | |
Complementary cangas (threshold condition: objects adjoining canga edges) | B1: Red | 0.85–3.3 * | 0.85–3.3 * | 0.85–3.6 * | 0.85–3.3 * |
B2: Green | 3–6.5 * | 3–6.5 * | 3–6.5 * | 3–6.5 * | |
B3: Blue | 3.1–9.6 * | 3.1–9.6 * | 3.1–9.9 * | 3.1–9.6 * | |
B4: Infrared | - | - | - | - | |
B5: NDVI | 0.74–0.94 | 0.72–0.94 | 0.57–0.94 | 0.67–0.94 | |
B6: NDWI | - | - | - | - | |
B7: DTM | - | 0–700 | 0–700 | 0–722 | |
B8: SM | - | - | - | - | |
Mining areas | B1: Red | 0.27–7.7 * | 0.27–9.6 * | 0.27–10 * | 0.27–9.6 * |
B2: Green | 1.6–13.5 * | 1.6–14.6 * | 1.6–17 * | 1.6–14.6 * | |
B3: Blue | 6–25 | 4.3–47 | 4.3–47 | 3.5–47 | |
B4: Infrared | - | - | - | - | |
B5: NDVI | - | - | - | - | |
B6: NDWI | −9.5–0.35 * | −9.5–0.35 * | −9.5–0.35 * | −9.5–0.35 * | |
B7: DTM | - | - | - | - | |
B8: SM | - | - | - | - | |
Water bodies | B1: Red | - | - | - | - |
B2: Green | - | - | - | - | |
B3: Blue | - | - | - | - | |
B4: Infrared | - | - | - | - | |
B5: NDVI | - | - | - | - | |
B6: NDWI | 0.1–1 * | 0.1–1 * | 0.1–1 * | 0.1–1 * | |
B7: DTM | - | - | - | - | |
B8: SM | - | - | - | - |
Class | Layers | Ikonos 2011 | GeoEye 2012 | Ikonos 2013 | WorldView 2015 |
---|---|---|---|---|---|
Complementary forests 1 | B1: Red | - | - | - | - |
B2: Green | 2.1–5.5 * | 2.1–5.5 * | 2.1–5.5 * | 2.1–5.5 * | |
B3: Blue | 2.8–6 * | 2.8–6 * | 2.8–7 * | 2.8–6 * | |
B4: Infrared | - | - | - | - | |
B5: NDVI | 0.87–1 * | 0.87–1 * | 0.73–1 * | 0.87–1 * | |
B6: NDWI | - | - | - | - | |
B7: DTM | - | - | - | - | |
B8: SM | - | - | - | - | |
Revegetated and rehabilitated sites | B1: Red | 1.5–5 * | 1.4–5 * | 1–5 * | 1–5 * |
B2: Green | 4.5–11 * | 3.3–11 * | 2–11 * | 2–11 * | |
B3: Blue | 5.5–14.2 * | 3.6–14.2 * | 2.3–14.2 * | 2.3–14.2 * | |
B4: Infrared | - | - | - | - | |
B5: NDVI | 0.7–0.9 | 0.65–0.92 | 0.56–0.92 | 0.6–0.92 | |
B6: NDWI | −1–−0.3 * | - | - | −1–−0.3 * | |
B7: DTM | - | - | - | - | |
B8: SM | - | - | - | - | |
Complementary forests 2 | B1: Red | - | - | - | - |
B2: Green | - | - | - | - | |
B3: Blue | - | - | - | - | |
B4: Infrared | - | - | - | - | |
B5: NDVI | 0.78–1 | 0.78–1 | 0.78–1 | 0.78–1 | |
B6: NDWI | - | - | - | - | |
B7: DTM | - | - | - | - | |
B8: SM | - | - | - | - |
(A) Error Matrix of Classification of the Land Change Map (Line) against the Reference Data (Column) for the Sample Sites | ||||||||||
Area | Classes | UM | M-REV | C-M | UC | F-M | UF | UREV | REV-M | Totals |
1928.74 | UM | 163 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 165 |
377.54 | M-REV | 4 | 27 | 0 | 0 | 0 | 0 | 1 | 0 | 32 |
353.66 | C-M | 1 | 0 | 30 | 0 | 0 | 0 | 0 | 0 | 31 |
671.71 | UC | 0 | 0 | 3 | 51 | 0 | 1 | 0 | 0 | 55 |
264.06 | F-M | 0 | 0 | 1 | 0 | 14 | 0 | 1 | 1 | 17 |
6790.13 | UF | 2 | 0 | 0 | 3 | 0 | 617 | 11 | 0 | 633 |
378.08 | UREV | 1 | 0 | 0 | 1 | 0 | 5 | 56 | 1 | 64 |
189.81 | REV-M | 4 | 0 | 0 | 0 | 0 | 2 | 4 | 17 | 27 |
10953.7 | Totals | 175 | 28 | 34 | 55 | 14 | 625 | 74 | 19 | 1024 |
Producer’s accuracy | 93.1 | 96.4 | 88.2 | 92.7 | 100.0 | 98.7 | 75.7 | 89.5 | ||
User’s accuracy | 98.8 | 84.4 | 96.8 | 92.7 | 82.4 | 97.5 | 87.5 | 63.0 | ||
Kappa per class | 0.99 | 0.84 | 0.97 | 0.92 | 0.82 | 0.94 | 0.87 | 0.62 | ||
