Societal Implications of Forest and Water Body Area Evolution in Czechia and Selected Regions
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Data Selection, Acquisition and Preprocessing
2.2.1. Forest Cover and Water Bodies
2.2.2. Water Quality
2.2.3. Instruments on Water Pollution Abatement and Control
2.2.4. Public Perception
2.2.5. Data Analysis
3. Results
3.1. Forest Cover and Water Bodies Area at National Level
Forest Cover and Water Bodies in the Case Study Areas
3.2. Water Quality
3.3. Policy Instruments on Wastewater Management
3.4. Public Perception
4. Discussion
4.1. Forest and Water Area Evolution in the Czech Republic
4.2. Forest–Water Interaction and Public Perception
4.3. Water Quality–Instruments Interaction and Public Perception
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; Groot, R.; Farber, S.; Grasso, M.; Hannon, G.; Limburg, K.; Naeem, S.; O’Neill, R.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- European Commission; University of the West of England (UWE). Science for Environment Policy. In-Depth Report. Ecosystem Services and Biodiversity; Publications Office: Bristol, UK, 2015; ISBN 978-92-79-45725-8. [Google Scholar]
- Ciscar, J.-C.; Soria, A.; Goodess, C.M.; Christensen, O.B.; Iglesias, A.; Garrote, L.; Moneo, M.; Quiroga, S.; Feyen, L.; Dankers, R. Climate Change Impacts in Europe. Final Report of the PESETA Research Project; European Commission: Luxembourg, 2009; p. 132. ISBN 978-92-79-14272-7. [Google Scholar]
- Ford, C.R.; Laseter, S.H.; Swank, W.T.; Vose, J.M. Can Forest Management Be Used to Sustain Water-Based Ecosystem Services in the Face of Climate Change? Ecol. Appl. 2011, 21, 2049–2067. [Google Scholar] [CrossRef] [PubMed]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Ecosystems and human well-being-Synthesis: A report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005; ISBN 9781597260404. [Google Scholar]
- Haines-Young, R.; Potschin, M. Common International Classification of Ecosystem Services (CICES) V5.1. Guidance on the Application of the Revised Structure; Fabis Consulting Ltd.: Nottingham, UK, 2018; p. 53. [Google Scholar]
- Marusakova, L.; Sallmannshofer, M.; Tyrvainen, L.; O’Brien, L.; Bauer, N.; Schmechel, D.; Kaspar, J.; Schwarz, M.; Krainer, F. Human Health and Sustainable Forest Management; Liaison Unit: Bratislava, Slovakia, 2019; pp. 17–20. ISBN 978-80-8093-265-7.
- Gleick, P.H. Water in Crisis: A Guide to the World’s Fresh Water Resources; Oxford University Press: Oxford, UK, 1993; Volume 9, p. 473. ISBN 9780195076288. [Google Scholar]
- Yamashita, S. Perception and Evaluation of Water in Landscape: Use of Photo-Projective Method to Compare Child and Adult Residents’ Perceptions of a Japanese River Environment. Landsc. Urban Plan. 2002, 62, 3–17. [Google Scholar] [CrossRef]
- West, A. Core Concept: Ecosystem Services. Proc. Natl. Acad. Sci. USA 2015, 112, 7337–7338. [Google Scholar] [CrossRef] [Green Version]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in Integrating the Concept of Ecosystem Services and Values in Landscape Planning, Management and Decision Making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Grizzetti, B.; Lanzanova, D.; Liquete, C.; Reynaud, A.; European Commission; Joint Research Centre & Institute for Environment and Sustainability. Cook-Book for Water Ecosystem Service Assessment and Valuation; Publications Office: Luxembourg, 2015; ISBN 978-92-79-46199-6. [Google Scholar]
- Moser, G. Water Quality Perception, a Dynamic Evaluation. J. Environ. Psychol. 1984, 4, 201–210. [Google Scholar] [CrossRef]
- West, A. Optical Water Quality and Human Perceptions of Rivers; University of Arkansas: Fayetteville, AR, USA, 2016; p. 158. [Google Scholar]
