Adaptive Determination of the Flow Accumulation Threshold for Extracting Drainage Networks from DEMs
Abstract
:1. Introduction
2. Materials
2.1. Study Region
2.2. Topographic Data
2.3. Vegetation Index Data
2.4. Water Storage Change from Precipitation, Runoff, and Evapotranspiration
2.5. Actual Drainage Networks Data
3. Methods
3.1. Drainage Networks Extraction
3.2. Multiple Regression and Adaptive Power (MR-AP) Method
3.2.1. Multiple Stepwise Regression Fitting
3.2.2. Power Function Fitting for Each Sub-Basin
3.3. Validation
4. Results
4.1. Results of Drainage Length Using Multiple Regression (MR) Analysis
4.2. Drainage Network Results Using Adaptive Power (AP) Analysis
4.3. Validation on the MR-AP Drainage Networks
5. Discussion
5.1. The Statistical Association between the Drainage Length and the Explanatory Variables
5.2. Comparison between MR-AP, Mean Change-Point Analysis, and the Fitness Index Method
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Arnold, N. A new approach for dealing with depressions in digital elevation models when calculating flow accumulation values. Prog. Phys. Geogr. 2010, 34, 781–809. [Google Scholar] [CrossRef]
- Qin, C.Z.; Zhan, L.J.; Zhu, A.X.; Zhou, C.H. A strategy for raster-based geocomputation under different parallel computing platforms. Int. J. Geogr. Inf. Sci. 2014, 28, 2127–2144. [Google Scholar] [CrossRef]
- Martinez-Casasnovas, J.A.; Stuiver, H.J. Automated delineation of drainage networks and elementary catchments from digital elevation models. Int. J. Appl. Earth Obs. Geoinf. 1998, 3, 198–208. [Google Scholar]
- O’Callaghan, J.F.; Mark, D.M. The extraction of drainage networks from digital elevation data. Comput. Vis. Graph. Image Process. 1984, 28, 323–344. [Google Scholar] [CrossRef]
- Camara, J.; Martin, M.A.; Gomez-Miguel, V. Quantifying the Relationship Between Drainage Networks at Hillslope Scale and Particle Size Distribution at Pedon Scale. Fractals-Complex Geom. Patterns Scaling Nat. Soc. 2015, 23, 1540007. [Google Scholar]
- Gandolfi, C.; Bischetti, G.B. Influence of the drainage network identification method on geomorphological properties and hydrological response. Hydrol. Process. 1997, 11, 353–375. [Google Scholar] [CrossRef]
- Helmlinger, K.R.; Kumar, P.; Foufoula-Georgiou, E. On the Use of Digital Elevation Model Data for Hortonian and Fractal Analyses of Channel Networks. Water Resour. Res. 1993, 29, 2599–2613. [Google Scholar] [CrossRef]
- Lee, G.; Kim, J.C. Comparative Analysis of Geomorphologic Characteristics of DEM-Based Drainage Networks. J. Hydrol. Eng. 2011, 16, 137–147. [Google Scholar] [CrossRef]
- Lehner, B.; Linke, S.; Ouellet-Dallaire, C.; Thieme, M. Global hydro-environmental catchment and river reach characteristics at high spatial resolution. Geophys. Res. Abstr. 2019, 21, 1. [Google Scholar]
- Morris, D.G.; Heerdegen, R.G. Automatically derived catchment boundaries and channel networks and their hydrological applications. Geomorphology 1988, 1, 131–141. [Google Scholar] [CrossRef]
- Band, L.E. A Terrain-Based Watershed Information-System. Hydrol. Process. 1989, 3, 151–162. [Google Scholar] [CrossRef]
- Chen, J.; Lin, G.; Yang, Z.; Chen, H. The relationship between DEM resolution, accumulation area threshold and drainage network indices. In Proceedings of the 2010 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–5. [Google Scholar]
- Li, Z.; Guo, L.; Liu, R.; Wang, Y. The relationship between the threshold of catchment area for extraction of digital river network from DEM and the river source density. J. Geo-Inf. Sci. 2018, 20, 1244–1251. (In Chinese) [Google Scholar]
- Wu, M.; Shi, P.; Chen, A.; Shen, C.; Wang, P. Impacts of DEM resolution area threshold value uncertainty on the drainage network derived using, SWAT. Water SA 2017, 43, 450–462. [Google Scholar] [CrossRef] [Green Version]
