Evaluation of Land Surface Temperature Retrieval from Landsat 8/TIRS Images before and after Stray Light Correction Using the SURFRAD Dataset
Abstract
:1. Introduction
2. Landsat 8 LST Retrieval Algorithms
2.1. Three Split-Window Algorithms
2.2. Single-Channel Algorithm
2.3. Determination of Pixel Emissivity and Atmospheric CWV
3. Landsat 8 Images and Ground-Measured LST
4. Band Radiance and LST Evaluation Results
4.1. TOA Radiance Comparison Before and After the Stray Light Correction
4.2. LST Retrieval Comparison Before and After the Stray Light Correction
4.2.1. Overall Comparison of LST Retrieval Results
4.2.2. Comparison Results over Each SURFRAD Site
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mannstein, H. Surface Energy Budget, Surface Temperature and Thermal Inertia. In Remote Sensing Applications in Meteorology and Climatology; Springer Science and Business Media LLC: Berlin, Germany, 1987; pp. 391–410. [Google Scholar]
- Price, J.C. The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation. Water Resour. Res. 1980, 16, 787–795. [Google Scholar] [CrossRef]
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Koc, C.B.; Osmond, P.; Peters, A. Spatio-temporal patterns in green infrastructure as driver of land surface temperature variability: The case of Sydney. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101903. [Google Scholar]
- Mildrexler, D.J.; Zhao, M.; Running, S.W. A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J. Geophys. Res. Space Phys. 2011, 116, 15. [Google Scholar] [CrossRef]
- Wan, Z.; Wang, P.; Li, X. Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index products for monitoring drought in the southern Great Plains, USA. Int. J. Remote Sens. 2004, 25, 61–72. [Google Scholar] [CrossRef]
- Tran, H.; Uchihama, D.; Ochi, S.; Yasuoka, Y. Assessment with satellite data of the urban heat island effects in Asian mega cities. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 34–48. [Google Scholar] [CrossRef]
- Montanaro, M.; Barsi, J.; Lunsford, A.; Rohrbach, S.; Markham, B. Performance of the Thermal Infrared Sensor on-board Landsat 8 over the first year on-orbit. Earth Obs. Syst. XIX 2014, 9218, 921817. [Google Scholar]
- Reuter, D.C.; Richardson, C.M.; Pellerano, F.A.; Irons, J.; Allen, R.G.; Anderson, M.C.; Jhabvala, M.D.; Lunsford, A.; Montanaro, M.; Smith, R.L.; et al. The Thermal Infrared Sensor (TIRS) on Landsat 8: Design Overview and Pre-Launch Characterization. Remote Sens. 2015, 7, 1135–1153. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Muñoz, J.-C.; Sobrino, J.A.; Skoković, D.; Mattar, C.; Cristóbal, J. Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Rozenstein, O.; Qin, Z.; Derimian, Y.; Karnieli, A. Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm. Sensors 2014, 14, 5768–5780. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Ren, H.; Qin, Q.; Meng, J.; Zhao, S. A Practical Split-Window Algorithm for Estimating Land Surface Temperature from Landsat 8 Data. Remote Sens. 2015, 7, 647–665. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Guo, X.; Wu, Z. Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef] [Green Version]
- Montanaro, M.; Gerace, A.; Rohrbach, S. Toward an operational stray light correction for the Landsat 8 Thermal Infrared Sensor. Appl. Opt. 2015, 54, 3963. [Google Scholar] [CrossRef]
- Gerace, A.; Montanaro, M. Derivation and validation of the stray light correction algorithm for the thermal infrared sensor onboard Landsat 8. Remote Sens. Environ. 2017, 191, 246–257. [Google Scholar] [CrossRef]
- García-Santos, V.; Cuxart, J.; Martínez-Villagrasa, D.; Jiménez, M.A.; Simó, G. Comparison of Three Methods for Estimating Land Surface Temperature from Landsat 8-TIRS Sensor Data. Remote Sens. 2018, 10, 1450. [Google Scholar] [CrossRef] [Green Version]