Agreement | 163.00 | 27.00 | 30.00 | 51.00 | 14.00 | 617.00 | 56.00 | 17.00 | 975.0 | |
By chance | 28.20 | 0.88 | 1.03 | 2.95 | 0.23 | 386.35 | 4.63 | 0.50 | 424.8 | |
Overall accuracy = | 0.952 | Kappa index = | 0.918 | |||||||
(B) Error Matrix by Estimated Proportions of Areas | ||||||||||
W | Classes | UM | M-REV | C-M | UC | F-M | UF | UREV | REV-M | Totals |
0.176 | UM | 0.174 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.176 |
0.034 | M-REV | 0.004 | 0.029 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.034 |
0.032 | C-M | 0.001 | 0.000 | 0.031 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.032 |
0.061 | UC | 0.000 | 0.000 | 0.003 | 0.057 | 0.000 | 0.001 | 0.000 | 0.000 | 0.061 |
0.024 | F-M | 0.000 | 0.000 | 0.001 | 0.000 | 0.020 | 0.000 | 0.001 | 0.001 | 0.024 |
0.620 | UF | 0.002 | 0.000 | 0.000 | 0.003 | 0.000 | 0.604 | 0.011 | 0.000 | 0.620 |
0.035 | UREV | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | 0.003 | 0.030 | 0.001 | 0.035 |
0.017 | REV-M | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.003 | 0.011 | 0.017 |
1.000 | Totals | 0.184 | 0.030 | 0.036 | 0.060 | 0.020 | 0.609 | 0.047 | 0.013 | 1.0 |
Producer’s accuracy | 94.4 | 96.5 | 86.8 | 94.2 | 100.0 | 99.2 | 64.118 | 84.789 | ||
User’s accuracy | 98.8 | 84.4 | 96.8 | 92.7 | 82.4 | 97.5 | 87.500 | 62.963 | ||
Area (ha) | 2019.4 | 330.2 | 394.4 | 660.9 | 217.5 | 6674.3 | 515.96 | 140.95 | ||
ME (95%) | 71.9 | 53.4 | 55.5 | 60.2 | 49.3 | 92.0 | 91.6 | 48.0 | ||
Area (ha) | 2019 ± 72 | 330 ± 53 | 394 ± 56 | 661 ± 60 | 217 ± 49 | 6674 ± 92 | 516 ± 92 | 141 ± 48 | ||
Overall accuracy = | 0.96 | |||||||||
Normalized area | 1.047 | 0.875 | 1.115 | 0.984 | 0.824 | 0.983 | 1.365 | 0.743 | ||
NME | 0.037 | 0.141 | 0.157 | 0.090 | 0.187 | 0.014 | 0.242 | 0.253 | ||
Standard error | 36.663 | 27.255 | 28.325 | 30.700 | 25.166 | 46.957 | 46.753 | 24.481 | ||
Standard deviation | 0.109 | 0.363 | 0.177 | 0.260 | 0.381 | 0.157 | 0.331 | 0.483 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, F.S.; Gastauer, M.; Souza-Filho, P.W.M.; Nascimento, W.R., Jr.; Santos, D.C.; Costa, M.F. Land Cover Changes in Open-Cast Mining Complexes Based on High-Resolution Remote Sensing Data. Remote Sens. 2020, 12, 611. https://doi.org/10.3390/rs12040611
Nascimento FS, Gastauer M, Souza-Filho PWM, Nascimento WR Jr., Santos DC, Costa MF. Land Cover Changes in Open-Cast Mining Complexes Based on High-Resolution Remote Sensing Data. Remote Sensing. 2020; 12(4):611. https://doi.org/10.3390/rs12040611
Chicago/Turabian StyleNascimento, Filipe Silveira, Markus Gastauer, Pedro Walfir M. Souza-Filho, Wilson R. Nascimento, Jr., Diogo C. Santos, and Marlene F. Costa. 2020. "Land Cover Changes in Open-Cast Mining Complexes Based on High-Resolution Remote Sensing Data" Remote Sensing 12, no. 4: 611. https://doi.org/10.3390/rs12040611
APA StyleNascimento, F. S., Gastauer, M., Souza-Filho, P. W. M., Nascimento, W. R., Jr., Santos, D. C., & Costa, M. F. (2020). Land Cover Changes in Open-Cast Mining Complexes Based on High-Resolution Remote Sensing Data. Remote Sensing, 12(4), 611. https://doi.org/10.3390/rs12040611