- Turgeon, S.; Rodriguez, M.J.; Thériault, M.; Levallois, P. Perception of Drinking Water in the Quebec City Region (Canada): The Influence of Water Quality and Consumer Location in the Distribution System. J. Environ. Manag. 2004, 70, 363–373. [Google Scholar] [CrossRef]
- de França Doria, M.; Pidgeon, N.; Hunter, P.R. Perceptions of Drinking Water Quality and Risk and Its Effect on Behaviour: A Cross-National Study. Sci. Total Environ. 2009, 407, 5455–5464. [Google Scholar] [CrossRef]
- Francis, M.R.; Nagarajan, G.; Sarkar, R.; Mohan, V.R.; Kang, G.; Balraj, V. Perception of Drinking Water Safety and Factors Influencing Acceptance and Sustainability of a Water Quality Intervention in Rural Southern India. BMC Public Health 2015, 15, 731. [Google Scholar] [CrossRef] [Green Version]
- Di Gregorio, A.; Food and Agriculture Organization of the United Nations (FAO) (Eds.) Land Cover Classification System: Classification Concepts and User Manual; Software Version 2; Environment and Natural Resources Series GEO-spatial Data and Information; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005; ISBN 978-92-5-105327-0. [Google Scholar]
- Pongratz, J.; Dolman, H.; Don, A.; Erb, K.-H.; Fuchs, R.; Herold, M.; Jones, C.; Kuemmerle, T.; Luyssaert, S.; Meyfroidt, P.; et al. Models Meet Data: Challenges and Opportunities in Implementing Land Management in Earth System Models. Glob. Change Biol. 2018, 24, 1470–1487. [Google Scholar] [CrossRef] [Green Version]
- Shukla, P.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.; Roberts, D.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, R.; et al. IPCC, 2019: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Toronto, ON, Canada, 2019. [Google Scholar]
- Kosztra, B.; Büttner, G.; Hazeu, G.; Arnold, S.; Environment Agency Austria. Updated CLC Illustrated Nomenclature Guidelines; Environment Agency Austria: Wien, Austria, 2019; p. 126. [Google Scholar]
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- Bielecka, E.; Jenerowicz, A. Intellectual Structure of CORINE Land Cover Research Applications in Web of Science: A Europe-Wide Review. Remote Sens. 2019, 11, 2017. [Google Scholar] [CrossRef] [Green Version]
- Boucníková, E.; Kucera, T. How Natural and Cultural Aspects Influence Land Cover Changes in Czech Republic. Ekológia Bratisl. 2005, 24 (Suppl. 1), 69–82. [Google Scholar]
- Cabral, P.; Feger, C.; Levrel, H.; Chambolle, M.; Basque, D. Assessing the Impact of Land-Cover Changes on Ecosystem Services: A First Step toward Integrative Planning in Bordeaux, France. Ecosyst. Serv. 2016, 22, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Nobre, C.A.; Sellers, P.J.; Shukla, J. Amazonian Deforestation and Regional Climate Change. J. Clim. 1991, 4, 957–988. [Google Scholar] [CrossRef] [Green Version]
- Tinker, P.B.; Ingram, J.S.I.; Struwe, S. Effects of Slash-and-Burn Agriculture and Deforestation on Climate Change. Agric. Ecosyst. Environ. 1996, 58, 13–22. [Google Scholar] [CrossRef]
- Pérez-Hoyos, A.; García-Haro, F.J.; San-Miguel-Ayanz, J. Conventional and Fuzzy Comparisons of Large Scale Land Cover Products: Application to CORINE, GLC2000, MODIS and GlobCover in Europe. ISPRS J. Photogramm. Remote Sens. 2012, 74, 185–201. [Google Scholar] [CrossRef]
- Latham, J.; Cumani, R.; Rosati, I.; Bloise, M. FAO Global Land Cover (GLC-SHARE) Beta-Release 1.0 Database. Land and Water Division; FAO: Rome, Italy, 2014. [Google Scholar]