- Xu, H. Retrieval of the reflectance and land surface temperature of the newly-launched Landsat 8 satellite. Chin. J. Geophys. 2015, 58, 741–747. [Google Scholar]
- Meng, X.; Cheng, J.; Zhao, S.; Liu, S.; Yao, Y. Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm. Remote Sens. 2019, 11, 155. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Qin, Z.; Dall’Olmo, G.; Karnieli, A.; Berliner, P. Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer data. J. Geophys. Res. Space Phys. 2001, 106, 22655–22670. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Li, Z.-L.; Stoll, M.P.; Becker, F. Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data. Int. J. Remote Sens. 1996, 17, 2089–2114. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Raissouni, N. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. Int. J. Remote Sens. 2000, 21, 353–366. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.-C.; Sobrino, J.A. Split-Window Coefficients for Land Surface Temperature Retrieval From Low-Resolution Thermal Infrared Sensors. IEEE Geosci. Remote Sens. Lett. 2008, 5, 806–809. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.-C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.-C.; Cristóbal, J.; Sobrino, J.A.; Soria, G.; Ninyerola, M.; Pons, X. Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval From Landsat Thermal-Infrared Data. IEEE Trans. Geosci. Remote Sens. 2008, 47, 339–349. [Google Scholar] [CrossRef]
- Chédin, A.P.; Scott, N.A.; Wahiche, C.; Moulinier, P. The Improved Initialization Inversion Method: A High Resolution Physical Method for Temperature Retrievals from Satellites of the TIROS-N Series. J. Clim. Appl. Meteorol. 1985, 24, 128–143. [Google Scholar] [CrossRef] [Green Version]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Bernstein, L.S.; Muratov, L.; Lee, J.; Fox, M.; Adler-Golden, S.M.; Chetwynd, J.H.; Hoke, M.L.; et al. MODTRAN 5: A reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update. Defense Secur. 2005, 5806, 662–667. [Google Scholar]
- Zheng, Y.; Ren, H.; Guo, J.; Ghent, D.; Tansey, K.; Hu, X.; Nie, J.; Chen, S. Land Surface Temperature Retrieval from Sentinel-3A Sea and Land Surface Temperature Radiometer, Using a Split-Window Algorithm. Remote Sens. 2019, 11, 650. [Google Scholar] [CrossRef] [Green Version]
- Ottle, C.; Stoll, M. Effect of atmospheric absorption and surface emissivity on the determination of land surface temperature from infrared satellite data. Int. J. Remote Sens. 1993, 14, 2025–2037. [Google Scholar] [CrossRef]
- Mattar, C.; Durán-Alarcón, C.; Jiménez-Muñoz, J.-C.; Artigas, A.S.-; Olivera-Guerra, L.; Sobrino, J.A. Global Atmospheric Profiles from Reanalysis Information (GAPRI): A new database for earth surface temperature retrieval. Int. J. Remote Sens. 2015, 36, 1–16. [Google Scholar] [CrossRef]
- Ren, H.; Liu, R.; Qin, Q.; Fan, W.; Yu, L.; Du, C. Mapping finer-resolution land surface emissivity using Landsat images in China. J. Geophys. Res. Atmos. 2017, 122, 6764–6781. [Google Scholar] [CrossRef]
- Caselles, E.; Valor, E.; Abad, F.; Caselles, V. Automatic classification-based generation of thermal infrared land surface emissivity maps using AATSR data over Europe. Remote Sens. Environ. 2012, 124, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.; Li, Z.-L.; Tang, B. An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. Remote Sens. Environ. 2010, 114, 540–551. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2012, 34, 2607–2654. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Kaufman, Y.J. MODIS Atmosphere L2 Water Vapor Product; NASA MODIS Adaptive Processing System, Goddard Space Flight Center: Greenbelt, MD, USA, 2017.
