1. Introduction
Drilling is a crucial component of the discovery roadmap to identifying economically profitable ore deposits. Drill-cores are cylindrical rock samples drilled to depths that can reach several hundreds to a few thousand meters from the Earth’s crust. They provide valuable information useful for characterizing geological ore deposits (e.g., geology and geological history of the deposits), aquifers, and geothermal prospects. Even if the overall budget for exploration and exploration drilling has decreased in the mining industry in the last two years due to economic reasons [
1], there is an increasing need for more advanced and robust analyses of new and archived drill-cores. Indeed, in order to achieve the 2050 energy goals, new renewable energy networks such as wind, solar, and geothermal power require substantial amounts of minerals such as cobalt and lithium as well as base metals including copper and aluminium, perhaps up to 3 billion tons per year [
2]. This growing need is critical not only in terms of the new 2050 energy goals but also in light of the extremely high cost of obtaining new samples from boreholes. As a result, the work presented here is critical in terms of data management and cost-related optimization.
Drill-cores are primarily characterized using traditional core logging techniques. Geologists, mainly on site, carefully inspect and qualitatively describe the characteristics of the drill-cores such as the rock type, texture, mineralogical assemblages, alteration facies, structures, and ore-forming minerals. This is, however, a subjective and time-consuming task relying on the knowledge and expertise of geologists. Besides core logging, analytical methods are also performed at meter intervals to obtain bulk geochemistry or on small representative sections of the cores to derive detailed quantitative information on mineralogy and geochemistry. Optical microscopy, X-ray diffraction and fluorescence, and scanning electron microscopy (SEM) are common analytical techniques in the mining industry [
3,
4,
5,
6]. These techniques are destructive and costly but provide objective measurements that can be used to support mining companies in their decision-making.
Mineral spectroscopy and more specifically hyperspectral imaging (HSI) has become an innovative and pioneer technology for the analysis of drill-cores in the last decade. This technique provides the means for a non-invasive, non-destructive, and rapid characterization of entire drill-cores. Hyperspectral data are recorded in several tens to hundreds of narrow and contiguous spectral bands along the electromagnetic spectrum covering from the visible and near infrared (VNIR), short-wave infrared (SWIR) to the long-wave infrared (LWIR) spectra depending on the sensor. Due to the high spectral resolution, the recorded data allow users to construct a rich reflectance spectrum that can be used to identify minerals or mineral mixtures and to map their spatial distribution, changes in composition, and relative abundance.
The reflectance spectrum of minerals varies, amongst other reasons, due to the chemical composition, mixtures in the mineral assemblages, and grain sizes. Each mineral has a diagnostic response in different parts of the electromagnetic spectrum as a result of the fundamental electronic and vibrational processes of the different atoms and molecular bonds [
7,
8]. For instance, mica, clay, chlorites, epidote, amphiboles, alunite, and gypsum have good diagnostic responses to short-wave infrared (SWIR) spectra and moderate responses to long-wave infrared (LWIR) spectra. Feldspars, quartz, and carbonates are distinguishable in the LWIR; however, carbonates also have a good diagnostic response in the SWIR. For a more detailed description of the infrared active minerals, the readers are referred to [
7,
9].
Drill-core hyperspectral data have been analyzed following well-established methods such as minimum wavelength mapping, band ratios, spectral distance measurements using reference libraries, endmember extraction, and unmixing [
8,
10,
11,
12]. Machine learning techniques have also been implemented for the analysis of drill-core hyperspectral data in recent years to ameliorate the automation of analyses and to provide more robust results, especially by using supervised methods [
13,
14,
15,
16,
17]. However, supervised learning algorithms require reference data (i.e., training sets) that can be difficult to obtain for drill-cores since, for example, they are not usually labelled at the millimeter scale. In our previous work [
14], we proposed an innovative strategy to exploit geochemical data from assays performed over sections of ca. 1 m length to train a model and to estimate the element abundance information of more than 300 m of drill-cores by means of a superpixel segmentation of the hyperspectral data. In another work in [
13], we upscaled high-resolution mineralogical data (i.e., model mineralogy with a ground sampling distance (GSD) of 3 µm) obtained with a scanning electron microscope (SEM) system coupled with the Mineral Liberation Analysis software (MLA) from small sections of drill-core samples to the entire drill-core samples by training a supervised machine learning model and by classifying the hyperspectral data. Following a similar strategy, in [
16], the authors used SEM-MLA data to retrieve quasi-quantitative mineral abundances from hyperspectral data based on regressions. Although these methods enable us to accurately map minerals, their relative abundances, and general distribution in drill-core data, they do not entirely exploit the full synergetic potential of SEM-MLA and hyperspectral data fusion due to the large difference between the spatial samplings of these two datasets. SEM-MLA data have a spatial sampling in the micrometer scale whereas hyperspectral data have a lower spatial sampling ranging in the millimeter scale. Therefore, detailed mineralogical and structural information is lost.
