FIRED (Fire Events Delineation): An Open, Flexible Algorithm and Database of US Fire Events Derived from the MODIS Burned Area Product (2001–2019)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Acquisition and Processing
2.2. Accounting for Pixels That Burn More Than Once Per Year (Intra-Annual Reburns)
2.3. Defining Events with a Flexible, Fast Algorithm
2.4. Sensitivity Analysis: Identifying the Optimal Spatiotemporal Parameters for Delineating CONUS Fire Events
2.5. Calculating Statistics for Each Event, and Daily Statistics within Events
2.6. Comparison of FIRED Events to MTBS Events and the National Interagency Fire Center Estimates
2.7. Data and Code Availability
3. Results
3.1. Classification Accuracy Assessment
3.2. Comparison to MTBS
3.3. Ecoregion Comparisons between FIRED and MTBS
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; Defries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Fortin, M.-J.; Drapeau, P. Delineation of ecological boundaries: Comparison of approaches and significance tests. Oikos 1995, 72, 323–332. [Google Scholar] [CrossRef]
- Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; Krawchuk, M.A.; Mietkiewicz, N.; Morgan, P.; Moritz, M.A.; Rasker, R.; et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl. Acad. Sci. USA 2017, 114, 4582–4590. [Google Scholar] [CrossRef] [Green Version]
- Krebs, P.; Pezzatti, G.B.; Mazzoleni, S.; Talbot, L.M.; Conedera, M. Fire regime: History and definition of a key concept in disturbance ecology. Theory Biosci. 2010, 129, 53–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, D.E. Spatial patterning of pines and oaks in the New Jersey pine barrens. J. Ecol. 1975, 63, 291–298. [Google Scholar] [CrossRef]
- Pyne, S.; Andrews, P.; Laven, R.D. Introduction to Wildland Fire; John Wiley and Sons: Hoboken, NY, USA, 1996. [Google Scholar]
- Balch, J.K.; Bradley, B.A.; D’Antonio, C.M.; Gómez-Dans, J. Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob. Chang. Biol. 2013, 19, 173–183. [Google Scholar] [CrossRef]
- Archibald, S.; Lehmann, C.E.R.; Gómez-dans, J.L.; Bradstock, R.A. Defining pyromes and global syndromes of fire regimes. Proc. Natl. Acad. Sci. USA 2013, 110, 6442–6447. [Google Scholar] [CrossRef] [Green Version]
- Morton, D.C.; Collatz, G.J.; Wang, D.; Randerson, J.T.; Giglio, L.; Chen, Y. Satellite-based assessment of climate controls on US burned area. Biogeosciences 2013, 10, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, E.; Pinnock, S.; Grégoire, J.-M.; Pereira, J. Global spatial and temporal distribution of vegetation fire as determined from satellite observations. Int. J. Remote Sens. 2000, 21, 1289–1302. [Google Scholar] [CrossRef]
- Justice, C.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The MODIS fire products. Remote Sens. Environ. 2002, 83, 244–262. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Li, F.; Zhang, X.; Kondragunta, S.; Csiszar, I. Comparison of Fire Radiative Power Estimates from VIIRS and MODIS Observations. J. Geophys. Res. Atmos. 2018, 123, 4545–4563. [Google Scholar] [CrossRef]
- Wooster, M.J.; Xu, W.; Nightingale, T. Sentinel-3 SLSTR active fire detection and FRP product: Pre-launch algorithm development and performance evaluation using MODIS and ASTER datasets. Remote Sens. Environ. 2012, 120, 236–254. [Google Scholar] [CrossRef]
- Freeborn, P.H.; Wooster, M.J.; Roy, D.P.; Cochrane, M.A. Quantification of MODIS fire radiative power (FRP) measurement uncertainty for use in satellite-based active fire characterization and biomass burning estimation. Geophys. Res. Lett. 2014, 41, 1988–1994. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L.; Justice, C.O.; Ju, J. The collection 5 MODIS burned area product—Global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ. 2008, 112, 3690–3707. [Google Scholar] [CrossRef]
- Hawbaker, T.J.; Vanderhoof, M.K.; Beal, Y.-J.; Takacs, J.D.; Schmidt, G.L.; Falgout, J.T.; Williams, B.; Fairaux, N.M.; Caldwell, M.K.; Picotte, J.J.; et al. Mapping burned areas using dense time-series of Landsat data. Remote Sens. Environ. 2017, 198, 504–522. [Google Scholar] [CrossRef]