- Augustine, J.; DeLuisi, J.J.; Long, C.N. SURFRAD—A National Surface Radiation Budget Network for Atmospheric Research. Bull. Am. Meteorol. Soc. 2000, 81, 2341–2357. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Liang, S. Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface longwave radiation observations at SURFRAD sites. Remote Sens. Environ. 2009, 113, 1556–1565. [Google Scholar] [CrossRef]
- Sekertekin, A. Validation of Physical Radiative Transfer Equation-Based Land Surface Temperature Using Landsat 8 Satellite Imagery and SURFRAD in-situ Measurements. J. Atmos. Sol.-Terr. Phys. 2019, 196, 105161. [Google Scholar] [CrossRef]
- Malakar, N.; Hulley, G.; Hook, S.; Laraby, K.; Cook, M.; Schott, J.R. An Operational Land Surface Temperature Product for Landsat Thermal Data: Methodology and Validation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5717–5735. [Google Scholar] [CrossRef]
- Yu, Y.; Tarpley, D.; Privette, J.; Flynn, L.; Vinnikov, K.Y.; Xu, H.; Chen, M.; Sun, D.; Tian, Y. Validation of GOES-R Satellite Land Surface Temperature Algorithm Using SURFRAD Ground Measurements and Statistical Estimates of Error Properties. IEEE Trans. Geosci. Remote Sens. 2011, 50, 704–713. [Google Scholar] [CrossRef]
- Heidinger, A.; Laszlo, I.; Molling, C.C.; Tarpley, D. Using SURFRAD to Verify the NOAA Single-Channel Land Surface Temperature Algorithm. J. Atmos. Ocean Technol. 2013, 30, 2868–2884. [Google Scholar] [CrossRef]
- Guillevic, P.C.; Biard, J.; Hulley, G.; Privette, J.; Hook, S.; Olioso, A.; Göttsche, F.M.; Radocinski, R.; Román, M.; Yu, Y.; et al. Validation of Land Surface Temperature products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements. Remote Sens. Environ. 2014, 154, 19–37. [Google Scholar] [CrossRef]
- Li, S.; Yu, Y.; Sun, D.; Tarpley, D.; Zhan, X.; Chiu, L. Evaluation of 10 year AQUA/MODIS land surface temperature with SURFRAD observations. Int. J. Remote Sens. 2014, 35, 830–856. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Li, H.; Göttsche, F.-M.; Wu, H.; Zhao, W.; Leng, P.; Zhang, X.; Coll, C. Validation of Collection 6 MODIS land surface temperature product using in situ measurements. Remote Sens. Environ. 2019, 225, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yu, Y.; Yu, P.; Wang, H.; Rao, Y. Enterprise LST Algorithm Development and Its Evaluation with NOAA 20 Data. Remote Sens. 2019, 11, 2003. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, K.; Schmugge, T. Mapping Surface Broadband Emissivity of the Sahara Desert Using ASTER and MODIS Data. Earth Interact. 2004, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Liang, S.; Yao, Y.; Zhang, X. Estimating the Optimal Broadband Emissivity Spectral Range for Calculating Surface Longwave Net Radiation. IEEE Geosci. Remote Sens. Lett. 2012, 10, 401–405. [Google Scholar] [CrossRef]
(1) CWV (g/cm2): [0.0, 2.5] | |||||||||
