Mountain Landscape Dynamics after Large Wind and Bark Beetle Disasters and Subsequent Logging—Case Studies from the Carpathians
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data
2.3. Land Cover Interpretation
3. Results
3.1. Land Cover Changes of the National Parks (1:100,000)
3.1.1. Land Cover Changes between 2000 and 2018 in TANAP
3.1.2. Land Cover Changes between 2000 and 2018 in NAPALT
3.2. Changes in the Land Cover of Selected Areas at a Scale of 1: 10,000
3.2.1. Vicinity of Tatranská Lomnica (TANAP)
3.2.2. Surroundings of Čertovica (NAPALT)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seidl, R.; Schelhaas, M.J.J.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 2014, 4, 806–810. [Google Scholar] [CrossRef] [Green Version]
- Pickett, S.T.A.; White, P.S. (Eds.) The Ecology of Natural Disturbance and Patch Dynamics; AcademicPress: New York, NY, USA, 1985. [Google Scholar]
- Krejci, L.; Kolejka, J.; Vozenilek, V.; Machar, I. Application of GIS to Empirical Windthrow Risk Model in Mountain Forested Landscape. Forests 2018, 9, 96. [Google Scholar] [CrossRef] [Green Version]
- Falťan, V.; Katina, S.; Minár, J.; Polčák, N.; Bánovský, M.; Maretta, M.; Zámečník, S.; Petrovič, F. Evaluation of abiotic controls on windthrow disturbance using a generalized additive model: A case study of the Tatra National Park, Slovakia. Forests 2020, 11, 1259. [Google Scholar] [CrossRef]
- Čada, V.; Morrissey, R.C.; Michalová, Z.; Bače, R.; Janda, P.; Svoboda, M. Frequent severe natural disturbances and non-equilibrium landscape dynamics shaped the mountain spruce forest in central Europe. Forest Ecol. Manag. 2016, 363, 169–178. [Google Scholar] [CrossRef]
- Hais, M.; Wild, J.; Berec, L.; Bruna, J.; Kennedy, R.; Braaten, J.; Brož, Z. Landsat Imagery Special Trajectories—Important Variables for Spatially Predicting the Risks of Bark Beetle Disturbance. Remote Sens. 2016, 8, 687. [Google Scholar] [CrossRef] [Green Version]
- Lausch, A.; Fahse, L.; Heurich, M. Factors affecting the spatio-temporal dispersion of Ips typographus (L.) in Bavarian Forest National Park: A long-term quantitative landscape-level analysis. Forest Ecol. Manag. 2011, 261, 233–245. [Google Scholar] [CrossRef]
- Jakuš, R.; Blaženec, M.; Gurtsev, A.; Holuša, J.; Hroššo, B.; Křenová, Z.; Longauerová, V.; Lukášová, K.; Majdák, A.; Mezei, P.; et al. Princípy ochrany dospelých smrekových porastov pred podkôrnym hmyzom; Ústav ekológie lesa Slovenskej akadémie vied: Zvolen, Slovakia, 2015. [Google Scholar]
- Hais, M.; Jonášová, M.; Langhammer, J.; Kučera, T. Comparision of two types of forest disturbance using multitemporal Landsat TM/ETM+ imagery and field vegetation data. Remote Sens. Environ. 2009, 113, 835–845. [Google Scholar] [CrossRef]
- Lastovička, J.; Švec, P.; Paluba, D.; Kobliuk, N.; Svoboda, J.; Hladký, R.; Stych, P. Sentinel-2 Data in an Evaluation of the Impact of the Disturbances on Forest Vegetation. Remote Sens. 2020, 12, 1914. [Google Scholar] [CrossRef]