- Bai, Y.; Ochuodho, T.O.; Yang, J. Impact of Land Use and Climate Change on Water-Related Ecosystem Services in Kentucky, USA. Ecol. Indic. 2019, 102, 51–64. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Changes of Ecosystem Service Values in Response to Land Use/Land Cover Dynamics in Munessa–Shashemene Landscape of the Ethiopian Highlands. Sci. Total Environ. 2016, 547, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Digital Change Detection Methods in Ecosystem Monitoring: A Review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Letsoin, S.M.A.; Herak, D.; Rahmawan, F.; Purwestri, R.C. Land Cover Changes from 1990 to 2019 in Papua, Indonesia: Results of the Remote Sensing Imagery. Sustainability 2020, 12, 6623. [Google Scholar] [CrossRef]
- Quintas-Soriano, C.; Castro, A.J.; Castro, H.; García-Llorente, M. Impacts of Land Use Change on Ecosystem Services and Implications for Human Well-Being in Spanish Drylands. Land Use Policy 2016, 54, 534–548. [Google Scholar] [CrossRef]
- Ureta, J.C.; Clay, L.; Motallebi, M.; Ureta, J. Quantifying the Landscape’s Ecological Benefits—An Analysis of the Effect of Land Cover Change on Ecosystem Services. Land 2021, 10, 21. [Google Scholar] [CrossRef]
- Krkoška lorencová, E.; Harmáčková, Z.V.; Landová, L.; Pártl, A.; Vačkář, D. Assessing Impact of Land Use and Climate Change on Regulating Ecosystem Services in the Czech Republic. Ecosyst. Health Sustain. 2016, 2, e01210. [Google Scholar] [CrossRef]
- Baskent, E.Z. A Framework for Characterizing and Regulating Ecosystem Services in a Management Planning Context. Forests 2020, 11, 102. [Google Scholar] [CrossRef] [Green Version]
- Hubelova, D.; Mala, J.; Kozumplikova, A.; Schrimpelova, K.; Hornova, H.; Janal, P. Influence of Human Activity on Surface Water Quality in Moravian Karst. Pol. J. Environ. Stud. 2020, 29, 3153–3162. [Google Scholar] [CrossRef]
- Aguilar, F.X.; Obeng, E.A.; Cai, Z. Water Quality Improvements Elicit Consistent Willingness-to-Pay for the Enhancement of Forested Watershed Ecosystem Services. Ecosyst. Serv. 2018, 30, 158–171. [Google Scholar] [CrossRef]
- Bartram, J.; Thyssen, N.; Pond, K.; Lack, T.; European Environment Agency; World Health Organization; Gowers, A. (Eds.) Water and Health in Europe: A Joint Report from the European Environment Agency and the WHO Regional Office for Europe; WHO Regional Publications; World Health Organization: Copenhagen, Denmark, 2002; ISBN 978-92-890-1360-4. [Google Scholar]
- Shukla, R.; Gupta, D.; Singh, G.; Mishra, V.K. Performance of Horizontal Flow Constructed Wetland for Secondary Treatment of Domestic Wastewater in a Remote Tribal Area of Central India. Sustain. Environ. Res. 2021, 31, 13. [Google Scholar] [CrossRef]
- Bondad-Reantaso, M.G.; Arthur, J.R.; Subasinghe, R.P. (Eds.) Understanding and Applying Risk Analysis in Aquaculture; FAO fisheries and aquaculture technical paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008; ISBN 978-92-5-106152-7. [Google Scholar]
- OECD. Financing Water Supply, Sanitation and Flood Protection: Challenges in EU Member States and Policy Options; OECD Studies on Water; OECD: Paris, France, 2020; ISBN 978-92-64-67888-0. [Google Scholar]
- Sochacki, A.; Marsik, P.; Chen, Z.; Sisa, M.; Vymazal, J. Fate of Antifungal Drugs Climbazole and Fluconazole in Constructed Wetlands—Diastereoselective Transformation Indicates Process Conditions. Chem. Eng. J. 2021, 421, 127783. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment. Water 2010, 2, 530–549. [Google Scholar] [CrossRef] [Green Version]
- Mala, J.; Schrimpelova, K.; Tuma, A.; Bilkova, Z.; Hrich, K. Assessment of river water quality in the Moravian Karst, Czech Republic. In Proceedings of the International Multidisciplinary Scientific GeoConference SGEM, Albena, Bulgaria, 29 June–5 July 2017; pp. 81–88. [Google Scholar] [CrossRef]
