A Least Squares Solution to Regionalize VTEC Estimates for Positioning Applications
Abstract
:1. Introduction
2. Data
2.1. TEC and VTEC Determination Using GNSS Observations
2.2. Global Ionospheric Model (GIM/CODE)
2.3. Ionospheric Models Used for Comparisons
3. Method
3.1. Spherical Slepian Functions
3.2. A Least Squares (LS) Approximation of the Bayesian Update
4. Results and Discussion
4.1. Simulation
4.2. A Comparison between the Regionalized VTEC Maps and GIM/CODE Products
4.3. Comparing Regionalized VTEC Maps with the JPL, ESA and IGS Products
4.4. A PPP Assessment of the Regionalized VTEC Estimates
5. Summary and Conclusions
- Comparisons with the GIM/CODE confirm that the regionalized model estimates TEC without unexpected oscillations, though the range of variations from the IGS models is found to be underestimated.
- Comparing the regionalized estimates of this study with the VTEC estimations using the dual-frequency measurements of three GPS stations indicates that the average of absolute differences is less than 2 TECU, which indicates an accepted performance of the presented technique.
- Performing VTEC analyses for the entire 2013 shows that the presented regionalization technique is appropriate for VTEC modelling under normal and high geomagnetic conditions.
- Comparison with various VTEC models, the quality of the new estimates, and hence the ionospheric corrections, is found to be better within near real-time PPP applications.
- The results showed that the positioning accuracy of single-frequency positioning with the external ionospheric model correction can obtain meter-level accuracy, and the vertical error is found to be relatively larger than the horizontal components.
- Results indicate that the regionalized model is better suited to correct ionospheric impact of GPS positioning compared with the usage of Klobuchar and GIM/CODE in a precise point positioning setup.
- The new European satellite navigation system, Galileo and the restored Russian system, GLONASS, are examples of other constellations that can double the quantity of (V)TEC data. The multi-constellation observations will be used for future studies to improve the quality of TEC observations.
- Combining different data sources, e.g., from radio occultation and satellite altimetry, will be considered to improve the spatial coverage of TEC observations.
- Further investigations need to be conducted for other GNSS networks at different latitudes with higher or lower reference station density.
- The LS approximation of the Bayesian update can be replaced by a more efficient Markov Chain Monte Carlo optimization to avoid the assumption of Gaussian distribution for a priori information and observations.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blaunstein, N.; Plohotniuc, E. Ionosphere and Applied Aspects of Radio Communication and Radar; CRC Press: Boca Raton, FL, USA, 2008; p. 600. [Google Scholar]
- Schunk, R.W.; Scherliess, L.; Sojka, J.J.; Thompson, D.C.; Anderson, D.N.; Codrescu, M.; Minter, C.; Fuller-Rowell, T.J.; Heelis, R.A.; Hairston, M.; et al. Global assimilation of ionospheric measurements (GAIM). Radio Sci. 2004, 39, 1–11. [Google Scholar] [CrossRef]
- Najman, P.; Kos, T. Performance analysis of empirical ionosphere models by comparison with CODE vertical TEC maps. In Mitigation of Ionospheric Threats to GNSS; Notarpietro, R., Dovis, F., Franceschi, G.D., Aquino, M., Eds.; IntechOpen: Rijeka, Croatia, 2014; Chapter 13. [Google Scholar] [CrossRef] [Green Version]
- Bilitza, D.; McKinnell, L.; Reinisch, B.; Fuller-Rowell, T. The international reference ionosphere today and in the future. J. Geod. 2011, 85, 909–920. [Google Scholar] [CrossRef]
