Mapping Annual Land Disturbance and Reclamation in a Surface Coal Mining Region Using Google Earth Engine and the LandTrendr Algorithm: A Case Study of the Shengli Coalfield in Inner Mongolia, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Overview of the Methodology
2.3. Data Acquisition and Preprocessing
2.4. Identification of Disturbance and Reclamation Years
2.5. Data Post-processing, Accuracy Assessment, and Validation
3. Results
3.1. Disturbance and Reclamation Accuracy Assessment
3.2. Spatiotemporal Characteristics of Vegetation Changes
4. Discussion
4.1. Applicability of the Method
4.2. Comparison with Existing Products
4.3. Method Defects and Generalization
4.4. Implications for Ecological Monitoring and Reclamation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xiao, W.; Lv, X.J.; Zhao, Y.L.; Sun, H.X.; Li, J.Q. Ecological resilience assessment of an arid coal mining area using index of entropy and linear weighted analysis: A case study of Shendong Coalfield, China. Ecol. Indic. 2020, 109, 105843. [Google Scholar] [CrossRef]
- Lv, X.J.; Xiao, W.; Zhao, Y.L.; Zhang, W.K.; Li, S.C.; Sun, H.X. Drivers of spatio-temporal ecological vulnerability in an arid, coal mining region in Western China. Ecol. Indic. 2019, 106, 105475. [Google Scholar] [CrossRef]
- Schladweiler, B.K. 40 years of the Surface Mining Control and Reclamation Act(SMCRA): What have we learned in the State of Wyoming. Int. J. Coal Sci. Technol. 2018, 5, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Zhao, Y.; Fang, C. Detection of Spatiotemporal Changes of Surface Mining Area in Changting County Southeast China. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, 28 July–2 August 2019; pp. 1606–1609. [Google Scholar]
- Ahirwal, J.; Maiti, S.K. Assessment of soil properties of different land uses generated due to surface coal mining activities in tropical Sal (Shorea robusta) forest, India. Catena (Amst) 2016, 140, 155–163. [Google Scholar] [CrossRef]
- Kompala-Baba, A.; Sierka, E.; Dyderski, M.K.; Bierza, W.; Magurno, F.; Besenyei, L.; Blonska, A.; Rys, K.; Jagodzinski, A.M.; Wozniak, G. Do the dominant plant species impact the substrate and vegetation composition of post-coal mining spoil heaps? Ecol. Eng. 2020, 143, 105685. [Google Scholar] [CrossRef]
- Xiao, W.; Fu, Y.H.; Wang, T.; Lv, X.J. Effects of land use transitions due to underground coal mining on ecosystem services in high groundwater table areas: A case study in the Yanzhou coalfield. Land Use Policy 2018, 71, 213–221. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Islam, K.; Vilaysouk, X.; Murakami, S. Integrating remote sensing and life cycle assessment to quantify the environmental impacts of copper-silver-gold mining: A case study from Laos. Resour. Conserv. Recycl. 2020, 154, 104630. [Google Scholar] [CrossRef]
- Lein, J.K. Implementing remote sensing strategies to support environmental compliance assessment: A neural network application. Environ. Sci. Policy 2009, 12, 948–958. [Google Scholar] [CrossRef]
- Chen, W.T.; Li, X.J.; He, H.X.; Wang, L.Z. Assessing Different Feature Sets’ Effects on Land Cover Classification in Complex Surface-Mined Landscapes by ZiYuan-3 Satellite Imagery. Remote Sens. 2018, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- Li, X.J.; Chen, W.T.; Cheng, X.W.; Wang, L.Z. A Comparison of Machine Learning Algorithms for Mapping of Complex Surface-Mined and Agricultural Landscapes Using ZiYuan-3 Stereo Satellite Imagery. Remote Sens. 2016, 8, 514. [Google Scholar] [CrossRef] [Green Version]
- Wen, B.; Pan, Y.H.; Zhang, Y.Y.; Liu, J.J.; Xia, M. Does the Exhaustion of Resources Drive Land Use Changes? Evidence from the Influence of Coal Resources-Exhaustion on Coal Resources-Based Industry Land Use Changes. Sustainability 2018, 10, 2698. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.D.; Ge, D.Q.; Wu, L.X.; Zhang, L.; Wang, Y.; Guo, X.F.; Li, M.; Yu, X.G. Study on monitoring land subsidence in mining city based on coherent target small-baseline InSAR. J. China Coal Soc. 2012, 37, 1606–1611. [Google Scholar]