- Judová, P.; Janský, B. Water Quality in Rural Areas of the Czech Republic: Key Study Slapanka River Catchment. Limnologica 2005, 35, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Janosova, B.; Miklankova, J.; Hlavinek, P.; Wintgens, T. Drivers for Wastewater Reuse: Regional Analysis in the Czech Republic. Desalination 2006, 187, 103–114. [Google Scholar] [CrossRef]
- Langhammer, J. Water Quality Changes in the Elbe River Basin, Czech Republic, in the Context of the Post-Socialist Economic Transition. GeoJournal 2010, 75, 185–198. [Google Scholar] [CrossRef]
- Deng, J.; Qiang, S.; Walker, G.J.; Zhang, Y. Assessment on and Perception of Visitors’ Environmental Impacts of Nature Tourism: A Case Study of Zhangjiajie National Forest Park, China. J. Sustain. Tour. 2003, 11, 529–548. [Google Scholar] [CrossRef]
- Gebrehiwot, S.G.; Taye, A.; Bishop, K. Forest Cover and Stream Flow in a Headwater of the Blue Nile: Complementing Observational Data Analysis with Community Perception. AMBIO 2010, 39, 284–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebrehiwot, S.G.; Bewket, W.; Bishop, K. Community Perceptions of Forest–Water Relationships in the Blue Nile Basin of Ethiopia. GeoJournal 2014, 79, 605–618. [Google Scholar] [CrossRef]
- Petch, J.R.; Kolejka, J. The tradition of landscape ecology in Czechoslovakia. In Landscape Ecology And Geographical Information Systems; CRC Press: Boca Raton, FL, USA, 2003; pp. 41–58. ISBN 978-0-203-39303-1. [Google Scholar]
- Van Rompaey, A.; Krasa, J.; Dostal, T. Modelling the Impact of Land Cover Changes in the Czech Republic on Sediment Delivery. Land Use Policy 2007, 24, 576–583. [Google Scholar] [CrossRef]
- Kupková, L.; Bičík, I.; Najman, J. Land Cover Changes along the Iron Curtain 1990–2006. Geografie 2013, 118, 95–115. [Google Scholar] [CrossRef] [Green Version]
- Vojtěch, A.; Oušková, V.; Kuneš, P. Present-Day Vegetation Helps Quantifying Past Land Cover in Selected Regions of the Czech Republic. PLoS ONE 2014, 9, e100117. [Google Scholar] [CrossRef] [Green Version]
- Homolac, L.; Tomsik, K. Historical Development of Land Ownership in the Czech Republic since the Foundation of the Czechoslovakia until Present. Agric. Econ. Zemědělská Ekon. 2016, 62, 528–536. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Xiao, X.; Li, D. An Assessment of Ecosystem Services: Water Flow Regulation and Hydroelectric Power Production. Ecol. Appl. 2000, 10, 925–936. [Google Scholar] [CrossRef]
- Li, P.; Omani, N.; Chaubey, I.; Wei, X. Evaluation of Drought Implications on Ecosystem Services: Freshwater Provisioning and Food Provisioning in the Upper Mississippi River Basin. Int. J. Environ. Res. Public. Health 2017, 14, 496. [Google Scholar] [CrossRef] [Green Version]
- Joint Research Centre; European Commission; Ivits, E.; Ballabio, C.; Vogt, P.; Christiansen, T.; Rega, C.; Del Barrio Alvarellos, I.; Gervasini, E.; de Roo, A.; et al. Mapping and Assessment of Ecosystems and Their Services: An EU Wide Ecosystem Assessment in Support of the EU Biodiversity Strategy; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-17833-0. [Google Scholar]
- Gretchen, C.; Dayli, S.; Ehrlich, P.; Goulder, L.; Lubchenco, J.; Matson, P.; Mooney, H.; Postel, S.; Schneider, S.; Tilman, D.; et al. Ecosystem Services: Benefits Supplied to Human Societies by Natural Ecosystems. Issues Ecol. 1997, 2, 1–16. [Google Scholar]
- European Commission; Statistical Office of the European Union. Accounting for Ecosystems and Their Services in the European Union (INCA): Final Report from Phase II of the INCA Project Aiming to Develop a Pilot for an Integrated System of Ecosystem Accounts for the EU: 2021 Edition; Publications Office: Luxembourg, 2020. [Google Scholar]
