Biases in CloudSat Falling Snow Estimates Resulting from Daylight-Only Operations
Abstract
:1. Introduction
2. Data and Methods
3. Spatial and Temporal Biases
4. Snowfall Fraction and Rate Biases
4.1. Full-Op vs. DO-Op
4.2. Full-Op-R
4.3. CPR vs. ERA5
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kay, J.E.; L’Ecuyer, T.; Pendergrass, A.; Chepfer, H.; Guzman, R.; Yettella, V. Scale-aware and definition-aware evaluation of modeled near-surface precipitation frequency using CloudSat observations. J. Geophys. Res. Atmos. 2018, 123, 4294–4309. [Google Scholar] [CrossRef]
- Lebsock, M.D.; L’Ecuyer, T.S.; Wood, N.B.; Haynes, J.M.; Smalley, M.A. Status of the CloudSat mission. In Satellite Precipitation Measurement; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 1, pp. 25–43. ISBN 978-3-030-24568-9. [Google Scholar]
- Liu, G. Deriving snow cloud characteristics from CloudSat observations. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Milani, L.; Kulie, M.S.; Casella, D.; Dietrich, S.; L’Ecuyer, T.S.; Panegrossi, G.; Porcù, F.; Sanò, P.; Wood, N.B. CloudSat snowfall estimates over Antarctica and the Southern Ocean: An assessment of independent retrieval methodologies and multi-year snowfall analysis. Atmos. Res. 2018, 213, 121–135. [Google Scholar] [CrossRef]
- King, F.; Fletcher, C.G. Using CloudSat-CPR retrievals to estimate snow accumulation in the Canadian Arctic. Earth Space Sci. 2020, 7. [Google Scholar] [CrossRef]
- Behrangi, A.; Christensen, M.; Richardson, M.; Lebsock, M.; Stephens, G.; Huffman, G.J.; Bolvin, D.; Adler, R.F.; Gardner, A.; Lambrigtsen, B.; et al. Status of high-latitude precipitation estimates from observations and reanalyses. J. Geophys. Res. 2016, 121, 4468–4486. [Google Scholar] [CrossRef] [PubMed]
- Kulie, M.S.; Milani, L.; Wood, N.B.; Tushaus, S.A.; Bennartz, R.; L’Ecuyer, T.S. A shallow cumuliform snowfall census using spaceborne radar. J. Hydrometeorol. 2016, 17, 1261–1279. [Google Scholar] [CrossRef]
- Behrangi, A.; Lebsock, M.; Wong, S.; Lambrigtsen, B. On the quantification of oceanic rainfall using spaceborne sensors. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Cho, H.; Jun, S.Y.; Ho, C.H.; McFarquhar, G. Simulations of winter Arctic clouds and associated radiation fluxes using different cloud microphysics schemes in the Polar WRF: Comparisons with CloudSat, CALIPSO, and CERES. J. Geophys. Res. Atmos. 2020, 125. [Google Scholar] [CrossRef]
- Li, X.; Krueger, S.K.; Strong, C.; Mace, G.G.; Benson, S. Midwinter Arctic leads form and dissipate low clouds. Nat. Commun. 2020, 11, 206. [Google Scholar] [CrossRef]
- Lenaerts, J.T.M.; Van Tricht, K.; Lhermitte, S.; L’Ecuyer, T.S. Polar clouds and radiation in satellite observations, reanalyses, and climate models. Geophys. Res. Lett. 2017, 44, 3355–3364. [Google Scholar] [CrossRef]
- Kramer, R.J.; Matus, A.V.; Soden, B.J.; L’Ecuyer, T.S. Observation-based radiative kernels from CloudSat/CALIPSO. J. Geophys. Res. Atmos. 2019, 124, 5431–5444. [Google Scholar] [CrossRef]
- Kelly, A.C.; Macie, E.J. The A-Train: NASA’s Earth Observing System (Eos) satellites and other Earth observation satellites. In Proceedings of the 4th IAA Symposium on Small Satellites for Earth Observation, Berlin, Germany, 7–11 April 2003; p. 4. [Google Scholar]
- Kulie, M.S.; Milani, L. Seasonal variability of shallow cumuliform snowfall: A CloudSat perspective. Q. J. R. Meteorol. Soc. 2018, 144, 329–343. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.; Hong, Y.; Chen, S.; Gourley, J.J.; Zhang, J.; Kirstetter, P.E. Snowfall detectability of NASA’s Cloudsat: The first cross-investigation of its 2C-Snow-Profile product and National Multi-sensor Mosaic QPE (NMQ) snowfall data. Prog. Electromagn. Res. 2014, 148, 55–61. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.B.; Kakar, R.; Braun, S.A.; Huffman, G.J.; Iguchi, T.; et al. The global precipitation measurement (GPM) mission for science and society. Bull. Am. Meteorol. Soc. 2017, 98, 1679–1695. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Kulie, M.; Milani, L.; Munchak, S.J.; Wood, N.B.; Levizzani, V. Satellite estimation of falling snow: A Global Precipitation Measurement (GPM) core observatory perspective. J. Appl. Meteorol. Climatol. 2019, 58, 1429–1448. [Google Scholar] [CrossRef]
- Lenaerts, J.; Camron, M.D.; Wyburn-Powell, C.; Kay, J. Present-day and future Greenland Ice Sheet precipitation frequency from satellite observations and an Earth System Model. Cryosph. Discuss. 2020, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Wood, N.B.; L’Ecuyer, T.S. Level 2C Snow Profile Process Description and Interface Control Document, Product Version P1_R05; NASA JPL CloudSat Project Document Revision 0; National Aeronautics and Space Administration, Jet Propulsion Laboratory: Pasadena, CA, USA, 2018; pp. 1–26. Available online: http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-SNOW-PROFILE_PDICD.P1_R05.rev0_.pdf (accessed on 19 May 2021).