HS sensors can theoretically record several parts of the electromagnetic spectrum; however, technological constraints extremely limit the operational resolution and areas of the spectrum that can be measured at a given integration time. These technical limitations are the reasons why spatial resolution is one of the most expensive and difficult parameter required to improve imaging systems. These shortcomings constitute the requirements for post processing solutions. In this work, we propose a multi-resolution fusion-based framework to integrate RGB images in the chain of hyperspectral mineral mapping. As a complementary and intermediate source of information, the high-spatial resolution RGB images (0.1 mm GSD) compensate for the large difference between the spatial resolution of SEM-MLA (3 µm GSD) and hyperspectral data (1.5 mm GSD). More concretely, we propose enhancing the spatial resolution of hyperspectral data by means of co-registered RGB images before the integration of SEM-MLA and hyperspectral data. A variety of resolution enhancement techniques have been developed to improve the spatial resolution of multispectral images based on the fusion with high-spatial resolution panchromatic images, so called pansharpening [
18] during the last decade. Based on the previously developed pansharpening techniques, different resolution enhancement methods have also been proposed for hyperspectral data. These techniques can be divided into two main groups: pansharpening-based and subspace methods. The first category includes techniques such as subdividing the hyperspectral data in different regions and applying conventional pansharpening techniques to fuse the hyperspectral and high spatial resolution multispectral (or RGB) data for each region [
19], or synthesizing a high-resolution image for each band in the hyperspectral data as a linear combination of the multispectral/RGB band images via linear regression [
20]. The subspace methods exploit the inherent spectral characteristics of hyperspectral data via a subspace spanned by a set of spectral signatures of the materials, the so-called endmembers, and consider the principle of spectral unmixing [
21,
22,
23,
24].
In our proposed approach, we enhance the resolution of the drill-core hyperspectral data by fusing high spatial resolution RGB data from the same drill-core sample. More specifically, we propose using subspace-based resolution enhancement methods because they preserve the spectral component in fusion better in comparison to pansharpening-based methods, and this is highly relevant for mineral mapping [
22]. This resolution enhancement allows for mapping minerals in drill-core hyperspectral data at a higher spatial resolution than traditional hyperspectral mineral mapping techniques. This enhancement fills the gap between the spatial resolution of detailed analytical analyses and hyperspectral data and, therefore, improves the identification of minerals and structural patterns in hyperspectral data that are hidden at the original resolution to a large extent. Moreover, highly detailed maps are important in the mining industry because only small portions of the drill-cores contain relevant mineralizations and vein structures. After enhancement of the hyperspectral sampling, we generate the reference data. The high-resolution mineralogical data are co-registered and resampled to the new high-resolution hyperspectral data following our strategy in [
13]. Another advantage of this method is that, if SEM-MLA data are available, once these have been co-registered, the number of training samples also increases in comparison to the method proposed in [
13] because of the enhanced spatial sampling, which is crucial for accurate machine learning estimations.
As expected, once the hyperspectral data have been enhanced, the amount of data considerably increases (i.e., 7.3 MB to 1.6 GB for one drill-core interval of ca. 30 cm). While the technique can be applied to large datasets, we present the hyperspectral data of three relevant drill-core samples of about 30 cm to showcase the approach. The hyperspectral data cover the VNIR–SWIR region of the electromagnetic spectrum with 450 bands.
The manuscript is organized into six sections:
Section 2 presents the proposed methodology for resolution enhancement for mineral mapping.
Section 3 describes the datasets used in this study, the parameter settings, and the application.
Section 4 describes the experimental results achieved.