- Frélichová, J.; Vačkář, D.; Pártl, A.; Loučková, B.; Harmáčková, Z.V.; Lorencová, E. Integrated Assessment of Ecosystem Services in the Czech Republic. Ecosyst. Serv. 2014, 8, 110–117. [Google Scholar] [CrossRef]
- Maes, J.; Egoh, B.; Willemen, L.; Liquete, C.; Vihervaara, P.; Schägner, J.P.; Grizzetti, B.; Drakou, E.G.; Notte, A.L.; Zulian, G.; et al. Mapping Ecosystem Services for Policy Support and Decision Making in the European Union. Ecosyst. Serv. 2012, 1, 31–39. [Google Scholar] [CrossRef]
- Šantrůčková, M.; Demková, K.; Weber, M.; Lipský, Z.; Dostálek, J. Long Term Changes in Water Areas and Wetlands in an Intensively Farmed Landscape: A Case Study from the Czech Republic. Eur. Countrys. 2017, 9, 132–144. [Google Scholar] [CrossRef] [Green Version]
- Kowalczak, P.; Maczak, P.; Slavikova, L. Institutional Evolution in Water Management in the Czech Republic and Poland. Int. J. Water Gov. 2013, 1, 307–322. [Google Scholar] [CrossRef] [Green Version]
- Van Puijenbroek, P.J.T.M.; Beusen, A.H.W.; Bouwman, A.F. Global Nitrogen and Phosphorus in Urban Waste Water Based on the Shared Socio-Economic Pathways. J. Environ. Manag. 2019, 231, 446–456. [Google Scholar] [CrossRef] [PubMed]
- OECD. Financing Water: Investing in Sustainable Growth; OECD: Paris, France, 2018. [Google Scholar] [CrossRef]
- Alaerts, G.J. Financing for Water—Water for Financing: A Global Review of Policy and Practice. Sustainability 2019, 11, 821. [Google Scholar] [CrossRef] [Green Version]
- Soukopova, J.; Bakos, E. Assessing the Efficiency of Municipal Expenditures Regarding Environmental Protection. WIT Trans. Ecol. Environ. 2010, 131, 107–119. [Google Scholar]
- OECD. Financing Water Supply, Sanitation and Flood Protection. Czech Republic Fact Sheet; OECD: Paris, France, 2020. [Google Scholar]
- Pörtner, H.O.; Scholes, R.J.; Agard, J.; Archer, E.; Arneth, A.; Bai, X.; Barnes, D.; Burrows, M.; Chan, L.; Ngo, H.T.; et al. Scientific Outcome of the IPBES-IPCC Co-Sponsored Workshop on Biodiversity and Climate Change; IPBES secretariat: Bonn, Germany, 2021. [Google Scholar] [CrossRef]
- Butler, J.R.A. An Analysis of Trade-Offs between Multiple Ecosystem Services and Stakeholders Linked to Land Use and Water Quality Management in the Great Barrier Reef, Australia. Agric. Ecosyst. Environ. 2013, 180, 176–191. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Varandas, S.G.P.; Sanches Fernandes, L.F.; Valle Junior, R.F. Soil Losses in Rural Watersheds with Environmental Land Use Conflicts. Sci. Total Environ. 2014, 485–486, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.R.; Stanley, E.H.; Vander Zanden, M.J. State of the World’s Freshwater Ecosystems: Physical, Chemical, and Biological Changes. Annu. Rev. Environ. Resour. 2011, 36, 75–99. [Google Scholar] [CrossRef] [Green Version]
- Český Statistický Úřad. Statistical Yearbook of the Czech Republic—2020; Český Statistický Úřad: Prague, Czech Republic, 2020; ISBN 978-80-250-3050-9. [Google Scholar]
- CENIA, Ministry of the Environment of the Czech Republic (MoE). Zpráva o Životním Prostředí Ve Středočeském Kraji 2018; Czech Environmental Information Agency: Prague, Czech Republic, 2019; p. 52. ISBN 978-80-7674-015-0. [Google Scholar]
- CENIA, Ministry of the Environment of the Czech Republic (MoE). Zpráva o Životním Prostředí v Jihomoravském Kraji 2018; Czech Environmental Information Agency: Prague, Czech Republic, 2019; p. 52. ISBN 978-80-87770-83-2. [Google Scholar]
- European Environment Agency CORINE Land Cover—Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 18 June 2021).
