Performance of an Unmanned Aerial Vehicle (UAV) in Calculating the Flood Peak Discharge of Ephemeral Rivers Combined with the Incipient Motion of Moving Stones in Arid Ungauged Regions
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Data
3.1.1. UAV Data Collection
3.1.2. UAV Data Processing
3.1.3. In Situ Survey Data
3.2. Critical Velocity of Particle Transport
3.2.1. Logarithmic Distribution of the Flow Velocity
3.2.2. Exponential Distribution of the Flow Velocity
3.3. Discharge Calculation of River Sections
3.4. Performance Evaluation
4. Results
4.1. Stone Movement and Velocity Distribution in the River Channel
4.2. Peak Discharge of the River Cross Section
4.3. Validation of the Estimated River Discharges
5. Discussion
5.1. Value and Extension of the Proposed Method
5.2. Performance Evaluation of the Estimated Velocities
5.3. The Effects of the Selection of Large Boulders on the Estimation of Peak Discharge
5.4. Limitations and Uncertainties of the Present Research
6. Conclusions
- The proposed method performs best in the combination of the exponential method and the river channel with evident flooding (>20 m3/s), with relative accuracy within 10%. In the river channel with a little flow (around 1 m3/s), the accuracies are weak because of the limited number of small moving stones found due to the current resolution of UAV data.
- The exponential velocity distribution method performs better regardless of the amount of water through the two channels, because of the reliable comprehensive coefficient used in the generalized formula.
- The effects of using small moving stones or large boulders in the proposed method depend on the discharge in the ephemeral river. In the river with a little flow, identifying smaller moving stones would increase the estimation accuracy. In large ephemeral rivers, estimation results are greatly influenced by using smaller stones or large boulders.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vorosmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global Threats to Human Water Security and River Biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- WWAP (United Nations World Water Assessment Programme). The United Nations World Water Development Report 3: Water in a Changing World; UNESCO and Earthscan: Paris, France; London, UK, 2009. [Google Scholar]
- WWAP (United Nations World Water Assessment Programme). The United Nations World Water Development Report 2015: Water for a Sustainable World; UNESCO: Paris, France, 2015. [Google Scholar]
- Chen, Y.N.; Li, B.F.; Li, Z.; Li, W.H. Water resource formation and conversion and water security in arid region of Northwest China. J. Geogr. Sci. 2016, 26, 939–952. [Google Scholar] [CrossRef] [Green Version]
- Leigh, C.; Boulton, A.J.; Courtwright, J.L.; Fritz, K.; May, C.L.; Walker, R.H.; Datry, T. Ecological research and management of intermittent rivers: An historical review and future directions. Freshw. Biol. 2016, 61, 1181–1199. [Google Scholar] [CrossRef]
- Larned, S.T.; Datry, T.; Arscott, D.B.; Tockner, K. Emerging concepts in temporary river ecology. Freshw. Biol. 2010, 55, 717–738. [Google Scholar] [CrossRef]
- Gallart, F.; Prat, N.; García-Roger, E.M.; Latron, J.; Rieradevall, M.; Llorens, P.; Barber´a, G.G.; Brito, D.; De Girolamo, A.M.; Lo Porto, A.; et al. A novel approach to analysing the regimes of temporary streams in relation to their controls on the composition and structure of aquatic biota. Hydrol. Earth Syst. Sci. 2012, 16, 3165–3182. [Google Scholar] [CrossRef] [Green Version]