Section 5 describes a critical assessment of this study, and finally, the conclusions are presented in
Section 6.
3. Case Study
We showcase the performance of our proposed methodology on three drill-core samples from the Bolcana copper–gold mineralized system located in the Brad-Sacaramb metallogenic district within the Golden Quadrilateral in South Apuseni Mountains, Romania. This is a porphyry-type Cu–Au ore deposit with associated epithermal veins [
32]. Hyperspectral data were acquired over the surface of these drill-cores, and small portions of them were subjected to the SEM-MLA analysis (see
Figure 2). In
Sample 1, the matrix is predominantly composed of white mica, and a large pyrite-gypsum vein is presented.
Sample 2 and
Sample 3 are composed of mainly feldspars with disseminated chlorite and biotite in the matrix at different proportions.
Sample 2 has minor chlorite, whereas
Sample 3 has less biotite.
Sample 2 presents fine pyrite and quartz veins, whereas
Sample 3 presents pyrite-gypsum veins and quartz veins. From these minerals only white mica, biotite, chlorite, and gypsum have diagnostic responses in the VNIR–SWIR wavelength range.
3.1. Data Acquisition
For the acquisition of data, a high-resolution RGB and a hyperspectral camera were mounted onto the SisuRock scanner manufactured by SPECIM (see
Figure 3a). The scanner is an automatic imaging workstation that carries the samples placed on a moving table under the field-of-view of the cameras. We used a Canon EOS 750D for high-resolution RGB data. This is a 24.2 megapixel digital SLR camera that produces high-resolution RGB images of about 0.1 mm ground sampling distance (GSD).
For the hyperspectral data, we used the SPECIM FENIX camera. This is a push-broom instrument that contains two sensors to cover the VNIR–SWIR regions of the electromagnetic spectrum, 380–970 nm and 970–2500 nm, respectively. The spectral resolution of the VNIR sensor is about 3.5 nm and that of the SWIR sensor is about 12 nm. The spectral binning was set to 4 for the VNIR and to 1 for the SWIR. The scanning speed was set to 25.06 mm/s, and the integration times were 15 ms and 4 ms for the VNIR and SWIR, respectively. The FENIX camera provides a co-register hyperspectral data cube of the VNIR–SWIR data with a total of 450 bands and a GSD of around 1.5 mm.
The radiance values of the hyperspectral data were automatically converted to reflectance values based on an empirical line correction with a dedicated plugin in the acquisition software provided by SPECIM. We also applied geometric corrections using the toolbox presented in [
33] to account for the sensor-specific optical distortions known as fish-eye and slit-bending effects. We removed the hyperspectral data from 380 to 538 nm and from 2486 to 2500 nm to avoid bands with low signal-to-noise ratio. Hence, the hyperspectral data we used for this work have a total of 400 bands.
The high-resolution mineralogical data were acquired using SEM-MLA with an FEI Quanta 650 F field emission SEM instrument, equipped with two Bruker Quantax X-Flash 5030 energy dispersive X-ray detectors and the MLA 3.1.4 software (see
Figure 3b). The acquisition was performed in GXMAP mode over carbon-coated polished thin sections of about 30 µm thickness from the drill-core samples. The GSD of the MLA images is about 3 µm. More details on the measurement mode are available in [
34,
35].
3.2. Resolution Enhancement Application
For the resolution enhancement of hyperspectral data using the CNMF algorithm, the number of endmembers can be set manually or can be determined automatically using virtual dimensionality (VD) [
36]. In this case, we opted for automatic estimation of the endmembers and set the false alarm rate of the VD to 0.05 to guarantee the detection of weak signal sources with small energies [
36]. The ratio between spatial sampling of the hyperspectral and RGB data is the enhancement factor (EF). The three samples used in this study have EFs ranging between 15 and 17. These factors are reasonable considering that one spectrum from the original hyperspectral dataset is used to determine the spectral content of only 225–289 pixels. With these EFs the spatial sampling of the hyperspectral data is decreased from about 1.5 mm to 0.1 mm. Mineral sizes vary from microns to millimeters in the rock samples considered. That implies that one pixel from the enhanced dataset is more likely to contain a single mineral (pure pixels).