- Li, J.; Jiao, L.; Shen, Y.; Liu, Q. Land use and cover change in coal mining area by IFZ and NDVI. J. China Coal Soc. 2016, 41, 2822–2829. [Google Scholar]
- Li, J.; Cui, L.; Yan, X.; Yang, Z.; Dong, J.; Deng, X. Comparative analysis of long-term trends on fraction of vegetation coverage in grassland mining area. Bull. Surv. Mapp. 2019, 8, 130–134. [Google Scholar]
- Jia, D.; Shouguo, M.U.; Zhao, H. Analysis of NDVI Time Series in Grassland Open-cast Coal Mines Based on SSA-Mann Kendall. Int. J. Geogr. Inf. Sci. 2016, 18, 1110–1122. [Google Scholar]
- Li, H.; Lei, J.; Wu, J. Analysis of land damage and recovery process in rare earth mining area based on multi-source sequential NDVI. Trans. Chin. Soc. Agric. Eng. 2018, 34, 232–240. [Google Scholar]
- Snapir, B.; Simms, D.M.; Waine, T.W. Mapping the expansion of galamsey gold mines in the cocoa growing area of Ghana using optical remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Demirel, N.; Emil, M.K.; Duzgun, H.S. Surface coal mine area monitoring using multi-temporal high-resolution satellite imagery. Int. J. Coal Geol. 2011, 86, 3–11. [Google Scholar] [CrossRef]
- Latifovic, R.; Fytas, K.; Chen, J.; Paraszczak, J. Assessing land cover change resulting from large surface mining development. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 29–48. [Google Scholar] [CrossRef]
- Erener, A. Remote sensing of vegetation health for reclaimed areas of Seyitomer open cast coal mine. Int. J. Coal Geol. 2011, 86, 20–26. [Google Scholar] [CrossRef]
- Obade, V.D.; Lal, R. Assessing land cover and soil quality by remote sensing and geographical information systems (GIS). Catena (Amst) 2013, 104, 77–92. [Google Scholar] [CrossRef]
- Townsend, P.A.; Helmers, D.P.; Kingdon, C.C.; McNeil, B.E.; de Beurs, K.M.; Eshleman, K.N. Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976–2006 Landsat time series. Remote Sens. Environ. 2009, 113, 62–72. [Google Scholar] [CrossRef]
- Matejicek, L.; Kopackova, V. Changes in Croplands as a Result of Large Scale Mining and the Associated Impact on Food Security Studied Using Time-Series Landsat Images. Remote Sens. 2010, 2, 1463–1480. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zipper Carl, E.; Li, S.; Donovan Patricia, F.; Wynne Randolph, H.; Oliphant Adam, J.; Xia, Q. Character analysis of mining disturbance and reclamation trajectory in surface coal-mine area by time-series NDVI. Trans. CSAE 2015, 31, 251–257. [Google Scholar]
- Yang, Z.; Li, J.; Zipper, C.E.; Shen, Y.Y.; Miao, H.; Donovan, P.F. Identification of the disturbance and trajectory types in mining areas using multitemporal remote sensing images. Sci. Total Environ. 2018, 644, 916–927. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, H. Vegetation Cover Change and Urban Expansion in Beijing-Tianjin-Hebei during 2001~2015based on Google Earth Engine. Remote Sens. Technol. Appl. 2018, 33, 593–599. [Google Scholar]
- Chen, W.; Huang, H.; Tian, Y.; Du, Y. Monitoring and Assessment of the Eco-Environment Quality in the Sanjiangyuan Region based on Google Earth Engine. Int. J. Geogr. Inf. Sci. 2019, 21, 1382–1391. [Google Scholar]
- Bunting, E.L.; Munson, S.M.; Bradford, J.B. Assessing plant production responses to climate across water-limited regions using Google Earth Engine. Remote Sens. Environ. 2019, 233, 111379. [Google Scholar] [CrossRef]
- Hu, Y.F.; Dong, Y.; Batunacun. An automatic approach for land-change detection and land updates based on integrated NDVI timing analysis and the CVAPS method with GEE support. ISPRS J. Photogramm. Remote Sens. 2018, 146, 347–359. [Google Scholar] [CrossRef]
- Zhu, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Huang, C.; Coward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.G.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zipper, C.E.; Donovan, P.F.; Wynne, R.H.; Oliphant, A.J. Reconstructing disturbance history for an intensively mined region by time-series analysis of Landsat imagery. Environ. Monit. Assess. 2015, 187, 557. [Google Scholar] [CrossRef]