T10 (K) | b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | RMSE (K) |
<270 | −3.1118 | 1.0153 | 0.1658 | −0.3046 | 3.1790 | 8.7989 | 34.4917 | −0.3746 | 0.11 |
[270, 300) | 1.6214 | 0.9968 | 0.1739 | −0.3965 | 4.3444 | 5.6164 | 12.8573 | −0.1175 | 0.30 |
[300, 330) | 7.3937 | 0.9788 | 0.1917 | −0.3384 | 3.0247 | 3.2533 | −14.4977 | 0.1291 | 0.30 |
≥330 | 18.0799 | 0.9517 | 0.2043 | −0.2870 | 1.5422 | 3.1292 | −23.0479 | 0.1694 | 0.18 |
(2) CWV (g/cm2): [2.0, 3.5] | |||||||||
T10 (K) | b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | RMSE (K) |
<300 | 24.9130 | 0.911 | 0.174 | −0.299 | 6.351 | 3.920 | −5.582 | −0.064 | 0.54 |
≥300 | 27.4670 | 0.904 | 0.187 | −0.349 | 5.675 | 2.842 | −7.853 | 0.023 | 0.58 |
(3) CWV (g/cm2): [3.0, 4.5] | |||||||||
T10 (K) | b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | RMSE (K) |
<300 | 23.7764 | 0.9123 | 0.1443 | −0.1902 | 7.1598 | 5.9811 | −11.5454 | −0.0597 | 0.71 |
≥300 | 35.3510 | 0.8780 | 0.1534 | −0.2077 | 6.0319 | 5.2617 | −14.5807 | 0.0270 | 1.01 |
(4) CWV (g/cm2): [4.0, 5.5] | |||||||||
T10 (K) | b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | RMSE (K) |
<300 | 9.6135 | 0.9581 | 0.1128 | −0.1213 | 7.1210 | 6.8790 | −12.5374 | 0.0257 | 0.93 |
≥300 | 36.4439 | 0.8736 | 0.1160 | −0.1181 | 6.4603 | 7.0560 | −16.3845 | 0.0305 | 1.32 |
(5) CWV (g/cm2): [5.0, 6.3] | |||||||||
T10 (K) | b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | RMSE (K) |
<300 | 50.7495 | 0.8021 | 0.0738 | −0.0521 | 12.3012 | 9.7371 | −15.7669 | −0.3001 | 1.06 |
≥300 | −63.0662 | 1.2070 | 0.0466 | −0.0323 | 7.4367 | 10.3215 | −13.6909 | −0.0355 | 1.32 |
c0 | c1 | c2 | c3 | c4 | c5 | c6 | LST RMSE (K) |
---|---|---|---|---|---|---|---|
−0.268 | 1.378 | 0.183 | 54.30 | −2.238 | −129.20 | 16.40 | 0.6 |
Site Code | Name | Geolocation | Land Cover | Clear-Sky Image Count |
---|---|---|---|---|
BND | Bondville, Illinois | 40.05192°N 88.37309°W | cropland | 43 |
GCM | Goodwin Creek, Mississippi | 34.2547°N 89.8729°W | cropland | 58 |
PSU | Penn. State Univ., Pennsylvania | 40.72012°N 77.93085°W | cropland | 13 |
SXF | Sioux Falls, South Dakota | 43.73403°N 96.62328°W | grassland | 31 |
DRA | Desert Rock, Nevada | 36.62373°N 116.01947°W | open shrublands | 62 |
Algorithm | Before Correction | After Correction | ||
---|---|---|---|---|
RMSE (K) | Bias (K) | RMSE (K) | Bias (K) | |
SW_Du | 2.26 | 1.14 | 2.81 (+0.55) 1 | 2.05 (+0.91) |
SW_Rozenstein | 2.76 | −1.06 | 2.46 (−0.30) | −0.09 (+0.97) |
SW_JM | 2.33 | 0.58 | 2.54 (+0.21) | 1.37 (+0.79) |
SC_10 | 2.74 | −0.17 | 2.47 (−0.27) | 0.54 (+0.71) |
SC_11 | 4.33 | 0.98 | 3.55 (−0.78) | 1.59 (+0.61) |
Algorithm | Before Correction | After Correction | ||
---|---|---|---|---|
RMSE (K) | Bias (K) | RMSE (K) | Bias (K) | |
SW_Du | 2.40 | 1.30 | 2.71 (+0.30) 1 | 1.97 (+0.68) |
SW_Rozenstein | 2.43 | −0.42 | 2.30 (−0.13) | 0.32 (+0.74) |