- Stych, P.; Lastovička, J.; Hladký, R.; Paluba, D. Evaluation of the Influence of Disturbances on Forest Vegetation Using the Time Series of Landsat Data: A Comparision Study of the Low Tatras and Sumava National Parks. Int. J. Geo-Inf. 2019, 8, 71. [Google Scholar] [CrossRef] [Green Version]
- Koreň, M.; Barka, I.; Jakuš, R.; Holluša, J. Assessment of Machine Learning Algorithms for Modeling the Spatial Distribution of Bark Beetle Infestation. Forests 2021, 12, 395. [Google Scholar] [CrossRef]
- Sommerfeld, A.; Rammer, W.; Heurich, M.; Hilmers, T.; Müller, J.; Seidl, R. Do bark beetle outbreaks amplify or dampen future bark beetle disturbances in Central Europe? J. Ecol. 2020, 109, 3. [Google Scholar]
- Falťan, V.; Petrovič, F.; Oťaheľ, J.; Feranec, J.; Druga, M.; Hruška, M.; Nováček, J.; Solár, V.; Mechurová, V. Comparison of CORINE Land Cover data with National statistics and the possibility to record this data on a local scale-case studies from Slovakia. Remote Sens. 2020, 12, 2484. [Google Scholar] [CrossRef]
- Heymann, Y.; Steenmans, C.; Crossille, G.; Bossard, M. CORINE Land Cover: Technical Guide; Office for Official Publications of the European Communities: Luxembourg, Luxembourg, 1994. [Google Scholar]
- Bossard, M.; Feranec, J.; Ot’ahel’, J. CORINE Land Cover Technical Guide-Addendum 2000; EEA: Copenhagen, Denmark, 2000. [Google Scholar]
- Feranec, J.; Soukup, T. Interpretation of satelite data. In European Landscape Dynamics: CORINE Land Cover Data; Feranec, J., Soukup, T., Hazeu, G., Jarain, G., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 33–40. [Google Scholar]
- Falt’an, V.; Ot’ahel’, J.; Gábor, M.; Ružek, I. Metódy Výskumu Krajinnej Pokrývky (Methods of Land Cover Research); Comenius University: Bratislava, Slovakia, 2018. [Google Scholar]
- United Nations Educational, Scientific and Cultural Organization (UNESCO). Madrid Action Plan for Biosphere Reserves (2008–2013). Available online: http://unesdoc.unesco.org/images/0016/001633/163301e.pdf (accessed on 26 June 2017).
- United Nations Educational, Scientific and Cultural Organization (UNESCO). Biosphere Reserves: The Seville Strategy and the Statutory Framework of the World Network. Available online: http://unesdoc.unesco.org/images/0010/001038/103849Eb.pdf (accessed on 5 May 2021).
- Ishwaran, N.; Persic, A.; Tri, N.H. Concept and practice: The case of UNESCO biosphere reserves. Int. J. Environ. Sustain. Dev. 2008, 7, 118–131. [Google Scholar] [CrossRef]
- López, L.; Rubio, M.C.; Rodríguez, D. The role of scientists at the human-nature interface on MaB protected areas. Cuad. Geográficos 2021, 60, 263–278. [Google Scholar]