- ESRI. ArcGIS Desktop 10.8; Environmental Systems Research Institute, Inc.: West Redlands, CA, USA, 2019. [Google Scholar]
- European Union; Copernicus Land Monitoring Service (CLMS); European Environment Agency (EEA). Copernicus Land Monitoring Service. CORINE Land Cover; Product User Manual Version 1.0; European Union; Copernicus Land Monitoring Service; European Environment Agency: Copenhagener, Denmark, 2021. [Google Scholar]
- Ministry of Agriculture of the Czech Republic (MoA). Zpráva o Stavu Lesa a Lesního Hospodářství České Republiky v Roce 1998; Ministerstvo zemědělství (Ministry of Agriculture the Czech Republic): Prague, Czech Republic, 1999; p. 138. [Google Scholar]
- Ministry of Agriculture of the Czech Republic (MoA). Zpráva o Stavu Lesa a Lesního Hospodářství České Republiky v Roce 2019; Department of Agriculture: Prague, Czech Republic, 2020; p. 114. ISBN 9788074345302.
- Czech Statistical Office Statistics. Available online: https://www.czso.cz/csu/czso/statistics (accessed on 19 June 2021).
- European Commission. Evaluation of the Urban Waste Water Treatment Directive; European Commission: Brussels, Belgium, 2019; p. 186. [Google Scholar]
- European Commission; Berland, J.M.; Xavier, L.D.; Neumann, T.; Madec, C.; Dhuygelaere, N.; Fribourg-blanc, B.; Hocquet, C. 10th Technical Assessment on the Urban Waste Water Treatment Directive (UWWTD) Implementation 2016 European Review and National Situation: Final Version; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-20423-7. [Google Scholar]
- OECD. Recommendation of the Council on the Use of Economic Instruments in Environmental Policy, OECD/LEGAL/0258; OECD Legal Instruments: Paris, France, 2021; ISBN 978-92-76-20423-7. [Google Scholar]
- United Nations. Guía metodológica: Instrumentos Económicos para la Gestión Ambiental; Pantaleón, C., Pereira, M., de Miguel, C., Eds.; Comisión Económica para América Latina y el Caribe (CEPAL): Santiago de Chile, Chile, 2015. [Google Scholar]
- OECD. Policy Instruments for the Environment. Database Documentation; OECD: Paris, France, 2016. [Google Scholar]
- European Commission; Statistical Office of the European Union. Environmental Protection Expenditure Accounts: Handbook 2017 Edition; Publications Office: Luxembourg, 2017; ISBN 978-92-79-66261-4. [Google Scholar]
- Ministry of Agriculture of the Czech Republic (MoA); Ministry of the Environment of the Czech Republic (MoE). Report on Water Management in the Czech Republic in 2019; Department of State Administration of Water Management and River Basins: Prague, Czech Republic, 2020; ISBN 978-80-7434-511-1.
- Czech National Bank. Financial Market Inflation Expectations—December 2019; Czech National Bank: Prague, Czech Republic, 2019. [Google Scholar]
- Czech Statistical Office (CZSO) Environmental Accounts. Available online: https://www.czso.cz/csu/czso/environmental-accounts (accessed on 10 June 2021).