- Shumilova, O.; Zak, D.; Datry, T.; Von Schiller, D.; Corti, R.; Foulquier, A.; Obrador, B.; Tockner, K.; Allan, D.C.; Altermatt, F.; et al. Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter. Glob. Chang. Biol. 2019, 25, 1591–1611. [Google Scholar] [CrossRef] [Green Version]
- Skoulikidis, N.T.; Sabater, S.; Datry, T.; Morais, M.M.; Buffagni, A.; Dörflinger, G.; Zogaris, S.; Sánchez-Montoya, M.M.; Bonada, N.; Kalogiann, E.; et al. Non-perennial Mediterranean rivers in Europe: Status, pressures, and challenges for research and management. Sci. Total Environ. 2017, 577, 1–18. [Google Scholar] [CrossRef]
- Sharma, K.D.; Murthy, J.S.R.; Dhir, R.P. Streamflow routing in the Indian arid zone. Hydrol. Process 1994, 8, 27–43. [Google Scholar] [CrossRef]
- De Girolamo, A.M.; Lo Porto, A.; Pappagallo, G.; Tzoraki, O.; Gallart, F. The hydrological status concept. Application at a temporary river (Candelaro, Italy). River Res. Appl. 2015, 31, 892–903. [Google Scholar] [CrossRef]
- Singh, V.P.; Woolhiser, D.A. Mathematical modeling of watershed hydrology. J. Hydr. Eng. 2002, 7, 270–292. [Google Scholar] [CrossRef] [Green Version]
- Birkinshaw, S.J.; O’Donnell, G.M.; Moore, P.; Kilsby, C.G.; Fowler, H.J.; Berry, P.A.M. Using satellite altimetry data to augment flow estimation techniques on the Mekong River. Hydrol. Process 2010, 24, 3811–3825. [Google Scholar] [CrossRef]
- Tarpanelli, A.; Barbetta, S.; Brocca, L.; Moramarco, T. River discharge estimation by using altimetry data and simplified flood routing modeling. Remote Sens. 2013, 5, 4145–4162. [Google Scholar] [CrossRef] [Green Version]
- UNESCO. Detecting water bodies and water related features in the Niger Basin (Niamey area) using SAR data: The ESA TIGER WADE Project. In Application of Satellite Remote Sensing to Support Water Resources Management in Africa: Results from the TIGER Initiative; UNESCO: Paris, France, 2010; pp. 108–118. [Google Scholar]
- Gleason, C.J.; Smith, L.C.; Lee, J. Retrieval of river discharge solely from satellite imagery and at-many-stations hydraulic geometry: Sensitivity to river form and optimization parameters. Water Resour. Res. 2014, 50, 9604–9619. [Google Scholar] [CrossRef]
- Durand, M.; Gleason, C.J.; Garambois, P.A.; Bjerklie, D.; Smith, L.C.; Roux, H.; Rodriguez, E.; Bates, P.D.; Pavelsky, T.M.; Monnier, J.; et al. An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope. Water Resour. Res. 2016, 52, 4527–4549. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.S.; Zhou, F.Q.; Russell, H.A.J. Estimating Snow Mass and Peak River Flows for the Mackenzie River Basin Using GRACE Satellite Observations. Remote Sens. 2017, 9, 256. [Google Scholar] [CrossRef] [Green Version]
- Sichangi, W.; Wang, L.; Yang, K.; Chen, D.L.; Wang, Z.J.; Li, X.P.; Zhou, J.; Liu, W.B.; Kuria, D. Estimating continental river basin discharges using multiple remote sensing data sets. Remote Sens. Environ. 2016, 179, 36–53. [Google Scholar] [CrossRef] [Green Version]
- Quick, M.C. Reliability of flood discharge estimates. Can. J. Civ. Eng. 1991, 18, 624–630. [Google Scholar] [CrossRef]
- Stewart, A.M.; Callegary, J.B.; Smith, C.F.; Gupta, H.V.; Leenhouts, J.M.; Fritzinger, R.A. Use of the continuous slope-area method to estimate runoff in a network of ephemeral channels, southeast Arizona, USA. J. Hydrol. 2012, 472–473, 148–158. [Google Scholar] [CrossRef]
- Lee, K.; Firoozfar, A.R.; Muste, M. Technical Note: Monitoring of unsteady open channel flows using the continuous slope-area method. Hydrol. Earth Syst. Sci. 2017, 21, 1863–1874. [Google Scholar] [CrossRef]
- Tamminga, A.D.; Eaton, B.C.; Hugenholtz, C.H. UAS-based remote sensing of fluvial change following an extreme flood event. Earth Surf. Process. Landf. 2015, 40, 1464–1476. [Google Scholar] [CrossRef]