- Poikolainen, L.; Pinto, G.; Vihervaara, P.; Burkhard, B.; Wolff, F.; Hyytiäinen, R.; Kumpula, T. GIS and land cover-based assessment of ecosystem services in the North Karelia Biosphere Reserve, Finland. Fennia 2019, 197, 1–19. [Google Scholar] [CrossRef]
- Bridgewater, P. The Man and Biosphere programme of UNESCO: Rambunctious child of the sixties, but was the promise fulfilled? Curr. Opin. Environ. Sustain. 2016, 19, 1–6. [Google Scholar] [CrossRef]
- Von Thaden, J.J.; Laborde, J.; Guevara, S.; Mokondoko-Delgadillo, P. Dynamics of land use and land cover change in the Los Tuxtlas Biosphere Reserve (2006–2016). Rev. Mex Biodivers 2020, 91, e913190. [Google Scholar] [CrossRef]
- Fianko, J.R.; Dodd, H.S. Investigation of the factors that contribute to degradation of Songor Ramsar and UNESCO Man and Biosphere Reserve in Ghana. West Afr. J. Appl. Ecol. 2019, 27, 126–136. [Google Scholar]
- Masný, M.; Zaušková, Ľ. The abandonment of agricultural land: A case study of Strelníky, (The Pol’ana biosphere reserve-Slovakia). Carpathian J. Earth Environ. Sci. 2014, 9, 17–24. [Google Scholar]
- Masný, M.; Weis, K.; Boltižiar, M. Agricultural Abandonment in Chosen Terrain Attributes Context-Case Study from the Polana Unesco Biosphere Reserve (Central Slovakia). Ekol Bratislava 2017, 36, 339–351. [Google Scholar] [CrossRef] [Green Version]
- Olah, B. Potential for the sustainable land use of the cultural landscape based on its historical use (a model study of the transition zone of the Pol’ana Biosphere Reserve). Ekol Bratislava 2003, 22, 79–91. [Google Scholar]
- Olah, B.; Boltižiar, M.; Petrovič, F. Land use changes relation to georelief and distance in the East Carpathians Biosphere Reserve. Ekol Bratislava 2006, 25, 68–81. [Google Scholar]
- Olah, B.; Boltiziar, M. Land use changes within the slovak biosphere reserves’ zones. Ekol Bratislava. 2009, 28, 127–142. [Google Scholar] [CrossRef] [Green Version]
- Winkler, J.K. The implementation of the conceptual shift in conservation: Pathways of three German UNESCO biosphere reserves. Ecosyst. People 2019, 15, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Štátny zoznam osobitne chránených častí prírody SR. Národná prírodná rezervácia Studené doliny. Available online: https://old.uzemia.enviroportal.sk/main/detail/cislo/756 (accessed on 7 May 2021).
- Tatra National Park. Tatra National Park–Basic Information. Available online: https://zpppn.pl/tatra-national-park-en/park (accessed on 7 May 2021).
- Žoncová, M.; Hronček, P.; Gregorová, B. Mapping of the Land Cover Changes in High Mountains of Western Carpathians between 1990–2018: Case Study of the Low Tatras National Park (Slovakia). Land 2020, 9, 483. [Google Scholar] [CrossRef]
- Ot’ahel’, J.; Feranec, J.; Kopecká, M.; Falt’an, V. Modification of the CORINE Land Cover method and the nomenclature for identification and inventorying of land cover classes at a scale of 1:10 000 based on case studies conducted in the territory of Slovakia. Geogr. Čas. 2017, 69, 189–224. [Google Scholar]