- Shen, W.; Li, M.; Huang, C. Review of remote sensing algorithms for monitoring forest disturbance from time series and multi-source data fusion. J. Remote Sens. 2018, 22, 1005–1022. [Google Scholar]
- Zou, Z.H.; Xiao, X.M.; Dong, J.W.; Qin, Y.W.; Doughty, R.B.; Menarguez, M.A.; Zhang, G.L.; Wang, J. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl. Acad. Sci. USA 2018, 115, 3810–3815. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.J.; Erskine, P.D.; Lechner, A.M.; Mulligan, D.; Zhang, S.L.; Wang, Z.Y. Detecting the dynamics of vegetation disturbance and recovery in surface mining area via Landsat imagery and LandTrendr algorithm. J. Clean. Prod. 2018, 178, 353–362. [Google Scholar] [CrossRef]
- Krzyszowska Waitkus, A. Surface coal mine permit application for successful reclamation, semi-arid shortgrass prairie (Wyoming, USA)(Article). Int. J. Coal Sci. Technol. 2018, 5, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Zhao, Y.; Xiao, W.; Hu, Z. A review of UAV monitoring in mining areas: Current status and future perspectives. Int. J. Coal Sci. Technol. 2019, 6, 320–333. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Xu, Y.D.; Xue, Y.M.; Li, X.C.; Cheng, Y.Q.; Liu, X.X.; Porwal, A.; Holden, E.J.; Yang, J.; Gong, P. Monitoring surface mining belts using multiple remote sensing datasets: A global perspective. Ore Geol. Rev. 2018, 101, 675–687. [Google Scholar] [CrossRef]
- Wu, R.; Hong, Y.; Bao, G. The Change of Vegetation Phenology and its Impacts on Vegetation Productivity in Inner Mongolia during 20012016. Acta Agrestia Sin. 2019, 27, 1685–1693. [Google Scholar]
- Mu, S.; Yang, H.; Li, J.; Chen, Y.; Gang, C.; Zhou, W.; Ju, W. Spatio-temporal dynamics of vegetation coverage and its relationship with climate factors in Inner Mongolia, China. J. Geogr. Sci. 2013, 23, 231–246. [Google Scholar] [CrossRef]
- Griffiths, P.; van der Linden, S.; Kuemmerle, T.; Hostert, P. Pixel-Based Landsat Compositing Algorithm for Large Area Land Cover Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2088–2101. [Google Scholar] [CrossRef]
- Karan, S.K.; Samadder, S.R.; Maiti, S.K. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands. J. Environ. Manag. 2016, 182, 272–283. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, J.; Bai, Z.; Reading, L. Effects of surface coal mining and land reclamation on soil properties: A review. Earth Sci. Rev. 2019, 191, 12–25. [Google Scholar] [CrossRef]
- Lima, A.T.; Mitchell, K.; O’Connell, D.W.; Verhoeven, J.; Van Cappellen, P. The legacy of surface mining: Remediation, restoration, reclamation and rehabilitation. Environ. Sci. Policy 2016, 66, 227–233. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.Q.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.B.; Healey, S. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef] [Green Version]
- Dai, G.S.; Ulgiati, S.; Zhang, Y.S.; Yu, B.H.; Kang, M.Y.; Jin, Y.; Dong, X.B.; Zhang, X.S. The false promises of coal exploitation: How mining affects herdsmen well-being in the grassland ecosystems of Inner Mongolia. Energy Policy 2014, 67, 146–153. [Google Scholar] [CrossRef]
- Wu, Z.; Lei, S.; Lu, Q.; Bian, Z.; Ge, S. Spatial distribution of the impact of surface mining on the landscape ecological health of semi-arid grasslands. Ecol. Indic. 2020, 111, 105996. [Google Scholar] [CrossRef]
- Li, J.; Deng, X.J.; Yang, Z.; Liu, Q.L.; Wang, Y.; Cui, L.Y. A Method of Extracting Mining Disturbance in Arid Grassland Based on Time Series Multispectral Images. Spectrosc. Spectr. Anal. 2019, 39, 3788–3793. [Google Scholar]
- Xu, J.; Zhao, H.; Yin, P.; Jia, D.; Li, G. Remote sensing classification method of vegetation dynamics based on time series Landsat image: A case of opencast mining area in China. EURASIP J. Image Video Process. 2018, 1, 113. [Google Scholar] [CrossRef]
- Dlamini, L.Z.D.; Xulu, S. Monitoring Mining Disturbance and Restoration over RBM Site in South Africa Using LandTrendr Algorithm and Landsat Data. Sustainability 2019, 11, 6916. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Li, H.; Li, J.; Lei, Y.; Li, C.; Manevski, K.; Shen, Y. Using NDVI percentiles to monitor real-time crop growth. Comput. Electron. Agric. 2019, 162, 357–363. [Google Scholar] [CrossRef]