- Cook, K.L. An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology 2017, 278, 195–208. [Google Scholar] [CrossRef]
- Hemmelder, S.; Marra, W.; Markies, H.; De Jong, S.M. Monitoring river morphology & bank erosion using UAV imagery—A case study of the river Buëch, Hautes-Alpes, France. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 428–437. [Google Scholar]
- Zhao, C.S.; Zhang, C.B.; Yang, S.T.; Liu, C.M.; Xiang, H.; Sun, Y.; Yang, Z.Y.; Zhang, Y.; Yu, X.Y.; Shao, N.F.; et al. Calculating e-flow using UAV and ground monitoring. J. Hydrol. 2017, 552, 351–365. [Google Scholar] [CrossRef]
- Yousef, H. Hydraulics of Sediment Transport. In Hydrodynamics—Theory and Model; Zheng, J.H., Ed.; InTech: Shanghai, China, 2012; pp. 23–58. [Google Scholar]
- Shields, A. Application of Similarity Principles and Turbulence Research to Bed-Load Movement; California Institute of Technology: Pasadena, CA, USA, 1936. [Google Scholar]
- Yalin, M.S.; Karahan, E. Inception of sediment transport. J. Hydraul. Div. 1979, 105, 1433–1443. [Google Scholar]
- Yang, C.T. Sediment Transport: Theory and Practice; MC Graw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Dey, S.; Ali, S.Z. Advances in modeling of bed particle entrainment sheared by turbulent flow. Phys. Fluids 2018, 30. [Google Scholar] [CrossRef]
- Song, S.K.; Bai, J. Increasing Winter Precipitation over Arid Central Asia under Global Warming. Atmosphere 2016, 7, 139. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.B.; Yang, S.T.; Zhao, C.S.; Lou, H.Z.; Zhang, Y.C.; Bai, J.; Wang, Z.W.; Guan, Y.B.; Zhang, Y. Topographic data accuracy verification of small consumer UAV. J. Remote Sens. 2018, 22, 185–195. [Google Scholar]
- Turner, D.; Lucieer, A.; Wallace, L. Direct georeferencing of ultrahigh-resolution UAV imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2738–2745. [Google Scholar] [CrossRef]
- Ruzgienė, B.; Berteška, T.; Gečyte, S.; Jakubauskiene, E.; Aksamitauskas, V.C. The surface modeling based on UAV Photogrammetry and qualitative estimation. Measurement 2015, 73, 619–627. [Google Scholar] [CrossRef]
- David, G.L. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar]
- Shao, X.J.; Wang, X.Q. Introduction to River Mechanics, 2nd ed.; Tsinghua University: Beijing, China, 2012. [Google Scholar]
- Malpas, J.; Fletcher, C.J.N.; Ali, J.R.; Aitchison, J.C. Aspects of the Tectonic Evolution of China; The Geological Society: London, UK, 2004. [Google Scholar]
- Ma, L.; Wu, J.; Abuduwaili, J.; Liu, W. Geochemical Responses to Anthropogenic and Natural Influences in Ebinur Lake Sediments of Arid Northwest China. PLoS ONE 2016, 11, e0155819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Einstein, H.A. The Bed-Load Function for Sediment Transportation in Open Channel Flows; Technical Bulletin (No.1026); U.S. Department of Agriculture: Washington, DC, USA, 1950.
- Shamov, G.I. Riverine Sediments: River Channel and Their Catchment Erosion (In Russian); Gidrometeopizdat: Leningrad, Russia, 1954. [Google Scholar]
- Meselhe, E.A.; Hebert, K. Laboratory measurements of flow through culverts. J. Hydraul. Eng. 2007, 133, 973–976. [Google Scholar] [CrossRef]
- Powell, R.W. The Origin of Manning’s Formula. J. Hydraul. Div. 1968, 94, 1179–1181. [Google Scholar]
- Wu, Q.; Zhao, Z.; Liu, L.; Granger, D.E.; Wang, H.; Cohen, D.J.; Wu, X.H.; Ye, M.L.; Yosef, O.; Lu, B.; et al. Outburst flood at 1920 BCE supports historicity of China’s Great Flood and the Xia dynasty. Science 2016, 353, 579–582. [Google Scholar] [CrossRef] [PubMed]
- William, F.C. Estimation of Roughness Coefficients for Natural Stream Channels with Vegetated Banks; U.S. Geological Survey Water-Supply Paper 2441; U.S. Geological Survey: Denver, CO, USA, 1998.