- Mouillot, F.; Schultz, M.G.; Yue, C.; Cadule, P.; Tansey, K.; Ciais, P.; Chuvieco, E. Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Loboda, T.; Roy, D.P.; Quayle, B.; Justice, C.O. An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens. Environ. 2009, 113, 408–420. [Google Scholar] [CrossRef]
- Randerson, J.; Chen, Y.; Van Der Werf, G.; Rogers, B.; Morton, D. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. 2012, 117, 117. [Google Scholar] [CrossRef]
- Meddens, A.J.H.; Kolden, C.A.; Lutz, J.A.; Abatzoglou, J.T.; Hudak, A.T. Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014. Ecosphere 2018, 9. [Google Scholar] [CrossRef]
- Chuvieco, E.; Giglio, L.; Justice, C. Global characterization of fire activity: Toward defining fire regimes from Earth observation data. Glob. Chang. Biol. 2008, 14, 1488–1502. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Moritz, M.A.; Parisien, M.-A.; Van Dorn, J.; Hayhoe, K. Global pyrogeography: The current and future distribution of wildfire. PLoS ONE 2009, 4, e5102. [Google Scholar] [CrossRef] [PubMed]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.; van Jin, Y.; van Leeuwen, T.T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E.; Yue, C.; Heil, A.; Mouillot, F.; Alonso-Canas, I.; Padilla, M.; Pereira, J.M.; Oom, D.; Tansey, K. A new global burned area product for climate assessment of fire impacts. Glob. Ecol. Biogeogr. 2016, 25, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E.; Lizundia-Loiola, J.; Pettinari, M.L.; Ramo, R.; Padilla, M.; Tansey, K.; Mouillot, F.; Laurent, P.; Storm, T.; Heil, A.; et al. Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth Syst. Sci. Data 2018, 10, 2015–2031. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Loboda, T.V.; Csiszar, I.A. Reconstruction of fire spread within wildland fire events in Northern Eurasia from the MODIS active fire product. Glob. Planet. Chang. 2007, 56, 258–273. [Google Scholar] [CrossRef]
- Loepfe, L.; Rodrigo, A.; Lloret, F. Two thresholds determine climatic control of forest fire size in Europe and northern Africa. Reg. Environ. Chang. 2014, 14, 1395–1404. [Google Scholar] [CrossRef]
- Hantson, S.; Arneth, A.; Harrison, S.P.; Kelley, D.I.; Prentice, I.C.; Rabin, S.S.; Archibald, S.; Mouillot, F.; Arnold, S.R.; Artaxo, P.; et al. The status and challenge of global fire modelling. Biogeosciences 2016, 13, 3359–3375. [Google Scholar] [CrossRef] [Green Version]
- Dadashi, S. What is a Fire? Identifying Individual Fire Events Using the MODIS Burned Area Product. Master’s Thesis, University of Colorado Boulder, Boulder, CO, USA, 2018. [Google Scholar]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Archibald, S.; Roy, D.P.; van Wilgen, B.W.; Scholes, R.J. What limits fire? An examination of drivers of burnt area in Southern Africa. Glob. Chang. Biol. 2009, 15, 613–630. [Google Scholar] [CrossRef] [Green Version]
- Andela, N.; Morton, D.C.; Giglio, L.; Paugam, R.; Chen, Y.; Hantson, S.; van der Werf, G.R.; Randerson, J.T. The Global Fire Atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 2019, 11, 529–552. [Google Scholar] [CrossRef] [Green Version]
- Frantz, D.; Stellmes, M.; Röder, A.; Hill, J. Fire spread from MODIS burned area data: Obtaining fire dynamics information for every single fire. Int. J. Wildland Fire 2016, 25, 1228. [Google Scholar] [CrossRef]
- Laurent, P.; Mouillot, F.; Yue, C.; Ciais, P.; Moreno, M.V.; Nogueira, J.M.P. Data Descriptor: FRY, a global database of fire patch functional traits derived from space-borne burned area products. Sci. Data 2018, 5, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andison, D.W. The influence of wildfire boundary delineation on our understanding of burning patterns in the Alberta foothills. Can. J. For. Res. 2012, 42, 1253–1263. [Google Scholar] [CrossRef]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.-L.; Quayle, B.; Howard, S. A project for monitoring trends in burn severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Worboys, M. Event-oriented approaches to geographic phenomena. Int. J. Geogr. Inf. Sci. 2005, 19, 1–28. [Google Scholar] [CrossRef]
- USDA. Forest Service Fire Terminology. Available online: https://www.fs.fed.us/nwacfire/home/terminology.html (accessed on 14 October 2020).