- Fang, C.; Wen, Z.; Li, L.; Du, J.; Liu, G.; Wang, X.; Song, K. Agricultural Development and Implication for Wetlands Sustainability: A Case from Baoqing County, Northeast China. Chin. Geogr. Sci. 2019, 29, 231–244. [Google Scholar] [CrossRef] [Green Version]
- Aqiang, Y.; Chuang, L.; Jianrong, F.; Jinling, Z.; Jing, T. The Application of High Spatial Resolution Remote Sensing Image forVegetation Type Recognition in Dagou Valley. In Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Classification of Remote Sensing Images; International Society for Optics and Photonics: Bellingham, WA, USA, 2008; Volume 7147. [Google Scholar]
- Pericak, A.A.; Thomas, C.J.; Kroodsma, D.A.; Wasson, M.F.; Ross, M.R.V.; Clinton, N.E.; Campagna, D.J.; Franklin, Y.; Bernhardt, E.S.; Amos, J.F. Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google Earth Engine. PLoS ONE 2018, 13, e0197758. [Google Scholar] [CrossRef] [Green Version]
- Lei, S.; Bian, Z.; Daniels, J.L.; He, X. Spatio-temporal variation of vegetation in an arid and vulnerable coal mining region. Min. Sci. Technol. (China) 2010, 20, 485–490. [Google Scholar] [CrossRef]
Year | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | UP | RM |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2004 | 11 | 104 | 1018 | 623 | 24 | 1135 | 120 | 44 | 37 | 651 | 254 | 363 | 274 | 551 | 529 | 0.91 |
2005 | 0 | 128 | 97 | 66 | 0 | 326 | 93 | 7 | 12 | 62 | 5 | 34 | 55 | 198 | 656 | 0.62 |
2006 | 0 | 0 | 305 | 60 | 7 | 992 | 125 | 19 | 56 | 20 | 1 | 0 | 11 | 2 | 570 | 0.74 |
2007 | 0 | 0 | 7 | 75 | 91 | 1379 | 196 | 265 | 386 | 261 | 16 | 27 | 59 | 69 | 2384 | 0.54 |
2008 | 0 | 0 | 0 | 54 | 362 | 684 | 944 | 1174 | 800 | 495 | 9 | 35 | 119 | 495 | 12,345 | 0.30 |
2009 | 0 | 0 | 0 | 1 | 5 | 390 | 687 | 1084 | 952 | 354 | 21 | 50 | 126 | 182 | 4497 | 0.46 |
2010 | 0 | 0 | 1 | 1 | 0 | 214 | 688 | 1266 | 1081 | 132 | 26 | 10 | 40 | 0 | 8235 | 0.30 |
2011 | 0 | 0 | 0 | 0 | 0 | 0 | 62 | 638 | 448 | 37 | 1 | 3 | 11 | 83 | 7087 | 0.15 |
2012 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 11 | 388 | 144 | 91 | 13 | 53 | 152 | 8141 | 0.09 |
2013 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 37 | 39 | 44 | 24 | 6 | 126 | 6500 | 0.04 |
2014 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 16 | 4 | 77 | 48 | 7118 | 0.02 |
2015 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1482 | 0.00 |
2016 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 5 | 0 | 0 | 0 | 3 | 14 | 2522 | 0.01 |
2017 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 115 | 4328 | 0.03 |
2018 | 0 | 0 | 0 | 0 | 0 | 8 | 3 | 0 | 0 | 2 | 0 | 0 | 0 | 8 | 3675 | 0.01 |
2019 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 1 | 4 | 0 | 0 | 0 | 2 | 1 | 3762 | 0.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, W.; Deng, X.; He, T.; Chen, W. Mapping Annual Land Disturbance and Reclamation in a Surface Coal Mining Region Using Google Earth Engine and the LandTrendr Algorithm: A Case Study of the Shengli Coalfield in Inner Mongolia, China. Remote Sens. 2020, 12, 1612. https://doi.org/10.3390/rs12101612
Xiao W, Deng X, He T, Chen W. Mapping Annual Land Disturbance and Reclamation in a Surface Coal Mining Region Using Google Earth Engine and the LandTrendr Algorithm: A Case Study of the Shengli Coalfield in Inner Mongolia, China. Remote Sensing. 2020; 12(10):1612. https://doi.org/10.3390/rs12101612
Chicago/Turabian StyleXiao, Wu, Xinyu Deng, Tingting He, and Wenqi Chen. 2020. "Mapping Annual Land Disturbance and Reclamation in a Surface Coal Mining Region Using Google Earth Engine and the LandTrendr Algorithm: A Case Study of the Shengli Coalfield in Inner Mongolia, China" Remote Sensing 12, no. 10: 1612. https://doi.org/10.3390/rs12101612
APA StyleXiao, W., Deng, X., He, T., & Chen, W. (2020). Mapping Annual Land Disturbance and Reclamation in a Surface Coal Mining Region Using Google Earth Engine and the LandTrendr Algorithm: A Case Study of the Shengli Coalfield in Inner Mongolia, China. Remote Sensing, 12(10), 1612. https://doi.org/10.3390/rs12101612