The threshold we used to generate the training set from the resampled SEM-MLA data corresponds to around 2% of the total pixel area covered by the SEM-MLA. We chose this value by testing different options and by assessing for a meaningful number of minerals considering the GSD of the hyperspectral data. We also performed the mapping with the GSD of the original hyperspectral data to be able to evaluate the mapping improvement at the enhanced sampling. In this case, we set the same value for the threshold in resampling the SEM-MLA data.
We selected the number of training samples at 80% of the smallest class to avoid unbalanced classes. This step is necessary because, for example, the class
Others is highly abundant and mainly consists of mixtures of minerals without a diagnostic response in the VNIR–SWIR. The performance evaluation of the classifier is not a relevant point in this study but the actual mapping of enhanced sampling is. Additionally, one should be aware that using traditional metrics to evaluate an improvement in mapping for enhanced sampling is not completely appropriate since mapping at the original and enhanced GSD are two different classifications based on two different training sets. However, for the sake of transparency, we calculate the accuracies of the CCF algorithm when mapping at the original and enhanced resolutions. The number of samples in the validation set is chosen as 20% of the smallest class. We used the values suggested in the literature to tune the CCF algorithm [
30,
31] and used 500 trees for the classification because this number of trees has been shown to produce stable results when mapping minerals [
13].
The resolution enhancement in this study derives datasets in which a more precise delineation of elements is observed due to the finer spatial sampling of the hyperspectral data. For example, in the enhanced image of the area within the red square in
Figure 4, the total number of pixels corresponds to 345 × 345 whereas the original dataset for this area has 23 × 23 pixels. This increment depicts the elongated and linear features better and not only the thicker ones as in the original data. The relevance of this enhancement lies in the fact that these linear features correspond to veins that are highly important for geologists looking for indicators of ore mineralizations.
3.3. Evaluation of the Resolution Enhancement
We performed a sensitivity analysis to evaluate whether the spectral fidelity is preserved in the resolution enhancement. We used the spectral angle mapper (SAM) [
37], which is a widely used quality measure for quantitative fusion assessment. SAM is a common measure in the field of resolution enhancement for determining the spectral preservation at each pixel [
21,
25]. It determines the spectral similarity between two spectra, in this case, between the enhanced and reference spectra (original dataset), by calculating the angle between their vectors in the spectral space. For the enhancement, we used not only the original RGB data but also six extra datasets obtained by down-sampling the original RGB image to also assess the impact of the EF in the spectra. The EF of these datasets ranges from 3 to 13, and the total number of pixels varies from 69 × 69 to 345 × 345. We considered an average of 200 pixels for each dataset when calculating the spectral similarity to produce more sound results. The sensitivity analysis shows stable results with average values around 2.2 rad for all of the datasets generated with the different EF. The dataset with the closest sampling to the original hyperspectral data (EF of 3) and the one obtained with the original RGB data (EF 15) are the ones presenting slightly lower values (see the plot at the bottom right of
Figure 5). The sensitivity analysis shows that the reconstruction step captures the main absorption features and general shape of the spectra in the enhancement process. This can be also observed in the plot at the bottom left of
Figure 5 where the only apparent difference is visible in the reflectance intensity for all of the enhanced data. These spectra correspond to the center pixels marked with the red dots in the hyperspectral images (HSI) and MLA image overlaid on the RGB of the section of interest from
Sample 2 shown at the top of the figure. When using hyperspectral data to map minerals, the absorption features are crucial for proper identification of the present minerals. Based on the wavelength location of the main absorption features of the spectra shown in
Figure 5, these show a dominant presence of biotite.
5. Discussion
In this work, we propose a methodology to map minerals in drill-core hyperspectral data at a high-spatial resolution by fusing hyperspectral and high-spatial resolution RGB data. We propose the use of the established CNMF algorithm, which is a subspace-based resolution enhancement technique. We performed a sensitivity analysis over 200 randomly selected pixels to evaluate the spectral integrity after the enhancement process. This sensitivity analysis provides a direct assessment of the impact in the spectra of the resolution enhancement process and evaluates whether the spectra have been preserved or artifacts were added. For this, we used various enhanced hyperspectral datasets obtained with different resolution enhancement factors. The RGB images used for the enhancement of these datasets were generated from the original RGB after a down-sampling step and not acquired with different RGB cameras at different spatial samplings. This sensitivity analysis shows that the spectra are well preserved and that only a general change in the reflectance intensity is observed, which could be due to the involvement of the abundance matrix derived from the RGB data in the process of generating the enhanced data. The fact that the RGB data only have three spectral channels in the visible range of the electromagnetic spectrum (blue, green, and red) has an impact on the general reflectance intensity. This is because the fusion of hyperspectral and multispectral data is usually an ill-posed problem, and when the difference in the spatial sampling of both data sets is large and RGB data (three spectral channels) are used as the multispectral data, unmixing of the RGB data results in a severely ill-posed problem.