- Feranec, J.; Jaffrain, G.; Soukup, J.; Hazeu, G.W. Determining changes and flows in European landscapes 1990–2000 using CORINE land cover data. Appl. Geogr. 2010, 30, 19. [Google Scholar] [CrossRef]
- Jonášová, M.; Vávrová, E.; Cudlín, P. Western Carpathian mountain spruce forests after a windthrow: Natural regeneration in cleared and uncleared area. For. Ecol. Manag. 2010, 259, 1127–1134. [Google Scholar] [CrossRef]
- Hroššo, B.; Mezei, P.; Potterf, M.; Majdák, A.; Blaženec, M.; Korolyová, M.; Jakuš, R. Drivers of Spruce Bark Beetle (Ips typographus) Infestations on Downed Trees after Severe Windthrow. Forests 2020, 11, 1290. [Google Scholar] [CrossRef]
- Stych, P.; Jerabkova, B.; Lastovicka, J.; Riedl, M.; Paluba, D. A Comparision of WorldView-2 and Landsat 8 Images for the Classification of Forests Affected by Bark Beetle Outbreaks Using a Support Vector Machine and a Neural Network: A Case Study in the Sumava Mountains. Geosci. J. 2019, 9, 396. [Google Scholar] [CrossRef] [Green Version]
- Hlásny, T.; Zimová, S.; Merganičová, K.; Štěpánek, P.; Modlinger, R.; Turčáni, M. Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. For Ecol Manag. 2021, 490. [Google Scholar]
- Mezei, P.; Grodski, W.; Blaženec, M.; Jakuš, R. Factors influencing the wind-bark beetles disturbance system in the course of an Ips typhographus outbreak in the Tatra Mountains. For. Ecol. Manag. 2014, 312, 67–77. [Google Scholar] [CrossRef]
- Janík, T.; Romportl, D. Recent land cover change after the Kyrill windstorm in Šumava NP. Appl Geogr. 2018, 97, 196–211. [Google Scholar] [CrossRef]
- Blaženec, M.; Potterf, M.; Jakuš, R.; Mezei, P.; Baláž, P. Analýza vzťahu medzi chránenými územiami s bezzásahovým režimom a rozpadom smrekových porastov v ich okolí; Ústav ekológie lesa Slovenskej akadémie vied, Štátna ochrana prírody SR: Zvolen, Slovakia, 2018. [Google Scholar]
- Nováková, M.H.; Jonášová, M.E. Restoration of Central-European mountain Norway spruce forest 15 years after natural and anthropogenetic disturbance. For. Ecol. Manag. 2015, 344, 120–130. [Google Scholar] [CrossRef]
- Koreň, M.; Fleischer, P.; Šoltés, R. Vyhodnotenie monitoringu zdravotného stavu lesov TANAP-u k 31.12.1992; Správa TANAP-u: Tatranská Lomnica, Slovakia, 1993. [Google Scholar]
- Falťan, V.; Bánovský, M.; Jančuška, D.; Saksa, M. Zmeny krajinnej pokrývky úpätia Vysokých Tatier po veternej kalamite; Geografika: Bratislava, Slovakia, 2008. [Google Scholar]
- Solár, J.; Solár, V. Land-cover change in the Tatra Mountains, with a particular focus on vegetation. J. Prot. Mt. Areas Res. Manag. 2020, 12, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Roessiger, J.; Kulla, L.; Sedliak, M. A high proportion of Norway spruce in mixed stands increases probability of stand failure. Cent. Eur. For. J. 2020, 4, 218–226. [Google Scholar]