- Angrisano, A.; Gaglione, S.; Gioia, C.; Massaro, M.; Troisi, S. Benefit of the NeQuick Galileo version in GNSS single-point positioning. Int. J. Navig. Obs. 2013, 2013. [Google Scholar] [CrossRef]
- Schaer, S.; Beutler, G.; Rothacher, M.; Springer, T.A. Daily global ionosphere maps based on GPS carrier phase data routinely produced by the CODE Analysis Center. In Proceedings of the IGS Analysis Center Workshop, Silver Spring, MD, USA, 19–21 March 1996. [Google Scholar]
- Mautz, R.; Ping, J.; Heki, K.; Schaffrin, B.; Shum, C.; Potts, L. Efficient spatial and temporal representations of global ionosphere maps over Japan using B-spline wavelets. J. Geod. 2005, 78, 662–667. [Google Scholar] [CrossRef]
- Zhu, W. Comparison and consistency research of regional ionospheric TEC models based on GPS measurements. Geomat. Inf. Sci. Wuhan Univ. 2008, 33, 479–483. [Google Scholar]
- Wielgosz, P.; Grejner-Brzezinska, D.; Kashani, I. Regional ionosphere mapping with kriging and multiquadric methods. Positioning 2009, 1. [Google Scholar] [CrossRef]
- Farzaneh, S.; Forootan, E. Reconstructing regional ionospheric electron density: A combined spherical Slepian function and empirical orthogonal function approach. Surv. Geophys. 2018, 39, 289–309. [Google Scholar] [CrossRef] [Green Version]
- El-Arini, M.B.; Conker, R.S.; Albertson, T.W.; Reagan, J.K.; Klobuchar, J.A.; Doherty, P.H. Comparison of real-time ionospheric algorithms for a GPS Wide-Area Augmentation System (WAAS). Navigation 1994, 41, 393–414. [Google Scholar] [CrossRef]
- Garcıa-Fernández, M.; Hernandez-Pajares, M.; Juan, J.; Sanz, J.; Orús, R.; Coisson, P.; Nava, B.; Radicella, S. Combining ionosonde with ground GPS data for electron density estimation. J. Atmos. Sol. Terr. Phys. 2003, 65, 683–691. [Google Scholar] [CrossRef]
- Stolle, C.; Schlüter, S.; Jacobi, C.; Jakowski, N. 3Dimensional ionospheric electron density reconstruction based on GPS measurements. Adv. Space Res. 2003, 31, 1965–1970. [Google Scholar] [CrossRef]
- Schmidt, M.; Bilitza, D.; Shum, C.; Zeilhofer, C. Regional 4-D modelling of the ionospheric electron density. Adv. Space Res. 2008, 42, 782–790. [Google Scholar] [CrossRef]
- García Fernández, M. Contributions to the 3D Ionospheric Sounding with GPS Data; Universitat Politècnica de Catalunya: Barcelona, Spain, 2004. [Google Scholar]
- Sharifi, M.A.; Farzaneh, S. The spatio-spectral localization approach to modelling VTEC over the western part of the USA using GPS observations. Adv. Space Res. 2014, 54, 908–916. [Google Scholar] [CrossRef]
- Erdogan, E.; Schmidt, M.; Seitz, F.; Durmaz, M. Near real-time estimation of ionosphere vertical total electron content from GNSS satellites using B-splines in a Kalman filter. Ann. Geophys. 2017, 35, 263–277. [Google Scholar] [CrossRef]
- Coster, A.J.; Gaposchkin, E.M.; Thornton, L.E. Real-time ionospheric monitoring system using GPS. Navigation 1992, 39, 191–204. [Google Scholar] [CrossRef]
- Komjathy, A. Global Ionospheric Total Electron Content Mapping Using the Global Positioning System. Ph.D. Thesis, University of New Brunswick Fredericton, Fredericton, NB, Canada, 1997. [Google Scholar]
- Schaer, S.; Helvétique des Sciences Naturelles; Commission géodésique. Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System; Institut für Geodäsie und Photogrammetrie, Eidg. Technische Hochschule Zürich: Zürich, Switzerland, 1999; Volume 59. [Google Scholar]
- Schaer, S.; Beutler, G.; Mervart, L.; Rothacher, M.; Wild, U. Global and regional ionosphere models using the GPS double difference phase observable. In Proceedings of the IGS Workshop Special Topics and New Directions, Silver Spring, MD, USA, 19–21 March 1996. [Google Scholar]