- Vogt, E.V.; Colombo, R.; Bertolo, F. Deriving drainage networks and catchment boundaries: A new methodology combining digital elevation data and environmental characteristics. Geomorphology 2003, 53, 281–298. [Google Scholar] [CrossRef]
- Band, L.E. Topographic Partition of Watersheds with Digital Elevation Models. Water Resour. Res. 1986, 22, 15–24. [Google Scholar] [CrossRef]
- Wood, E.F.; Sivapalan, M.; Beven, K.; Band, L. Effects of Spatial Variability and Scale with Implications to Hydrologic Modeling. J. Hydrol. 1988, 102, 29–47. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Dietrich, W.E. Source Areas, Drainage Length, and Channel Initiation. Water Resour. Res. 1989, 25, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, W.E.; Wilson, C.J.; Montgomery, D.R.; McKean, J.; Bauer, R. Erosion thresholds and land surface morphology. Geology 1992, 20, 675–679. [Google Scholar] [CrossRef]
- Martz, L.W.; Garbrecht, J. Automated recognition of valley lines and drainage networks from grid digital elevation models: A review and a new method—Comment. J. Hydrol. 1995, 167, 393–396. [Google Scholar] [CrossRef]
- Beighley, R.; Eggert, K.; Wilson, C.J.; Rowland, J.C.; Lee, H. A hydrologic routing model suitable for climate-scale simulations of arctic rivers: Application to the Mackenzie River Basin. Hydrol. Process. 2015, 29, 2751–2768. [Google Scholar] [CrossRef]
- Bhowmik, A.K.; Metz, M.; Schafer, R.B. An automated, objective and open source tool for stream threshold selection and upstream riparian corridor delineation. Environ. Model. Softw. 2015, 63, 240–250. [Google Scholar] [CrossRef]
- Khan, A.; Richards, K.S.; Parker, G.T.; McRobie, A.; Mukhopadhyay, B. How large is the Upper Indus Basin? The pitfalls of auto-delineation using DEMs. J. Hydrol. 2014, 509, 442–453. [Google Scholar] [CrossRef]
- Qin, C.Z.; Wu, X.W.; Jiang, J.C.; Zhu, A. Case-based knowledge formalization and reasoning method for digital terrain analysis—Application to extracting drainage networks. Hydrol. Earth Syst. Sci. 2016, 20, 3379–3392. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.H.; Loáiciga, H.A.; Feng, L.W.; He, J.; Du, Q. Setting the Flow Accumulation Threshold Based on Environmental and Morphologic Features to Extract River Networks from Digital Elevation Models. ISPRS Int. J. Geo-Inf. 2021, 10, 186. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, X.; Lu, C.; Su, R.; Wang, Y. Determination of Flow Accumulation Threshold Based on Multiple Regression Model in Raster River Networks Extraction. Trans. Chin. Soc. Agric. Mach. 2016, 47, 131–138. (In Chinese) [Google Scholar]
- Luo, M.; Tang, G.; Dong, Y. Uncertainty of flow accumulation threshold influence in hydrology modeling-a case study in Qinling Mountain SRTM3 DEM based. In Proceedings of the 2008 International Workshop on Education Technology and Training & 2008 International Workshop on Geoscience and Remote Sensing, Shanghai, China, 21–22 December 2008; Volume 2, pp. 219–222. [Google Scholar]
- You, Y.Y.; Jin, W.B.; Xiong, Q.X.; Xue, L.; Ai, T.C.; Li, B.L. Simulation and Validation of Non-point Source Nitrogen and Phosphorus Loads under Different Land Uses in Sihu Basin, Hubei Province, China. Procedia Environ. Sci. 2012, 13, 1781–1797. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Zhu, L.P.; Xu, Y.X. Crustal structure of Hubei Province of China from teleseismic receiver functions: Evidence for lower crust delamination. Tectonophysics 2014, 636, 286–292. [Google Scholar] [CrossRef]
- Abrams, M.; Crippen, R.; Fujisada, H. ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD). Remote Sens. 2020, 12, 1156. [Google Scholar] [CrossRef] [Green Version]
- Wenzel, R.N. Surface roughness and contact angle. J. Phys. Chem. 1949, 53, 1466–1467. [Google Scholar] [CrossRef]
- Didan, K. MODIS/Terra Vegetation Indices Monthly L3 Global 1km SIN Grid V061. NASA EOSDIS Land Processes DAAC. 2015. Available online: https://doi.org/10.5067/MODIS/MOD13A3.061 (accessed on 21 November 2019).
- Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Nelkin, E.J.; Tan, J. GPM IMERG Final Precipitation L3 1 Month 0.1 Degree x 0.1 Degree V06, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). 2019. Available online: https://doi.org/10.5067/GPM/IMERG/3B-MONTH/06 (accessed on 21 November 2019).
- Chen, F.; Gao, Y.; Wang, Y.; Qin, F.; Li, X. Downscaling satellite-derived daily precipitation products with an integrated framework. Int. J. Climatol. 2019, 39, 1287–1304. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor UE, A.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Beaudoing, H.; Rodell, M. NASA/GSFC/HSL. GLDAS Noah Land Surface Model L4 Monthly 0.25 × 0.25 Degree V2.1, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). 2020. Available online: https://doi.org/10.5067/SXAVCZFAQLNO (accessed on 21 November 2019).
- Yeh, P.J.; Irizarry, M.; Eltahir, E.A. Hydroclimatology of Illinois: A comparison of monthly evaporation estimates based on atmospheric water balance and soil water balance. J. Geophys. Res. Atmos. 1998, 103, 19823–19837. [Google Scholar] [CrossRef]
- Over, M.; Schilling, A.; Neubauer, S.; Zipf, A. Generating web-based 3D city models from OpenStreetMap: The current situation in Germany. Comput. Environ. Urban Syst. 2010, 34, 496–507. [Google Scholar] [CrossRef]
- Rosen, D. WARSSS-A Watershed Assessment for River Stability and Sediment Supply-An Overview. Hydrol. Sci. Technol. 2007, 23, 181. [Google Scholar]
- Tarboton, D.G.; Bras, R.L.; Rodriguez-Iturbe, I. On the extraction of channel networks from digital elevation data. Hydrol. Process. 1991, 5, 81–100. [Google Scholar] [CrossRef]
- Choi, Y. A new algorithm to calculate weighted flow-accumulation from a DEM by considering surface and underground stormwater infrastructure. Environ. Model. Softw. 2012, 30, 81–91. [Google Scholar] [CrossRef]
- Vogt, J.; Soille, P.; De Jager, A.; Rimaviciute, E.; Mehl, W.; Foisneau, S.; Bodis, K.; Dusart, J.; Paracchini, M.L.; Haastrup, P.; et al. A pan-European river and catchment database. Rep. Eur 2007, 22920, Ispra. [Google Scholar]
- Schneider, A.; Jost, A.; Coulon, C.; Silvestre, M.; Théry, S.; Ducharne, A. Global-scale river network extraction based on high-resolution topography and constrained by lithology, climate, slope, and observed drainage length. Geophys. Res. Lett. 2017, 44, 2773–2781. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Zhang, Y.; Chen, Q.; Li, N.; Shi, K.; Zhang, Y. Regime shifts in shallow lakes observed by remote sensing and the implications for management. Ecol. Indic. 2020, 113, 106285. [Google Scholar] [CrossRef]
- Li, C.; Feng, X.; Zhao, R. The Methods and Application of Automatically Extracting Stream Network of Watershed. J. Lake Sci. 2003, 3, 205–212. (In Chinese) [Google Scholar]
- Li, D.; Wu, B.; Chen, B.; Qin, C.; Wang, Y.; Zhang, Y.; Xue, Y. Open-Surface River Extraction Based on Sentinel-2 MSI Imagery and DEM Data: Case Study of the Upper Yellow River. Remote Sens. 2020, 12, 2737. [Google Scholar] [CrossRef]