- Birkinshaw, S.J.; Moore, P.; Kilsby, C.G.; O’Donnell, G.M.; Hardy, A.J.; Berry, P.A.M. Daily discharge estimation at ungauged river sites using remote sensing. Hydrol. Process 2014, 28, 1043–1054. [Google Scholar] [CrossRef]
- Gallart, F.; Llorens, P.; Latron, J.; Cid, N.; Rieradevall, M.; Prat, N. Validating alternative methodologies to estimate the regime of temporary rivers when flow data are unavailable. Sci. Total Environ. 2016, 565, 1001–1010. [Google Scholar] [CrossRef]
- Zha, X.; Huang, C.; Pang, J.; Gu, M. Flood Discharges Reconstructed by Flood Level Marks on Cliff Faces in Middle Reaches of Jinghe River. Bull. Soil Water Conserv. 2009, 29, 149–153. [Google Scholar]
- Gallart, F.; Latron, J.; Llorens, P.; Rabada, D. Hydrological functioning of mediterranean mountain basins in vallcebre, catalonia: Some challenges for hydrological modelling. Hydrol. Process 1997, 11, 1263–1272. [Google Scholar] [CrossRef]
- Gallart, F.; Llorens, P.; Latron, J.; Regues, D. Hydrological processes and their seasonal controls in a small Mediterranean mountain catchment in the Pyrenees. Hydrol. Earth Syst. Sci. 2002, 6, 527–537. [Google Scholar] [CrossRef] [Green Version]
- Bullard, J.E.; Mctainsh, G.H.; Martin, P. Establishing Stage-Discharge Relationships in Multiple-Channelled, Ephemeral Rivers: A Case Study of the Diamantina River, Australia. Geog. Res. 2007, 45, 233–245. [Google Scholar] [CrossRef]
- Bjerklie, D.M.; Dingman, S.L.; Vorosmarty, C.J.; Bolster, C.H.; Congalton, R.G. Evaluating the potential for measuring river discharge from space. J. Hydrol. 2003, 278, 17–38. [Google Scholar] [CrossRef]
- Bjerklie, D.M.; Dingman, S.L.; Bolster, C.H. Comparison of constitutive flow resistance equations based on the Manning and Chezy equations applied to natural rivers. Water Resour. Res. 2005, 41, W11502. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.W.; Shin, M. Estimation of peak flow in ungauged catchments using the relationship between runoff coefficient and curve number. Water 2018, 10, 1669. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Yu, G.; Xie, Y.; Zhan, D.; Li, Z. Sedimentary records of large Holocene floods from the middle reaches of the Yellow River, China. Geomorphology 2000, 33, 73–88. [Google Scholar] [CrossRef]
- Taksshi, K.; Sunao, W.; Suk, W.K. Characteristics of past flood behavior reconstructed from botanical evidence in a mountain gorge river system. Int. J. Eros. Control Eng. 2010, 3, 27–33. [Google Scholar]
- Shi, F.; Yi, Y.; Mu, P. Investigation, Research and Study on the Yellow River Historical Flood; Yellow River Water Conservancy Press: Zhengzhou, China, 2002. [Google Scholar]
- Institute of Hydrology. Flood Estimation Handbook; Institute of Hydrology: Wallingford, UK, 1999. [Google Scholar]
- Huang, Q.; Long, D.; Du, M.D.; Zeng, C.; Qiao, G.; Li, X.D.; Hou, A.Z.; Hong, Y. Discharge estimation in high-mountain regions with improved methods using multi-source remote sensing: A case study of the Upper Brahmaputra River. Remote Sens. Environ. 2018, 219, 115–134. [Google Scholar] [CrossRef]
- An, W.Z.; Zhu, L.M.; Zhou, W.Q.; Gao, L.L. Analysis on characteristics and change patterns of precipitation in northwest China. Agric. Res. Arid Areas 2006, 24, 194–199. [Google Scholar]
- Wang, Y.; Wang, Z.; Zhou, P. Experiment on rainfall-runoff process on slope of loess plateau. Acta Conserv. Soli Aquae Sin. 1991, 5, 25–31. [Google Scholar]