- Beggan, C.D.; Saarimäki, J.; Whaler, K.A.; Simons, F.J. Spectral and spatial decomposition of lithospheric magnetic field models using spherical Slepian functions. Geophys. J. Int. 2013, 193, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Simons, F.J.; Dahlen, F.; Wieczorek, M.A. Spatiospectral concentration on a sphere. SIAM Rev. 2006, 48, 504–536. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M. Wavelet modelling in support of IRI. Adv. Space Res. 2007, 39, 932–940. [Google Scholar] [CrossRef]
- Nohutcu, M.; Karslioglu, M.; Schmidt, M. B-spline modelling of VTEC over Turkey using GPS observations. J. Atmos. Sol. Terr. Phys. 2010, 72, 617–624. [Google Scholar] [CrossRef]
- Olivares-Pulido, G.; Terkildsen, M.; Arsov, K.; Teunissen, P.; Khodabandeh, A.; Janssen, V. A 4D tomographic ionospheric model to support PPP-RTK. J. Geod. 2019, 93, 1673–1683. [Google Scholar] [CrossRef] [Green Version]
- Zeilhofer, C. Multi-Dimensional B-Spline Modeling of Spatio-Temporal Ionospheric Signals; DGK: Mänchen, Germany, 2008. [Google Scholar]
- Liu, J.; Chen, R.; Kuusniemi, H.; Wang, Z.; Zhang, H.; Yang, J. Mapping the regional ionospheric TEC using a spherical cap harmonic model and IGS products in high latitudes and the arctic region. In Proceedings of the IAIN 2009 World Congress, Stockholm, Sweden, 27–30 October 2009. [Google Scholar]
- Liu, J.; Chen, R.; Wang, Z.; Zhang, H. Spherical cap harmonic model for mapping and predicting regional TEC. GPS Solut. 2011, 15, 109–119. [Google Scholar] [CrossRef]
- Liu, J.; Chen, R.; An, J.; Wang, Z.; Hyyppa, J. Spherical cap harmonic analysis of the Arctic ionospheric TEC for one solar cycle. J. Geophys. Res. Space Phys. 2014, 119, 601–619. [Google Scholar] [CrossRef]
- Goss, A.; Schmidt, M.; Erdogan, E.; Görres, B.; Seitz, F. High-resolution vertical total electron content maps based on multi-scale B-spline representations. Ann. Geophys. 2019, 37. [Google Scholar] [CrossRef] [Green Version]
- Forootan, E.; Kusche, J. Separation of global time-variable gravity signals into maximally independent components. J. Geod. 2012, 86, 477–497. [Google Scholar] [CrossRef]
- Forootan, E.; Kusche, J. Separation of deterministic signals using independent component analysis (ICA). Stud. Geophys. Geod. 2013, 57, 17–26. [Google Scholar] [CrossRef]
- Forootan, E.; Kusche, J.; Talpe, M.; Shum, C.; Schmidt, M. Developing a complex independent component analysis (CICA) technique to extract non-stationary patterns from geophysical time series. Surv. Geophys. 2018, 39, 435–465. [Google Scholar] [CrossRef] [Green Version]
- Teunissen, P.J.; De Jonge, P.; Tiberius, C. Performance of the LAMBDA method for fast GPS ambiguity resolution. Navigation 1997, 44, 373–383. [Google Scholar] [CrossRef]
- Ciraolo, L.; Azpilicueta, F.; Brunini, C.; Meza, A.; Radicella, S. Calibration errors on experimental slant total electron content (TEC) determined with GPS. J. Geod. 2007, 81, 111–120. [Google Scholar] [CrossRef]
- Seeber, G. Satellite Geodesy, 2nd completely revised and extended edition. Walter Gruyter Gmbh Co. KG 2003, 10785, 303–304. [Google Scholar]
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Wasle, E. GPS; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Feltens, J.; Schaer, S. IGS Products for the Ionosphere. In Proceedings of the 1998 IGS Analysis Center Workshop Darmstadt, Darmstadt, Germany, 9–11 February 1998; pp. 3–5. [Google Scholar]
- Hernández-Pajares, M.; Juan, J.; Sanz, J.; Orus, R.; Garcia-Rigo, A.; Feltens, J.; Komjathy, A.; Schaer, S.; Krankowski, A. The IGS VTEC maps: A reliable source of ionospheric information since 1998. J. Geod. 2009, 83, 263–275. [Google Scholar] [CrossRef]