- Kunca, A.; Galko, J.; Zúbrik, M. Významné kalamity v lesoch Slovenska za posledných 50 rokov, Aktuálne problémy v ochrane lesa 2014, Nový Smokovec, Slovakia, 23.-24.4.2014; National Forestry Center: Zvolen, Slovakia, 2014. [Google Scholar]
- Hladký, R.; Lastovička, J.; Holman, L.; Stych, P. Evaluation of the influence of disturbances on forest vegetation using Landsat time series; a case study of the Low Tatras National Park. Eur. J. Remote Sens. 2020, 1, 40–66. [Google Scholar] [CrossRef] [Green Version]
Dataset | Year of Acquisition | Spatial Resolution | Source | Format |
---|---|---|---|---|
CLC2000 | 2000 +/− 1 year | ≤25 m | Landsat-7 ETM | vector |
CLC2006 | 2006 +/− 1 year | ≤25 m | SPOT-4/5, IRS P6 LISS III | vector |
CLC2012 | 2012 +/− 1 year | ≤25 m | IRS P6 LISS III, RapidEye | vector |
CLC2018 | 2018 +/− 1 year | ≤10 m (Sentinel-2) | Sentinel-2, Landsat-8 | vector |
Dataset | Year of Acquisition | Spatial Resolution | Source | Format |
---|---|---|---|---|
Digital vegetation ortophotomap RGB | 2002–2003 | 50 cm | Eurosense | TIFF |
Digital vegetation ortophotomap RGB | 2006–2007 | 50 cm | Eurosense | TIFF |
Digital vegetation ortophotomap RGB | 2009–2010 | 25 cm | Eurosense | TIFF |
Digital vegetation ortophotomap RGB | 2012–2013 | 25 cm | Eurosense | TIFF |
Ortophoto mosaic of Slovakia | 2018–2019 | 20 cm | NLC, GKÚ | TIFF |
CLC3-Change | Tatra National Park | |||||
---|---|---|---|---|---|---|
National Park [ha] | Buffer Zone [ha] | |||||
2000–2006 | 2006–2012 | 2012–2018 | 2000–2006 | 2006–2012 | 2012–2018 | |
142–324 | 10.71 | - | - | - | - | - |
231–324 | 1.01 | - | - | 248.96 | 25.76 | - |
312–324 | 10,334.66 | 5300.54 | 2906.25 | 1372.78 | 697.98 | 795.21 |
313–324 | 201.57 | 23.41 | 62.18 | 7.49 | - | 15.09 |
322–324 | - | 8.22 | - | - | 0.05 | - |
324–142 | - | 77.54 | - | - | - | - |
324–231 | 0.40 | - | - | 31.64 | - | - |
324–243 | - | - | - | 5.41 | - | - |
324–312 | 353.77 | 560.59 | 12,055.30 | 414.96 | 703.12 | 1467.16 |
324–313 | 28.37 | 272.49 | 96.44 | 0.24 | 84.91 | 27.03 |
324–321 | 41.63 | - | - | - | - | - |
324–322 | 215.27 | - | - | 0.06 | - | - |
Total change | 11,187.38 | 6242.79 | 15,120.16 | 2081.53 | 1511.81 | 2304.49 |
CLC3-Change | National Park Low Tatras | |||||
---|---|---|---|---|---|---|
National Park [ha] | Buffer Zone [ha] | |||||
2000–2006 | 2006–2012 | 2012–2018 | 2000–2006 | 2006–2012 | 2012–2018 | |
131–324 | - | - | - | 37.81 | - | - |
231–324 | 82.14 | - | - | 151.54 | 89.42 | 42.44 |
243–324 | - | - | - | - | 35.49 | - |
311–324 | 5.37 | - | - | 6.51 | - | 18.06 |
312–324 | 1775.85 | 6141.76 | 2615.09 | 2073.20 | 2825.12 | 1057.97 |
313–324 | 89.16 | 175.68 | - | 594.81 | 195.41 | 85.69 |
321–324 | 80.09 | 195.85 | - | - | 0.58 | - |
333–324 | 28.88 | - | - | - | - | - |
324–112 | - | - | - | 10.69 | - | - |
324–231 | - | - | - | 82.92 | - | - |