The preservation of the spectra is highlighted by the mostly constant values in the spectral similarity measure results. We expected a slight decrease in the measure when using the EF of 15 since this is the one obtained from the original RGB data. The evaluation of the spectral preservation is also possible by looking at the characteristics of the absorption features (wavelength position and depth) with the minimum wavelength maps (
Figure 6). These initial mineral maps preserve the spatial coherence and do not show any random mapping. The high-spatial resolution minimum wavelength maps clearly highlight the advantages and impact of the enhancement when mapping minerals by better depicting the mineral distribution patterns and showing narrower and more delineated veins. This difference in the mapped veins is highlighted, for example, in the first vertical vein at the bottom left part of
Sample 3 at the original resolution. In the map derived from the enhanced HSI, this vein is not mapped as intense as with the original HSI. This is due to the refinement of the spatial distribution of the different spectrally distinct mineral phases during the unmixing process involved in the resolution enhancement step since the presence of white mica is what accentuates this vein in the original HSI.
In this work, we also integrated the enhanced hyperspectral data with SEM-MLA data to map minerals in a supervised manner. The SEM-MLA maps, resampled at both the original and the enhanced hyperspectral resolutions, show that the enhancement allows for the identification and mapping of minerals that are hidden in the original hyperspectral data. For example, the disseminated biotite and chlorite are mapped in the matrix of the SEM-MLA map at the enhanced sampling (see
Figure 7). Unraveling the spectra of the objects mapped at the enhanced resolution is, however, still dependent on the scale of the mixtures. Although CNMF operates on a subspace of dimensions given by the number of endmembers determined in the unmixing process within the resolution enhancement, if the intrinsic mixtures of minerals in the sample are at a finer scale than that resolved by the fusion of the RGB and hyperspectral data, mixtures are still observed at the enhanced resolution.
The resolution enhancement step in the supervised mapping of drill-core hyperspectral data not only helps to obtain greater details of the matrix and veins in the cores but also makes it possible to achieve a more explicit identification of the minerals present in the samples. This is because each pixel is assigned a single label when using a hard classifier such as CCF and, therefore, minor components are lost in the mapping. With the increase in GSD in the hyperspectral data, these minor components can now be mapped. This can be observed in the mineral maps we obtained with our proposed supervised mapping (see
Figure 9). The use of the extra class
Others avoids overestimation of the minerals with a diagnostic response in the VNIR–SWIR and allows for a more accurate representation of the alteration patterns. If hyperspectral data in the long-wave infrared region of the electromagnetic spectrum are available for these samples, it would be possible to fuse the almost full range and, therefore, all of the minerals identified in the SEM-MLA analysis could be used instead of the class
Others. This supervised mapping is highly influenced by the quality of the co-registration between the SEM-MLA and the hyperspectral data. To simplify the co-registration, regions where thin sections for SEM-MLA analysis are performed could be marked in the drill-core samples before acquiring the hyperspectral data. In another strategy, the SEM-MLA could be performed in thick sections that can be scanned again with the hyperspectral sensors after removing the carbon coating.