- Warnant, R.; Foelsche, U.; Aquino, M.; Bidaine, B.; Gherm, V.; Hoque, M.M.; Kutiev, I.; Lejeune, S.; Luntama, J.P.; Spits, J.; et al. Mitigation of ionospheric effects on GNSS. Ann. Geophys. 2009, 52, 373–390. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Juan, J.; Sanz, J. New approaches in global ionospheric determination using ground GPS data. J. Atmos. Sol. Terr. Phys. 1999, 61, 1237–1247. [Google Scholar] [CrossRef]
- Hernandez-Pajares, M.; Juan, J.; Sanz, J. Neural network modelling of the ionospheric electron content at global scale using GPS data. Radio Sci. 1997, 32, 1081–1089. [Google Scholar] [CrossRef] [Green Version]
- Slepian, D. Some comments on Fourier analysis, uncertainty and modelling. SIAM Rev. 1983, 25, 379–393. [Google Scholar] [CrossRef]
- Simons, F.J. Slepian functions and their use in signal estimation and spectral analysis. arXiv 2009, arXiv:0909.5368. [Google Scholar]
- Percival, D.B.; Walden, A.T. Spectral Analysis for Physical Applications; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Wieczorek, M.A.; Simons, F.J. Localized spectral analysis on the sphere. Geophys. J. Int. 2005, 162, 655–675. [Google Scholar] [CrossRef] [Green Version]
- Farzaneh, S.; Sharifi, M.A. The regional estimates of the GPS satellite and receiver differential code biases. Iran. J. Geophys. 2017, 10, 31–41. [Google Scholar]
- Hong, C.K.; Grejner-Brzezinska, D.A.; Kwon, J.H. Efficient GPS receiver DCB estimation for ionosphere modelling using satellite-receiver geometry changes. Earth Planets Space 2008, 60, e25–e28. [Google Scholar] [CrossRef] [Green Version]
- Jin, R.; Jin, S.; Feng, G. M_DCB: Matlab code for estimating GNSS satellite and receiver differential code biases. GPS Solut. 2012, 16, 541–548. [Google Scholar] [CrossRef]
- Muella, M.T.; de Paula, E.R.; Mitchell, C.N.; Kintner, P.M.; Paes, R.R.; Batista, I.S. Tomographic imaging of the equatorial and low-latitude ionosphere over central-eastern Brazil. Earth Planets Space 2011, 63, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Basu, S.; Basu, S.; Huba, J.; Krall, J.; McDonald, S.; Makela, J.J.; Miller, E.; Ray, S.; Groves, K. Day-to-day variability of the equatorial ionization anomaly and scintillations at dusk observed by GUVI and modelling by SAMI3. J. Geophys. Res. Space Phys. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Stolle, C.; Manoj, C.; Lühr, H.; Maus, S.; Alken, P. Estimating the daytime equatorial ionization anomaly strength from electric field proxies. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef]
- Cleveland, W.; Devlin, S. Locally-weighted regression: An approach to regression analysis by local fitting. J. Am. Stat. Assoc. 1988, 83, 596–610. [Google Scholar] [CrossRef]
- Sanz Subirana, J.; Juan Zornoza, J.; Hernández-Pajares, M. GNSS Data Processing, Volume I: Fundamentals and Algorithms; ESA Communications; ESTEC: Noordwijk, The Netherlands, 2013; pp. 145–161. [Google Scholar]
- Parvazi, K.; Farzaneh, S.; Safari, A. Role of The RLS-VCE-Estimated Stochastic Model for Improvement of Accuracy and Convergence Time in Multi-GNSS Precise Point Positioning. Measurement 2020, 108073. [Google Scholar] [CrossRef]
- Deng, Z.; Fritsche, M.; Uhlemann, M.; Wickert, J.; Schuh, H. Reprocessing of GFZ multi-GNSS product GBM. In Proceedings of the IGS Workshop, Sydney, Australia, 8–12 February 2016; pp. 8–12. [Google Scholar]
- Rebischung, P.; Schmid, R. IGS14/igs14. atx: A new framework for the IGS products. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 12–16 December 2016. [Google Scholar]
- Böhm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Kouba, J. A guide to using International GNSS Service (IGS) products. Nat. Resour. 2009. Available online: https://www.researchgate.net/profile/Jan_Kouba/publication/228663800_A_guide_to_using_International_GNSS_Service_IGS_products/links/54fcc30c0cf270426d102cd3.pdf (accessed on 26 August 2019).