324–243 | - | - | - | 107.49 | - | - |
324–311 | - | 14.50 | - | 456.42 | 398.65 | 27.,73 |
324–312 | 1332.55 | 1818.54 | 34.82 | 1485.83 | 941.10 | 105.17 |
324–313 | 258.31 | 463.78 | 39.66 | 1811.65 | 1503.47 | 329.58 |
324–322 | - | 126.93 | - | - | - | - |
Total change | 3652.35 | 8937.04 | 2689.57 | 6818.87 | 5989.26 | 1666.63 |
CLC5 | Area (ha) | ||||
---|---|---|---|---|---|
2002 | 2006 | 2009 | 2012 | 2018 | |
12213 | 0.35 | 1.85 | 2.99 | 3.89 | 4.63 |
31210 | 383.34 | 238.18 | 73.25 | 61.92 | 121.08 |
31220 | 1.88 | 4.04 | 4.71 | 8.61 | 35.08 |
31310 | 3.56 | 0 | 0 | 0 | 0 |
32251 | 5.53 | 6.19 | 7.98 | 6.74 | 1.59 |
32411 | 1.29 | 42.79 | 28.55 | 52.79 | 25.56 |
32412 | 0 | 7.89 | 35.65 | 19.38 | 24.36 |
32413 | 0 | 0 | 3.74 | 3.22 | 7.87 |
32420 | 0.87 | 1.61 | 1.84 | 14.53 | 97.48 |
32440 | 0 | 0 | 0.31 | 14.63 | 19.26 |
32441 | 0.49 | 18.49 | 154.36 | 94.71 | 18.86 |
32442 | 0 | 76.29 | 83.96 | 116.89 | 41.51 |
51110 | 2.69 | 2.67 | 2.66 | 2.69 | 2.71 |
Total area | 400 | 400 | 400 | 400 | 400 |
Land Cover Flow | Area of Changes (ha)—NW Tatranská Lomnica | |||||
---|---|---|---|---|---|---|
Detailed Description of Changes (CLC5 Codes) | 2002–2006 | 2006–2009 | 2009–2012 | 2012–2019 | 2002–2019 | |
no change | 25,057 | 222.16 | 261.55 | 111.69 | 159.24 | |
deforestation | all classes—>12213 | 1.52 | 1.42 | 2.51 | 1.62 | 4.31 |
31210. 31220. 31310—>32411. 32412. 32413 | 49.93 | 17.74 | 4.47 | 2.91 | 57.43 | |
32440. 32441. 32442—>32411. 32412. 32413 | 0.29 | 1.29 | 10.70 | 41.68 | 0.02 | |
3xxxx—>32442 | 76.22 | 2.74 | 1.93 | 3.77 | 41.51 | |
3xxxx—>32441 | 18.49 | 144.10 | 24.89 | 4.31 | 19.18 | |
32441—>32442 | 0.08 | 7.89 | 43.51 | 14.55 | 0.004 | |
all classes—>32440 | 0 | 0.311 | 0 | 1.54 | 19.22 | |
32442—>32441 | 0 | 0.53 | 14.29 | 26.73 | 0.04 | |
312xx—>32420 | 1.35 | 0.23 | 0.42 | 3.95 | 96.96 | |
total deforestation | 147.87 | 176.25 | 102.71 | 101.07 | 238.67 | |
afforestation | 12213—>all classes | 0 | 0 | 0.69 | 0.65 | 0 |
3241x—>32420. 31210. 31,220. 31330 | 1.56 | 0.95 | 8.62 | 72.86 | 1.68 | |
3244x—>32412. 32413. 31220 | 0 | 0.64 | 18.87 | 63.06 | 0.15 | |
3244x—>32420 | 0 | 0 | 7.57 | 50.67 | 0.25 | |
total afforestation | 1.56 | 1.59 | 35.74 | 187.24 | 2.09 |
CLC5 | Area (ha) | ||||
---|---|---|---|---|---|
2002 | 2006 | 2009 | 2012 | 2018 | |
11221 | 1.31 | 1.31 | 1.31 | 1.49 | 1.30 |
12212 | 3.39 | 3.98 | 3.94 | 4.12 | 4.25 |
12213 | 2.04 | 3.05 | 3.96 | 6.01 | 5.04 |
12231 | 0 | 0 | 0 | 0.47 | 1.16 |
14211 | 0.91 | 0.96 | 0.89 | 1.01 | 0.83 |
14221 | 0.58 | 0.58 | 0.58 | 1.35 | 0.63 |
14222 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
23110 | 19.11 | 19.19 | 15.67 | 13.61 | 14.33 |
23120 | 26.86 | 13.16 | 9.72 | 8.88 | 6.53 |
31210 | 257.27 | 223.11 | 147.16 | 84.64 | 82.56 |
31220 | 14.25 | 22.41 | 14.30 | 7.29 | 16.37 |
31310 | 26.52 | 22.99 | 21.36 | 14.58 | 17.53 |