- Luo, Y.; Zhu, L.; Hu, J. A new method for determining threshold in using PGCEVD to calculate return values of typhoon wave height. China Ocean Eng. 2012, 26, 251–260. [Google Scholar] [CrossRef]
- Militino, A.F.; Moradi, M.; Ugarte, M.D. On the Performances of Trend and Change-Point Detection Methods for Remote Sensing Data. Remote Sens. 2020, 12, 1008. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.T.; Chou, W.C.; Lin, C.Y.; Huang, P.H.; Tsai, J.S. Automated suitable drainage network extraction from digital elevation models in Taiwan’s upstream watersheds. Hydrol. Process. Int. J. 2006, 20, 289–306. [Google Scholar] [CrossRef]
Explanatory Variables | Pearson Correlation |
---|---|
water storage change | 0.850 ** |
NDVI | 0.874 ** |
Maximum Surface Roughness | 0.425 ** |
Explanatory Variables | Pearson Correlation |
---|---|
Constant | −4270.679 |
The water storage change | 9015.260 |
NDVI | 107.426 |
Maximum surface roughness | −888.753 |
R2 | 0.714 |
Adjusted R2 | 0.688 |
Area Index | Actual Drainage Length (m) | FATs by MR-AP | MR-AP Drainage Length (m) | Drainage Length Error by MR-AP Model | Miss Hits | False Hits | True Hits |
---|---|---|---|---|---|---|---|
1 | 105,216.89 | 37,069 | 111,854.2 | 6.31% | 9.51% | 15.82% | 90.49% |
2 | 195,583.04 | 31,023 | 200,455.6 | 2.49% | 24.19% | 26.68% | 75.81% |
3 | 51,231.77 | 61,953 | 50,423.53 | −1.58% | 1.98% | 0.41% | 98.02% |
4 | 89,795.84 | 33,695 | 84,181.19 | −6.25% | 19.50% | 13.25% | 80.50% |
5 | 58,822.43 | 61,372 | 63,952.42 | 8.72% | 25.05% | 33.77% | 74.95% |
6 | 66,871.99 | 47,921 | 63,990.78 | −4.31% | 33.88% | 29.57% | 66.12% |
7 | 63,287.99 | 31,858 | 66,656.82 | 5.32% | 21.75% | 27.07% | 78.25% |
8 | 79,994.08 | 46,961 | 87,887.44 | 9.87% | 57.69% | 67.55% | 42.31% |
9 | 76,825.84 | 34,109 | 75,778.47 | −1.36% | 16.38% | 15.01% | 83.62% |
Average | 75,823.67 | 42,885 | 89,464.49 | 2.13% | 23.33% | 25.46% | 76.67% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Li, W.; Loaiciga, H.A.; Liu, X.; Liu, S.; Zheng, S.; Zhang, H. Adaptive Determination of the Flow Accumulation Threshold for Extracting Drainage Networks from DEMs. Remote Sens. 2021, 13, 2024. https://doi.org/10.3390/rs13112024
Zhang W, Li W, Loaiciga HA, Liu X, Liu S, Zheng S, Zhang H. Adaptive Determination of the Flow Accumulation Threshold for Extracting Drainage Networks from DEMs. Remote Sensing. 2021; 13(11):2024. https://doi.org/10.3390/rs13112024
Chicago/Turabian StyleZhang, Wei, Wenkai Li, Hugo A. Loaiciga, Xiuguo Liu, Shuya Liu, Shengjie Zheng, and Han Zhang. 2021. "Adaptive Determination of the Flow Accumulation Threshold for Extracting Drainage Networks from DEMs" Remote Sensing 13, no. 11: 2024. https://doi.org/10.3390/rs13112024
APA StyleZhang, W., Li, W., Loaiciga, H. A., Liu, X., Liu, S., Zheng, S., & Zhang, H. (2021). Adaptive Determination of the Flow Accumulation Threshold for Extracting Drainage Networks from DEMs. Remote Sensing, 13(11), 2024. https://doi.org/10.3390/rs13112024