SW_JM | 2.47 | 0.82 | 2.27 (−0.20) | 1.22 (+0.40) |
SC_10 | 2.41 | −0.83 | 2.11 (−0.31) | 0.10 (+0.93) |
SC_11 | 3.20 | −0.17 | 2.84 (−0.36) | 1.02 (+1.19) |
Algorithms | BND | GCM | PSU | SXF | DRA | |||||
---|---|---|---|---|---|---|---|---|---|---|
RMSE (K) | Bias (K) | RMSE (K) | Bias (K) | RMSE (K) | Bias (K) | RMSE (K) | Bias (K) | RMSE (K) | Bias (K) | |
SW_Du | 2.64 | 1.76 | 1.50 | 0.20 | 1.90 | 1.10 | 3.41 | 2.80 | 1.88 | 0.78 |
SW_Rozenstein | 2.34 | −0.04 | 2.27 | −1.37 | 1.98 | −0.50 | 2.96 | 0.87 | 3.41 | −2.56 |
SW_JM | 2.61 | 1.53 | 1.68 | −0.52 | 2.06 | 0.61 | 3.48 | 2.44 | 1.97 | 0.01 |
SC_10 | 2.30 | −0.42 | 2.56 | −1.49 | 2.67 | −1.54 | 2.18 | 0.15 | 3.37 | 1.36 |
SC_11 | 3.17 | 0.03 | 3.27 | −0.33 | 3.34 | −1.44 | 3.05 | 0.40 | 6.21 | 3.67 |
Algorithms | BND | GCM | PSU | SXF | DRA | |||||
---|---|---|---|---|---|---|---|---|---|---|
RMSE (K) | Bias (K) | RMSE (K) | Bias (K) | RMSE (K) | Bias (K) | RMSE (K) | Bias (K) | RMSE (K) | Bias (K) | |
SW_Du | 3.04(+0.40) 1 | 2.39(+0.63) | 2.16(+0.66) | 1.43(+1.23) | 2.65(+0.75) | 1.83(+0.73) | 3.13(−0.28) | 2.48(−0.32) | 3.05(+1.17) | 2.21(+1.43) |
SW_Rozenstein | 2.33(−0.01) | 0.71(+0.75) | 2.07(−0.20) | −0.09(+1.28) | 2.13(+0.15) | 0.24(+0.74) | 2.69(−0.27) | 0.58(−0.29) | 2.79(−0.62) | −1.07(+1.49) |
SW_JM | 2.52(−0.09) | 1.72(+0.19) | 1.77(+0.09) | 0.67(+1.19) | 2.26(+0.20) | 1.02(+0.41) | 2.70(−0.78) | 1.67(−0.77) | 3.07(+1.10) | 1.70(+1.69) |
SC_10 | 2.19(−0.11) | 0.42(+0.84) | 2.05(−0.51) | −0.43(+1.06) | 2.07(−0.60) | −0.47(+1.07) | 2.12(−0.06) | 0.88(+0.73) | 3.16(−0.21) | 1.56(+0.20) |
SC_11 | 2.87(−0.30) | 1.22(+1.19) | 2.82(−0.45) | 0.58(+0.91) | 2.48(−0.86) | −0.02(+1.42) | 2.98(−0.07) | 2.01(+1.61) | 4.81(−1.40) | 2.91(−0.76) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Ren, H.; Zheng, Y.; Lu, S.; Dong, J. Evaluation of Land Surface Temperature Retrieval from Landsat 8/TIRS Images before and after Stray Light Correction Using the SURFRAD Dataset. Remote Sens. 2020, 12, 1023. https://doi.org/10.3390/rs12061023
Guo J, Ren H, Zheng Y, Lu S, Dong J. Evaluation of Land Surface Temperature Retrieval from Landsat 8/TIRS Images before and after Stray Light Correction Using the SURFRAD Dataset. Remote Sensing. 2020; 12(6):1023. https://doi.org/10.3390/rs12061023
Chicago/Turabian StyleGuo, Jinxin, Huazhong Ren, Yitong Zheng, Shangzong Lu, and Jiaji Dong. 2020. "Evaluation of Land Surface Temperature Retrieval from Landsat 8/TIRS Images before and after Stray Light Correction Using the SURFRAD Dataset" Remote Sensing 12, no. 6: 1023. https://doi.org/10.3390/rs12061023
APA StyleGuo, J., Ren, H., Zheng, Y., Lu, S., & Dong, J. (2020). Evaluation of Land Surface Temperature Retrieval from Landsat 8/TIRS Images before and after Stray Light Correction Using the SURFRAD Dataset. Remote Sensing, 12(6), 1023. https://doi.org/10.3390/rs12061023