31320 | 1.99 | 2.49 | 2.49 | 2.01 | 3.93 |
32111 | 6.73 | 5.34 | 5.38 | 5.18 | 5.95 |
32122 | 5.28 | 7.79 | 10.62 | 5.61 | 5.45 |
32251 | 13.86 | 14.38 | 13.35 | 13.35 | 13.35 |
32411 | 8.38 | 35.51 | 55.05 | 167.64 | 123.32 |
32412 | 1.99 | 2.55 | 5.63 | 12.06 | 10.95 |
32413 | 0 | 2.29 | 1.59 | 6.73 | 0.36 |
32420 | 7.50 | 7.19 | 10.36 | 14.91 | 79.37 |
32441 | 0 | 3.32 | 65.64 | 16.94 | 6.18 |
32442 | 1.27 | 8.04 | 9.10 | 10.80 | 0.26 |
33130 | 0.41 | 0 | 1.55 | 0.98 | 0 |
Total area | 4000 | 400 | 400 | 400 | 400 |
Land Cover Flow | Detailed Description of Changes (CLC5 Codes) | Area of Changes (ha) | ||||
---|---|---|---|---|---|---|
2002–2006 | 2006–2009 | 2009–2012 | 2012–2018 | 2002–2018 | ||
no change | 330.07 | 279.66 | 208.95 | 285.79 | 153.37 | |
deforestation | all classes—>12213 | 1.69 | 1.25 | 4.91 | 1.13 | 4.47 |
31210. 31220. 31310—>32411. 32412. 32413 | 31.29 | 21.52 | 81.42 | 4.48 | 124.52 | |
32440. 32441. 32442—>32411 | 0.32 | 3.95 | 45.01 | 8.23 | 0.75 | |
3xxxx—>32442 | 7.78 | 6.23 | 4.75 | 0 | 0 | |
3xxxx—>32441 | 3.07 | 60.91 | 4.79 | 1.19 | 6.18 | |
32441—>32442 | 0 | 0.55 | 3.92 | 0 | 0 | |
32442—>32441 | 0.25 | 3.11 | 0.29 | 0.27 | 0 | |
31210. 31220—>32420 | 0.02 | 2.21 | 1.41 | 2.51 | 69.03 | |
3xxxx—>231xx | 2.46 | 2.79 | 5.13 | 5.53 | 1.87 | |
23120—>3241x | 0.51 | 3.44 | 5.69 | 2.09 | 8.87 | |
total deforestation | 47.41 | 105.94 | 157.32 | 25.42 | 215.68 | |
afforestation | 12213—>3xxxx | 0.04 | 2.14 | 0.71 | 3.27 | 0.59 |
3241x—>32420. 31210. 31220. 31330 | 22.04 | 11.01 | 22.52 | 71.25 | 30.16 | |
32442. 32441. 32440—>32412. 32413. 31220 | 0.44 | 1.25 | 8.24 | 8.91 | 0.18 | |
32442. 32441. 32440—>32420 | 0 | 0 | 2.26 | 5.36 | 0.02 | |
total afforestation | 22.52 | 14.40 | 33.73 | 88.79 | 30.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falťan, V.; Petrovič, F.; Gábor, M.; Šagát, V.; Hruška, M. Mountain Landscape Dynamics after Large Wind and Bark Beetle Disasters and Subsequent Logging—Case Studies from the Carpathians. Remote Sens. 2021, 13, 3873. https://doi.org/10.3390/rs13193873
Falťan V, Petrovič F, Gábor M, Šagát V, Hruška M. Mountain Landscape Dynamics after Large Wind and Bark Beetle Disasters and Subsequent Logging—Case Studies from the Carpathians. Remote Sensing. 2021; 13(19):3873. https://doi.org/10.3390/rs13193873
Chicago/Turabian StyleFalťan, Vladimír, František Petrovič, Marián Gábor, Vladimír Šagát, and Matej Hruška. 2021. "Mountain Landscape Dynamics after Large Wind and Bark Beetle Disasters and Subsequent Logging—Case Studies from the Carpathians" Remote Sensing 13, no. 19: 3873. https://doi.org/10.3390/rs13193873
APA StyleFalťan, V., Petrovič, F., Gábor, M., Šagát, V., & Hruška, M. (2021). Mountain Landscape Dynamics after Large Wind and Bark Beetle Disasters and Subsequent Logging—Case Studies from the Carpathians. Remote Sensing, 13(19), 3873. https://doi.org/10.3390/rs13193873