- Buffington, J.M.; Montgomery, D.R. A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resour. Res. 1998, 33, 1993–2029. [Google Scholar] [CrossRef] [Green Version]
- Recking, A. Theoretical development on the effects of changing flow hydraulics on incipient bed load motion. Water Resour. Res. 2009, 45, W04401. [Google Scholar] [CrossRef]
- Singh, U.K.; Ahmad, Z.; Kumar, A.; Pandey, M. Incipient motion for gravel particles in cohesionless sediment mixtures. Iran. J. Sci. Technol. Trans. Civ. Eng. 2019, 43, 253–262. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Diaz-Varela, R.; Angileri, V.; Loudjani, P. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur. J. Agron. 2014, 55, 89–99. [Google Scholar] [CrossRef]
- Chow, V.T. Open Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Maidment, D.R. Handbook of Hydrology; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Simons, D.B.; Li, R.M.; Al-Shaikh-Ali, K.S. Flow resistance in cobble and boulder riverbeds. J. Hydraul. Div. 1979, 105, 477–488. [Google Scholar]
Characteristics | FC300X |
---|---|
Sensor (Type) | 1/2.3” CMOS sensor |
Image size (Columns and Rows) | 1.2 million (4000 × 3000) |
Million effective pixels | 12.4 |
Maximum aperture | f/2.8 |
Camera focal length | 20 mm |
Field of view | 94° |
ISO range | 100–1600 (photo) |
River Channel | Cross Section | Cross Section Area A (m2) | Exponential | Logarithmic | ||
---|---|---|---|---|---|---|
Discharge Q (m3/s) | Discharge Q (m3/s) | |||||
H | A | 8.47 | 2.33 | 19.74 | 3.90 | 33.03 |
B | 8.69 | 2.37 | 20.60 | 3.66 | 31.81 | |
C | 8.46 | 2.53 | 21.40 | 4.19 | 35.45 | |
D | 8.84 | 2.59 | 22.89 | 4.08 | 36.05 | |
Average | - | 2.46 | 21.15 | 3.96 | 34.08 | |
S | A | 0.89 | 1.95 | 1.74 | 2.17 | 1.93 |
B | 0.93 | 2.00 | 1.86 | 1.82 | 1.69 | |
C | 1.19 | 1.95 | 2.32 | 2.29 | 2.73 | |
D | 0.91 | 1.85 | 1.68 | 1.66 | 1.51 | |
Average | - | 1.94 | 1.90 | 1.99 | 1.96 |
River Channel | Cross Section | The Average Peak Discharge (m3/s) | Exponential Velocity Distribution | Logarithmic Velocity Distribution | ||||
---|---|---|---|---|---|---|---|---|
RA | RMSE (m3/s) | MAPE (m3/s) | RA | RMSE (m3/s) | MAPE (m3/s) | |||
H | A | 22.02 | 10% | 1.45 | 0.06 | 50% | 12.18 | 0.55 |
B | 6% | 44% | ||||||
C | 3% | 61% | ||||||
D | 4% | 64% | ||||||
S | A | 0.76 | 174% | 1.17 | 1.51 | 193% | 1.29 | 1.59 |
B | 186% | 169% | ||||||
C | 232% | 273% | ||||||
D | 168% | 151% |
Study | Data Used | Approach | Results Verification | |
---|---|---|---|---|
Statistical methods | Gallart et al. (2016) [47] | Flow data, interviews and high-resolution aerial photographs | Developing the relationship between different aquatic states and discharge | Flow records measured at the gauging stations |
Yang (2000) [55] | Sediment layers, eyewitnesses accounts | Using slackwater deposits to reveal the magnitude and frequency of palaeofloods | Instrument flood records | |
Kimura (2010) [56] | Botanical evidence | Field vegetation investigation, dendrochronological method, Manning formula | Scars and inclinations of the vegetation by flood | |
Zha (2009) [48] | Gauging flood level marks, local interviews | Flood level-discharge, slope-area method | Data from gauging stations | |
Hydrological models | Gallart et al. (1997 & 2002) [49,50] | Gauging reports and soil water content | TOPMODEL | Field Observations & observed streamflow |