- Milani, L.; Wood, N.B. Supplementary Data: Biases in CloudSat Falling Snow Estimates Resulting from Daylight-Only Operations; Ver 1.0.0. Zenodo: Geneva, Switzerland, 2021. Available online: https://zenodo.org/record/4749304 (accessed on 19 May 2021). [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Sabater, J.M.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1979 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2018. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 16 April 2021). [CrossRef]
- Illingworth, A.J.; Barker, H.W.; Beljaars, A.; Ceccaldi, M.; Chepfer, H.; Clerbaux, N.; Cole, J.; Delanoë, J.; Domenech, C.; Donovan, D.P.; et al. The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Am. Meteorol. Soc. 2015, 96, 1311–1332. [Google Scholar] [CrossRef] [Green Version]
- Ehsani, M.R.; Behrangi, A.; Adhikari, A.; Song, Y.; Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. Assessment of the Advanced Very High-Resolution Radiometer (AVHRR) for snowfall retrieval in high latitudes using CloudSat and machine learning. J. Hydrometeorol. 2021. early online release. [Google Scholar] [CrossRef]
- Rysman, J.-F.; Panegrossi, G.; Sanò, P.; Marra, A.C.; Dietrich, S.; Milani, L.; Kulie, M.S. SLALOM: An all-surfce snow water path retrieval algorithm for the GPM Microwave Imager. Remote. Sens. 2018, 10, 1278. [Google Scholar] [CrossRef] [Green Version]
- Rysman, J.-F.; Panegrossi, G.; Sanò, P.; Marra, A.C.; Dietrich, S.; Milani, L.; Kulie, M.S.; Casella, D.; Camplani, A.; Claud, C.; et al. Retrieving surface snowfall with the GPM Microwave Imager: A new module for the SLALOM algorithm. Geophys. Res. Lett. 2019, 46, 13593–13601. [Google Scholar] [CrossRef]
Orbital Track | Period | Global (× 108) | NH (× 108) | SH (× 108) |
---|---|---|---|---|
Total | Full-Op | 7.69 | 3.86 | 3.87 |
Full-Op-R | 4.28 | 2.54 | 1.76 | |
DO-Op | 4.18 | 2.47 | 1.73 | |
Ascending | Full-Op | 3.85 | 1.93 | 1.94 |
Full-Op-R | 3.56 | 1.93 | 1.66 | |
DO-Op | 3.48 | 1.88 | 1.62 | |
Descending | Full-Op | 3.85 | 1.93 | 1.94 |
Full-Op-R | 0.72 | 0.62 | 0.10 | |
DO-Op | 0.69 | 0.59 | 0.10 |
Period | 2CSP SF (%) | 2CSP MSR (mm y−1) | ERA5 accum. (mm y−1) |
---|---|---|---|
Full-Op | 4.33 | 74.63 | 86.28 |
DO-Op | 3.89 | 68.32 | 86.92 |
Full-Op-R | 3.84 | 65.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milani, L.; Wood, N.B. Biases in CloudSat Falling Snow Estimates Resulting from Daylight-Only Operations. Remote Sens. 2021, 13, 2041. https://doi.org/10.3390/rs13112041
Milani L, Wood NB. Biases in CloudSat Falling Snow Estimates Resulting from Daylight-Only Operations. Remote Sensing. 2021; 13(11):2041. https://doi.org/10.3390/rs13112041
Chicago/Turabian StyleMilani, Lisa, and Norman B. Wood. 2021. "Biases in CloudSat Falling Snow Estimates Resulting from Daylight-Only Operations" Remote Sensing 13, no. 11: 2041. https://doi.org/10.3390/rs13112041
APA StyleMilani, L., & Wood, N. B. (2021). Biases in CloudSat Falling Snow Estimates Resulting from Daylight-Only Operations. Remote Sensing, 13(11), 2041. https://doi.org/10.3390/rs13112041