Estimating Meltwater Drainage Onset Timing and Duration of Landfast Ice in the Canadian Arctic Archipelago Using AMSR-E Passive Microwave Data
Abstract
:1. Introduction
2. Data and Methods
2.1. Canadian Ice Service Regional Ice Charts
2.2. Satellite Data Product
2.3. Estimating Meltwater Drainage Onset Timing and Duration
3. Results and Discussion
4. Conclusions
- (1)
- We evaluated the AMSR-E MPF estimate [21] by using daily average TB for the AMSR-E L3 25 km NSIDC grid data in the CAA, compared it to the daily MERIS MPF in the CAA, and found that the relationship between AMSR-E and MERIS MPFs showed a strong correlation of 0.73–0.83, with a low bias of ±2% and RMSE of 8–9%, from 2006 to 2011. Moreover, the AMSR-E MPFs are 10% larger than the MERIS MPFs due to areas with albedos of 0.7–0.9, including melting snow until the snow cover melted away. Our evaluation demonstrated that the AMSR-E MPF product provides a quality product, similar to the MERIS MPF, only when the albedo is around 0.5–0.7.
- (2)
- We determined the DO/DD by using polynomial regression curves fitted on a time series of the AMSR-E MPF. The DOs/DDs from the time series of the AMSR-E and MERIS MPFs were compared, resulting in the finding that both DD and DO were consistent. Upon examining the average DO/DD in the subregions from 2006 to 2011, we found that the DO timing averaged in each subregion may correlate with the average MO timing.
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Fetterer, F.; Untersteiner, N. Observations of melt ponds on Arctic sea ice. J. Geophys. Res. 1998, 103, 24821–24835. [Google Scholar] [CrossRef]
- Perovich, D.K.; Light, B.; Eicken, H.; Jones, K.F.; Runciman, K.; Nghiem, S.V. Increasing solar heating of the Arctic ocean and adjacent seas, 1979–2005, Attribution and role in the ice-albedo feedback. Geophys. Res. Lett. 2007, 34, L19505. [Google Scholar] [CrossRef] [Green Version]
- Inoue, J.; Curry, J.A.; Maslanik, J.A. Application of aerosondes to melt-pond observations over Arctic sea ice. J. Atmos. Oceanic Technol. 2008, 25, 272334. [Google Scholar] [CrossRef]
- Schröder, D.; Feltham, D.L.; Flocco, D.; Tsamados, M. September Arctic sea-ice minimum predicted by spring melt-pond fraction. Nat. Clim. Chang. 2014, 4, 353–357. [Google Scholar] [CrossRef]
- Perovich, D.K.; Richter-Menge, J.A.; Jones, K.F.; Light, B.; Elder, B.C.; Polashenski, C.; Laroche, D.; Markus, T.; Lindsay, R. Arctic sea-ice melt in 2008 and the role of solar heating. Ann. Glaciol. 2011, 52, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Kashiwase, H.; Ohshima, K.I.; Nihashi, S.; Eicken, H. Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone. Sci. Rep. 2017, 7, 8170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Schweiger, A.; Webster, M.; Light, B.; Steele, M.; Ashjian, C.; Campbell, R.; Spitz, Y. Melt pond conditions on declining Arctic sea ice over 1979–2016: Model development, validation, and results. J. Geophys. Res. Oceans 2015, 123, 7983–8003. [Google Scholar] [CrossRef] [Green Version]
- Eicken, H.; Krouse, H.R.; Kadko, D.; Perovich, D.K. Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice. J. Geophys. Res. 2002, 107, 8046. [Google Scholar] [CrossRef] [Green Version]
- Polashenski, C.; Perovich, D.K.; Courville, Z. The mechanisms of sea ice melt pond formation and evolution. J. Geophys. Res. 2012, 117, C01001. [Google Scholar] [CrossRef]
- Untersteiner, N. The Geophysics of Sea Ice; Plenum: New York, NY, USA, 1986. [Google Scholar]
- Eicken, H.; Grenfell, T.C.; Perovich, D.K.; Richter-Menge, J.A.; Frey, K. Hydraulic controls of summer Arctic pack ice albedo. J. Geophys. Res. 2004, 109, C08007. [Google Scholar] [CrossRef] [Green Version]
- Kadko, D. Modeling the evolution of the Arctic mixed layer during the fall, 1997 Surface Heat Budget of the Arctic Ocean (SHEBA) Project using measurements of 7Be. J. Geophys. Res. 2000, 105, 3369–3378. [Google Scholar] [CrossRef] [Green Version]
- Lange, M.A.; Pfirman, S.L. Arctic sea ice contamination: Major characteristics and consequences. In Physics of Ice-Covered Seas; University of Helsinki: Helsinki, Finland, 1998; Volume 2, pp. 651–681. [Google Scholar]
- Perovich, D.K.; Tucker, W.B., III; Ligett, K.A. Aerial observations of the evolution of ice surface conditions during summer. J. Geophys. Res. 2002, 107, 8048. [Google Scholar] [CrossRef]