Finally, we performed an accuracy assessment to evaluate the performance of the CCF ensemble classifier when mapping at the original and enhanced resolutions. We built the validation set per class using a number equal to 20% of the total amount of samples in the smallest class. We expected low values for the accuracies due to the configuration of the validation set. These accuracies, however, demonstrate the good performance of the CCF algorithm, which can be explained by the fact that CCF is an algorithm that performs a split between the classes after being implemented in the feature projections found by the canonical correlation analysis. The higher values of the accuracy when using the original hyperspectral data could be due to the fact that original data are highly mixed, and although we performed an enhancement that involves several unmixing steps, this resultant enhancement is basically spatial and sharpens the mapping, meaning that we increased the number of pixels but some of the obtained pixels still remain mixed. Therefore, in the enhanced data, the number of mixed pixels increases in comparison to the original data, causing a small drop in the accuracies since the calculation is performed for their respective resampled training data. However, a direct comparison of the two classifications based on merely accuracies is not convenient since each of them have their specific training and validation sets. The quantitative analysis we performed to evaluate the improvement of the mapping quality highlights how that the data enhancement step aids in reducing the gap between the difference in resolution in both SEM-MLA and hyperspectral data. This in turn allows for preserving the high-resolution mineralogical information from the original SEM-MLA data with an average percentage of 98 as presented in
Section 3.2 and
Figure 10. The enhancement helps improve the quality of the mapping also due to the better training data; for example, linear features are better delineated at the enhanced resolution, as can be seen with the mapping and refinement of the thin veins in
Sample 1 and
Sample 2 (see
Figure 8).
Implementing resolution enhancement techniques to map minerals in drill-core hyperspectral data allows for the identification of minerals and spatial patterns with hyperspectral data at a higher spatial resolution than traditional mineral mapping techniques performed over the original hyperspectral data. Although the most relevant factor for mineral detection over drill-cores is the spectral quality, including detailed spatial information is highly relevant to better delineate veins, alteration halos, and mineral grains. Having a detailed mapping of such structures enables, for example, the definition of proxies towards mineralization by using the vein composition and orientation and by assessing the stage of alteration. This work was showcased over three drill-core samples; however, the technique can be applied to large datasets as long as the data are co-registered and sufficient storage is available. It is important to highlight storage as the data volume considerably increases when enhancing the spatial resolution of hyperspectral data. As an example, hyperspectral data of 103 bands for 1 meter of drill-core consists of pixels and takes about 22 MB. The enhanced hyperspectral data of such sample consists of pixels and takes around 4.8 GB. This implies that, for an operational environment where, for example, 5 km of cores are drilled, an average of 24 TB is required for storage. However, the resolution enhancement could be used as an intermediate step and only the subsequent mineral/classified maps or abundance estimates at high-spatial resolution could be stored, considerably reducing the amount of data.
6. Conclusions
In this work, we presented a high-spatial resolution mineral mapping approach for drill-core hyperspectral data. We proposed performing an enhancement of the drill-core hyperspectral data using the coupled non-negative matrix factorization (CNMF) algorithm together with high-spatial resolution RGB data. The initial mineral maps highlight that improving the spatial sampling of the hyperspectral data results in a better distribution of the mineral patterns and better delineation of the depicted features, such as veins and mineral grains.
We combined the high-spatial resolution hyperspectral data with high-resolution mineralogical data obtained with the scanning electron microscopy-based mineral liberation analysis (SEM-MLA) to fully explore the possibilities of the resolution enhancement and map minerals in a supervised manner. The enhancement reduces the gap in the spatial sampling between the SEM-MLA and hyperspectral data and allows for a more meaningful synergy between both datasets. Our obtained results show that the mapping not only improved spatially by allowing for the identification of more structures and details (i.e., veins and mineral grains in the matrix of the samples) but also allowed mapping minerals that are hidden at the original resolution of the hyperspectral data. The use of SEM-MLA analysis as reference or training data for a high-spatial resolution supervised characterization of the drill-core hyperspectral data represents a valuable tool for a more automatic upscaling of validated mineralogical information and is beneficial for mapping regions of interest with high detail. This resolution enhancement approach improves the mapping of minerals in drill-core hyperspectral data to a level of detail that is favorable in supporting mining companies in their decision-making.
The implementation of the resolution enhancement approach on larger sections such as full bore-holes can be challenging due to the relevant increment in the size of the enhanced data. Additionally, it has been shown in the literature that the performance of the resolution enhancement algorithms reduces once the data is linearly transformed or the dimensionality is reduced, especially when fusing hyperspectral with RGB data (three spectral channels).
In future research, we would like to investigate in detail the impact of more advanced machine learning classifiers not only in mapping but also in the accuracies. Moreover, we will investigate the performance of resolution enhancement algorithms for mineral mapping when fusing hyperspectral data covering the electromagnetic spectrum from the visible-near infrared to the long-wave infrared spectra where more minerals can be identified.