- Wu, J.T.; Wu, S.C.; Hajj, G.A.; Bertiger, W.I.; Lichten, S.M. Effects of antenna orientation on GPS carrier phase. In ASDY; Univelt, Inc.: Escondido, CA, USA, 1992; pp. 1647–1660. [Google Scholar]
- Petit, G.; Luzum, B. IERS Conventions (2010) (No. IERS-TN-36); Bureau International Des Poids et Mesures Sevres: Sévres, France, 2010. [Google Scholar]
- Klobuchar, J.A. Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans. Aerosp. Electron. Syst. 1987, 325–331. [Google Scholar] [CrossRef]
- Su, K.; Jin, S.; Hoque, M. Evaluation of ionospheric delay effects on multi-GNSS positioning performance. Remote Sens. 2019, 11, 171. [Google Scholar] [CrossRef] [Green Version]
Epoch | Regionalized VTEC | GIM/CODE | ESA | IGS | JPL |
---|---|---|---|---|---|
2013 DOY 76 (Bogota) | 4.36 | 10.13 | 13.46 | 7.52 | 13.70 |
2013 DOY 76 (Punta Arenas) | 3.53 | 4.81 | 15.15 | 9.50 | 30.76 |
2013 DOY 76 (Unsa) | 6.37 | 10.14 | 24.55 | 20.25 | 27.27 |
2013 DOY 355 (Bogota) | 3.30 | 14.96 | 9.27 | 10.33 | 6.94 |
2013 DOY 355 (Punta Arenas) | 2.34 | 2.56 | 11.34 | 4.70 | 9.34 |
2013 DOY 355 (Unsa) | 2.95 | 4.56 | 5.03 | 4.57 | 11.57 |
Items | Setting |
---|---|
Observations | Undifferenced phase and code ionosphere-free combination of measurements |
Frequency | GPS: L1/L2 |
Elevation Cutoff | 10 (Deg) |
Estimator | The recursive least squares with the unknowns added [56] |
Sampling rate | 5 (Sec) |
Satellite orbit and clock | GFZ multi-GNSS (GBM) [57] |
Satellite antenna PCO and PC | GPS: IGS14.atx [58] |
Receiver antenna phase center and variation | Corrected by IGS14.atx [58] |
Troposphere Dry component | Saastamoinen model and Global Mapping Function GMF, [59] |
Relativistic effects | Corrected [60] |
Phase wind-up | Corrected [61] |
Station displacement | Solid Earth tides, ocean tide loading and pole tides [62] |
Observation weight | Using the Recursive Least Square Estimation- Variance Components Estimation (RLS-VCE) method [56] to estimate the accuracy of observations and the correlations between them |
Estimated parameters | Receiver position, tropospheric wet delay, ambiguity parameters and system time difference parameters |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farzaneh, S.; Forootan, E. A Least Squares Solution to Regionalize VTEC Estimates for Positioning Applications. Remote Sens. 2020, 12, 3545. https://doi.org/10.3390/rs12213545
Farzaneh S, Forootan E. A Least Squares Solution to Regionalize VTEC Estimates for Positioning Applications. Remote Sensing. 2020; 12(21):3545. https://doi.org/10.3390/rs12213545
Chicago/Turabian StyleFarzaneh, Saeed, and Ehsan Forootan. 2020. "A Least Squares Solution to Regionalize VTEC Estimates for Positioning Applications" Remote Sensing 12, no. 21: 3545. https://doi.org/10.3390/rs12213545
APA StyleFarzaneh, S., & Forootan, E. (2020). A Least Squares Solution to Regionalize VTEC Estimates for Positioning Applications. Remote Sensing, 12(21), 3545. https://doi.org/10.3390/rs12213545