- Rosel, A.; Kaleschke, L.; Birnbaum, G. Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neuronal network. Cryosphere 2012, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zege, E.P.; Malinka, A.V.; Katsev, I.L.; Prikhach, A.S.; Heygster, G.; Istomina, L.G.; Birnbaum, G.; Schwarz, P. Algorithm to retrieve the melt pond fraction and the spectral albedo of Arctic summer ice from satellite data. Remote Sens. Environ. 2015, 163, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.M. Recent increase in the length of the melt season of perennial Arctic sea ice. Geophys. Res. Lett. 1998, 25, 655–658. [Google Scholar] [CrossRef]
- Markus, T.; Stroeve, J.C.; Miller, J. Recent changes in Arctic Sea ice melt onset, freezeup, and melt season length. J. Geophys. Res. 2009, 114, C12024. [Google Scholar] [CrossRef]
- Bliss, A.C.; Anderson, M.R. Arctic sea ice melt onset timing from passive microwave-based and surface air temperature-based methods. J. Geophys. Res. Atmos. 2018, 123, 9063–9080. [Google Scholar] [CrossRef]
- Marshall, S.; Scott, K.A.; Scharien, R.K. Passive Microwave Melt Onset Retrieval Based on a Variable Threshold: Assessment in the Canadian Arctic Archipelago. Remote Sens. 2019, 11, 1304. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, Y.; Tateyama, K.; Kameda, T.; Hutchings, J.K. Estimation of melt pond fraction over high concentration Arctic sea ice using AMSR-E passive microwave data. J. Geophys. Res. Oceans. 2016, 121, 7056–7072. [Google Scholar] [CrossRef]
- Joint WMO-IOC Technical Commission for Oceanography and Marine Meteorology. SIGRID-3: A Vector Archive Format for Sea Ice Charts; JCOMM Technical Report No. 23; WMO/TD-No. 1214; WMO & IOC: Geneva, Switzerland, 2004. [Google Scholar]
- Canadian Ice Service (CIS). Canadian Ice Service SIGRID-3 Implementation 2006; Environment Canada: Ottawa, ON, Canada, 2006.
- Canadian Ice Service (CIS)—Environment Canada. Manual of Standard Procedures for Observing and Reporting Ice Conditions (MANICE); Assistant Deputy Minister, Meteorological Service of Canada, Environment Canada: Ottawa, ON, Canada, 2005.
- Tivy, A.; Howell, S.E.L.; Alt, B.; McCourt, S.; Chagnon, R.; Crocker, G.; Carrieres, T.; Yackel, J.J. Trends and variability in summer sea ice cover in the Canadian Arctic based on the Canadian Ice Service Digital Archive, 1960–2008 and 1968–2008. J. Geophys. Res. 2011, 116, C03007. [Google Scholar]
- Istomina, L.; Heygster, G.; Huntemann, M.; Schwarz, P.; Birnbaum, G.; Scharien, R.; Polashenski, C.; erovich, D.K.; Zege, E.; Malinka, A.; et al. Melt pond fraction and spectral sea ice albedo retrieval from MERIS data—Part 1: Validation against in situ, aerial, and ship cruise data. Cryosphere 2015, 9, 1551–1566. [Google Scholar] [CrossRef] [Green Version]
- Istomina, L.; Heygster, G.; Huntemann, M.; Marks, H.; Melsheimer, C.; Zege, E.; Malinka, A.; Prikhach, A.; Katsev, I. Melt pond fraction and spectral sea ice albedo retrieval from MERIS data—Part 2: Case studies and trends of sea ice albedo and melt ponds in the Arctic for years 2002–2011. Cryosphere 2015, 9, 1567–1578. [Google Scholar] [CrossRef] [Green Version]
- Perovich, D.K. The Optical Properties of Sea Ice, Monogr. 96–1; Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1996; p. 25. [Google Scholar]
- Perovich, D.K.; Grenfell, T.C.; Light, B.; Hobbs, P.V. Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res. 2002, 107, 8044. [Google Scholar] [CrossRef]
- Perovich, D.K.; Polashenski, C. Albedo evolution of seasonal Arctic sea ice. Geophys. Res. Lett. 2012, 39, L08501. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, Y. Estimating Meltwater Drainage Onset Timing and Duration of Landfast Ice in the Canadian Arctic Archipelago Using AMSR-E Passive Microwave Data. Remote Sens. 2020, 12, 1033. https://doi.org/10.3390/rs12061033
Tanaka Y. Estimating Meltwater Drainage Onset Timing and Duration of Landfast Ice in the Canadian Arctic Archipelago Using AMSR-E Passive Microwave Data. Remote Sensing. 2020; 12(6):1033. https://doi.org/10.3390/rs12061033
Chicago/Turabian StyleTanaka, Yasuhiro. 2020. "Estimating Meltwater Drainage Onset Timing and Duration of Landfast Ice in the Canadian Arctic Archipelago Using AMSR-E Passive Microwave Data" Remote Sensing 12, no. 6: 1033. https://doi.org/10.3390/rs12061033
APA StyleTanaka, Y. (2020). Estimating Meltwater Drainage Onset Timing and Duration of Landfast Ice in the Canadian Arctic Archipelago Using AMSR-E Passive Microwave Data. Remote Sensing, 12(6), 1033. https://doi.org/10.3390/rs12061033