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Commission for Environmental Cooperation. Ecological regions of North America: Toward a Common Perspective. Commission for Environmental Cooperation, Montreal, Quebec, Canada. 71p. Map (Scale 1:12,500,000). 1997; Revised 2006. Available online: https://www.epa.gov/eco-research/ecoregions-north-america (accessed on 14 October 2020).
- Picotte, J.J.; Peterson, B.; Meier, G.; Howard, S.M. 1984–2010 trends in fire burn severity and area for the conterminous US. Int. J. Wildland Fire 2016, 25, 413–420. [Google Scholar] [CrossRef]
- Short, K.C. Sources and implications of bias and uncertainty in a century of US wildfire activity data. Int. J. Wildland Fire 2015, 24, 883–891. [Google Scholar] [CrossRef]
- Stevens-Rumann, C.S.; Kemp, K.B.; Higuera, P.E.; Harvey, B.J.; Rother, M.T.; Donato, D.C.; Morgan, P.; Veblen, T.T. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 2018, 21, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, M.-S.; Wood, S.W.; Haberle, S.G. A fire driven shift from forest to non-forest: Evidence for alternative stable states? Ecology 2014, 95, 2504–2513. [Google Scholar] [CrossRef] [Green Version]
- Coop, J.D.; Parks, S.A.; Stevens-Rumann, C.S.; Crausbay, S.D.; Higuera, P.E.; Hurteau, M.D.; Tepley, A.; Whitman, E.; Assal, T.; Collins, B.M.; et al. Wildfire-Driven Forest Conversion in Western North American Landscapes. BioScience 2020, 70, 659–673. [Google Scholar] [CrossRef] [PubMed]
- Falk, D.A. Are Madrean Ecosystems Approaching Tipping Points? Anticipating Interactions of Landscape Disturbance and Climate Change; USDA Forest Service: Fort Collins, CO, USA, 2013; pp. 40–47.
- Mahood, A.L.; Balch, J.K. Repeated fires reduce plant diversity in low-elevation Wyoming big sagebrush ecosystems (1984–2014). Ecosphere 2019, 10, e02591. [Google Scholar] [CrossRef] [Green Version]
- National Interagency Fire Center (NIFC). Wildland Fire Open Data. Available online: https://data-nifc.opendata.arcgis.com/ (accessed on 9 October 2019).
- Briones-Herrera, C.I.; Vega-Nieva, D.J.; Monjarás-Vega, N.A.; Briseño-Reyes, J.; López-Serrano, P.M.; Corral-Rivas, J.J.; Alvarado-Celestino, E.; Arellano-Pérez, S.; álvarez-González, J.G.; Ruiz-González, A.D.; et al. Near real-time automated early mapping of the perimeter of large forest fires from the aggregation of VIIRS and MODIS active fires in Mexico. Remote Sens. 2020, 12, 2061. [Google Scholar] [CrossRef]
- Denis, L.A.S.; Mietkiewicz, N.P.; Short, K.C.; Buckland, M.; Balch, J.K. All-hazards dataset mined from the US National Incident Management System 1999–2014. Sci. Data 2020, 7, 64. [Google Scholar] [CrossRef] [Green Version]
- Denis, L.S.; Hughes, A.; Diaz, J.; Solvik, K.; Joseph, M. “What I Need to Know is What I Don’t Know!”: Filtering Disaster Twitter Data for Information from Local Individuals. In Proceedings of the 17th International Conference on Information Systems for Crisis Response and Management, Blacksburg, VA, USA, 24–27 May 2020. [Google Scholar]
- Diaz, J.; Denis, L.S.; Joseph, M.; Solvik, K. Classifying Twitter Users for Disaster Response: A Highly Multimodal or Simple Approach? In Proceedings of the 17th International Conference on Information Systems for Crisis Response and Management, Blacksburg, VA, USA, 24–27 May 2020. [Google Scholar]