Sharma et al. (1994) [10] | Gauging reports and field data | A lumped model | Observed data representing 79 Hydrographs in 15 channel reaches | |
Bullard et al. (2007) [51] | Gauging reports and field data | The Urban Runoff and Basin Systems rainfall-runoff model, Hydrologic Engineering Centre-River Analysis System computer model, and empirically-based velocity-area method | Rainfall from gauges in the catchment and streamflow data | |
Kim & Shin. (2018) [54] | Gauging reports and field data | The grid-based rainfall-runoff model (GRM), using the relationship between the runoff coefficient, intensity of rainfall, and curve number and the rational method | The observed flow data | |
Multi-remote sensing methods | Gleason et al. (2014) [16] | Landsat TM | At-Many-Stations Hydraulic Geometry (AMHG) | In situ river gauge observations data of mean daily discharge |
Bjerkie et al. (2003 & 2005) [52,53] | Digital orthophoto quadrangles (DOQs) and ERS-1 | Modeled equation based on the resistance equation formulated by Chezy and Manning | Flow measurements database at river sites | |
Birkinshaw et al. (2014) [46] | ERS-2, ENVISAT, and Landsat | Substituting Time series of river channel stage levels, channel slope and channel widths into the Bjerklie et al. (2003) [52] equation | Daily in situ discharge measurements data | |
Sichangi et al. (2016) [19] | Multiple satellite altimetry data, MODIS, and field data | Using satellite derived parameters: river stages and effective river width to optimize unknown parameters in modified Manning’s equation | In situ discharge measurements are used to derive rating curves | |
Huang et al. (2018) [59] | Multiple satellite altimetry, Landsat series, Sentinel-1/2, and Google Earth Engine (GEE) | Using river width and water depth derived from the water surface and water level | Obtained high-spatial-resolution images with a UAV |
Cross Section | Average Nominal Diameter of Moving Stones (cm) | |
---|---|---|
River Channel H | River Channel S | |
A | 16.35 | 14.00 |
B | 18.14 | 18.56 |
C | 16.25 | 16.98 |
D | 18.99 | 19.34 |
E | 7.97 | 8.30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Li, C.; Lou, H.; Wang, P.; Wang, J.; Ren, X. Performance of an Unmanned Aerial Vehicle (UAV) in Calculating the Flood Peak Discharge of Ephemeral Rivers Combined with the Incipient Motion of Moving Stones in Arid Ungauged Regions. Remote Sens. 2020, 12, 1610. https://doi.org/10.3390/rs12101610
Yang S, Li C, Lou H, Wang P, Wang J, Ren X. Performance of an Unmanned Aerial Vehicle (UAV) in Calculating the Flood Peak Discharge of Ephemeral Rivers Combined with the Incipient Motion of Moving Stones in Arid Ungauged Regions. Remote Sensing. 2020; 12(10):1610. https://doi.org/10.3390/rs12101610
Chicago/Turabian StyleYang, Shengtian, Chaojun Li, Hezhen Lou, Pengfei Wang, Juan Wang, and Xiaoyu Ren. 2020. "Performance of an Unmanned Aerial Vehicle (UAV) in Calculating the Flood Peak Discharge of Ephemeral Rivers Combined with the Incipient Motion of Moving Stones in Arid Ungauged Regions" Remote Sensing 12, no. 10: 1610. https://doi.org/10.3390/rs12101610
APA StyleYang, S., Li, C., Lou, H., Wang, P., Wang, J., & Ren, X. (2020). Performance of an Unmanned Aerial Vehicle (UAV) in Calculating the Flood Peak Discharge of Ephemeral Rivers Combined with the Incipient Motion of Moving Stones in Arid Ungauged Regions. Remote Sensing, 12(10), 1610. https://doi.org/10.3390/rs12101610