- Cattau, M.E.; Wessman, C.; Mahood, A.; Balch, J.K. Anthropogenic and lightning-started fires are becoming larger and more frequent over a longer season length in the U.S.A. Glob. Ecol. Biogeogr. 2020, 29, 668–681. [Google Scholar] [CrossRef]
- Parks, S.A.; Miller, C.; Abatzoglou, J.T.; Holsinger, L.M.; Parisien, M.A.; Dobrowski, S.Z. How will climate change affect wildland fire severity in the western US? Environ. Res. Lett. 2016, 11, 35002. [Google Scholar] [CrossRef] [Green Version]
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 2928–2933. [Google Scholar] [CrossRef]
- Rodman, K.C.; Veblen, T.T.; Chapman, T.B.; Rother, M.T.; Wion, A.P.; Redmond, M.D. Limitations to recovery following wildfire in dry forests of southern Colorado and northern New Mexico, USA. Ecol. Appl. 2020, 30, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Chapman, T.B.; Schoennagel, T.; Veblen, T.T.; Rodman, K.C. Still standing: Recent patterns of post-fire conifer refugia in ponderosa pine-dominated forests of the Colorado Front Range. PLoS ONE 2020, 15, e0226926. [Google Scholar] [CrossRef] [PubMed]
Study | Purpose | Satellite Fire Product | Spatial Criteria | Temporal Criteria |
---|---|---|---|---|
Archibald et al. 2009 | Examined environmental and anthropogenic drivers of fire in South Africa | MODIS MCD45 * | Adjacency | 8 days |
Balch et al. 2013 | Tested whether cheatgrass occurrence increases fire activity | MODIS MCD45, RMGSC $ | 2 pixels (1000 m) | 2 days |
Hantsen et al. 2015 | Explored global fire size distribution | MODIS MCD45 | Adjacency | 14 days |
Frantz et al. 2016 | Aggregated raster grids from burn date to event objects | MODIS MCD64 + | 10 pixels (5000 m) | 5 days |
Andela et al. 2017 | Examined global fire activity | GFED4s %, MODIS MCD64 | Local spread rate x distance | Spatially varying fire persistence threshold |
Laurent et al. 2018 | Derived patch functional traits and other morphological features of fire events | MODIS MCD64, MERIS | 1 pixel (500 m) | 3, 5, 9, and 14 days |
Andela et al. 2018 | Created global fire atlas product | MODIS MCD64 | 1 pixel (500 m) | Spatially varying |
Tile | Mean Reburn % | Std Reburn % |
---|---|---|
h08v04 | 0.17 | 0.18 |
h08v05 | 0.35 | 0.27 |
h08v06 | 1.35 | 1.05 |
h09v04 | 0.36 | 0.30 |
h09v05 | 0.23 | 0.19 |
h09v06 | 0.73 | 0.47 |
h10v04 | 0.12 | 0.09 |
h10v05 | 0.67 | 0.29 |
h10v06 | 5.12 | 2.31 |
h11v04 | 0.35 | 0.33 |
h11v05 | 0.32 | 0.35 |
h12v04 | 0.35 | 0.61 |
h13v04 | 0.32 | 0.29 |
Average per tile (excluding h10v06) | 0.48 | 0.55 |
Attribute | Units |
---|---|
Ignition | date, day of year, month, year, location |
Duration | days |
Burned Area | km2, ha, acres, pixels |
Fire Spread Rate | pixels/day, km2/day, ha/day, acres/day |
Maximum, Minimum, and Mean Spread Rate | km2/day, ha/day, acres/day, pixels/day, date (max only) |
Land Cover (for the year before the fire) | mode land cover classification/event |
Ecoregion | mode ecoregion, Levels 1–3 |
Attribute | Units |
---|---|
Daily Burned Area | km2, ha, acres, pixels |
Daily Landcover | mode land cover classification / day |
Daily Ecoregion | mode ecoregion, Levels 1-3 |
Cumulative Burned Area | km2, ha, acres, pixels |
Ignition Date (of the whole event) | date |
Last Burn Date (of the whole event) | date |
Duration (of the whole event) | days |
Event Day | days from ignition date |
Percent Total Area | percent (%) |
Percent Cumulative Area | percent (%) |
Fire Spread Rate (of the whole event) | pixels/day, km2/day, ha/day, acres/day |
MTBS True | MTBS False (Commission) | MTBS False (Commission) | |
---|---|---|---|
FIRED True | 7054 | 11,412 (over threshold only) | 24,163 (under threshold only) |
FIRED False (Omission) | 8721 | - | - |
MTBS | FIRED | NIFC | ||||
---|---|---|---|---|---|---|
Level 1 Ecoregions | Events | Burned Area (km2) | Events | Burned Area (km2) | Events | Burned Area (km2) |
Eastern Temperate Forests | 5644 | 47,116 | 20,556 | 103,615 | - | - |
Great Plains | 3350 | 94,068 | 11,818 | 112,907 | - | - |
Marine West Coast Forest | 22 | 379 | 249 | 978 | - | - |
Mediterranean California | 368 | 17,971 | 1,432 | 21,251 | - | - |
North American Deserts | 1739 | 80,430 | 5,689 | 72,012 | - | - |
Northern Forests | 134 | 2,130 | 141 | 2086 | - | - |
Northwestern Forested Mountains | 1614 | 81,189 | 3,815 | 68,006 | - | - |
Southern Semi-Arid Highlands | 159 | 5,494 | 260 | 4459 | - | - |
Temperate Sierras | 431 | 19,374 | 447 | 13,674 | - | - |
Tropical Wet Forests | 266 | 4,818 | 1,394 | 19,424 | - | - |
Conterminous US | 13,727 | 352,967 | 45,801 | 418,414 | 1,153,896 | 432,733 |
Fire Events | Fire Spread Rate (ha/day) | ||||||
---|---|---|---|---|---|---|---|
Level 1 Ecoregions | n | Max | Lower 95%tile | Mean | Upper 95%tile | SD | SE |
Eastern Temperate Forests | 20,556 | 2756 | 9 | 43 | 119 | 60 | 0.4 |
Great Plains | 11,818 | 13,584 | 12 | 95 | 279 | 293 | 2.7 |
Marine West Coast Forest | 249 | 301 | 7 | 42 | 143 | 45 | 2.8 |
Mediterranean California | 1432 | 5883 | 11 | 126 | 497 | 329 | 8.7 |
North American Deserts | 5689 | 14,620 | 11 | 137 | 481 | 487 | 6.5 |
Northern Forests | 141 | 2442 | 10 | 144 | 614 | 312 | 26.3 |
Northwestern Forested Mountains | 3815 | 3878 | 10 | 105 | 415 | 233 | 3.8 |
Southern Semi-Arid Highlands | 260 | 1755 | 17 | 162 | 550 | 244 | 15.2 |
Temperate Sierras | 447 | 6365 | 16 | 194 | 627 | 541 | 25.6 |
Tropical Wet Forests | 1394 | 1220 | 8 | 45 | 117 | 85 | 2.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balch, J.K.; St. Denis, L.A.; Mahood, A.L.; Mietkiewicz, N.P.; Williams, T.M.; McGlinchy, J.; Cook, M.C. FIRED (Fire Events Delineation): An Open, Flexible Algorithm and Database of US Fire Events Derived from the MODIS Burned Area Product (2001–2019). Remote Sens. 2020, 12, 3498. https://doi.org/10.3390/rs12213498
Balch JK, St. Denis LA, Mahood AL, Mietkiewicz NP, Williams TM, McGlinchy J, Cook MC. FIRED (Fire Events Delineation): An Open, Flexible Algorithm and Database of US Fire Events Derived from the MODIS Burned Area Product (2001–2019). Remote Sensing. 2020; 12(21):3498. https://doi.org/10.3390/rs12213498
Chicago/Turabian StyleBalch, Jennifer K., Lise A. St. Denis, Adam L. Mahood, Nathan P. Mietkiewicz, Travis M. Williams, Joe McGlinchy, and Maxwell C. Cook. 2020. "FIRED (Fire Events Delineation): An Open, Flexible Algorithm and Database of US Fire Events Derived from the MODIS Burned Area Product (2001–2019)" Remote Sensing 12, no. 21: 3498. https://doi.org/10.3390/rs12213498
APA StyleBalch, J. K., St. Denis, L. A., Mahood, A. L., Mietkiewicz, N. P., Williams, T. M., McGlinchy, J., & Cook, M. C. (2020). FIRED (Fire Events Delineation): An Open, Flexible Algorithm and Database of US Fire Events Derived from the MODIS Burned Area Product (2001–2019). Remote Sensing, 12(21), 3498. https://doi.org/10.3390/rs12213498