- Ryzin, G.G.V. Expectations, Performance, and Citizen Satisfaction with Urban Services. J. Policy Anal. Manag. 2004, 23, 433–448. [Google Scholar] [CrossRef]
- European Commission; Eurostat. GISCO Nomenclature of Territorial Units for Statistics (NUTS) 2021—Statistical Units—Data Set 2020; European Commission: Luxembourg, 2020. [Google Scholar]
- Martínez, M.L.; Pérez-Maqueo, O.; Vázquez, G.; Castillo-Campos, G.; García-Franco, J.; Mehltreter, K.; Equihua, M.; Landgrave, R. Effects of Land Use Change on Biodiversity and Ecosystem Services in Tropical Montane Cloud Forests of Mexico. For. Ecol. Manag. 2009, 258, 1856–1863. [Google Scholar] [CrossRef]
- Perdana, M.C.; Hadisusanto, S.; Purnama, I.L.S. Implementation of a Full-Scale Constructed Wetland to Treat Greywater from Tourism in Suluban Uluwatu Beach, Bali, Indonesia. Heliyon 2020, 6, e05038. [Google Scholar] [CrossRef]
- Ministry of Agriculture of the Czech Republic (MoA). Zpráva o Stavu Lesa a Lesního Hospodářství České Republiky v Roce 2018; Ministerstvo zemědělství (Ministry of Agriculture the Czech Republic): Prague, Czech Republic, 2019; p. 114. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Global Forest Resources Assessment 2015: Desk Reference. Rome. 2017. Available online: http://www.fao.org/forest-resources-assessment/past-assessments/fra-2015/en/ (accessed on 9 August 2019).
- Purwestri, R.C.; Hájek, M.; Šodková, M.; Sane, M.; Kašpar, J. Bioeconomy in the National Forest Strategy: A Comparison Study in Germany and the Czech Republic. Forests 2020, 11, 608. [Google Scholar] [CrossRef]
- Ministry of Agriculture of the Czech Republic (MoA). Zpráva o Stavu Lesa a Lesního Hospodářství České Republiky v Roce 2018—Vládní verze; Ministerstvo zemědělství (Ministry of Agriculture the Czech Republic): Prague, Czech Republic, 2019; p. 41. [Google Scholar]
- Ministry of Agriculture. Water Information System of the Czech Republic. Guide to Applications; Department of State Administration of Water Management and River Basin: Prague, Czech Republic, 2008; ISBN 978-80-7084-739-8.
- Ministry of Agriculture of the Czech Republic (MoA). Zpráva o Stavu Lesa a Lesního Hospodářství České Republiky v Roce 2012; Ministerstvo zemědělství (Ministry of Agriculture the Czech Republic): Prague, Czech Republic, 2013; p. 135. [Google Scholar]
- Ministry of Agriculture of the Czech Republic (MoA). Zpráva o Stavu Lesa a Lesního Hospodářství České Republiky v Roce 2006; Ministerstvo zemědělství (Ministry of Agriculture the Czech Republic): Prague, Czech Republic, 2007; p. 59. [Google Scholar]
- Janík, T.; Romportl, D. Recent Land Cover Change after the Kyrill Windstorm in the Šumava NP. Appl. Geogr. 2018, 97, 196–211. [Google Scholar] [CrossRef]
- Czech Statistical Office (CZSO); Moravec, Š. Kde a Jak Bydlí České Domácnosti? Population Statistics Department: Prague, Czech Republic, 2011; p. 36.
- Czech Government. Act No. 289/1995 Coll., on Forests and Amendments to Some Legal Regulations (Forest Act); Parliament of the Czech Republic: Prague, Czech Republic, 1995; p. 50. [Google Scholar]
- Vancura, K. National Forestry Programme of the Czech Republic in Brief. J. For. Sci. 2004, 50, 500–504. [Google Scholar] [CrossRef] [Green Version]
- Urbanová, M. The National Forest Programme of the Czech Republic: An Introduction of the 1993–2010 Development. Acta Univ. Agric. Silvic. Mendel. Brun. 2014, 59, 185–192. [Google Scholar] [CrossRef] [Green Version]
- European Commission. New EU Forest Strategy for 2030; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Ministry of Agriculture of the Czech Republic (MoA); Ministry of the Environment of the Czech Republic (MoE). Zpráva o Stavu Vodního Hospodářství České Republiky v Roce 2018; Department of Agriculture: Prague, Czech Republic, 2019; p. 142. ISBN 978-80-7434-523-4.
- Cudmore, T.J.; Björklund, N.; Carroll, A.L.; Lindgren, B.S. Climate Change and Range Expansion of an Aggressive Bark Beetle: Evidence of Higher Beetle Reproduction in Naïve Host Tree Populations. J. Appl. Ecol. 2010, 47, 1036–1043. [Google Scholar] [CrossRef] [Green Version]
- Holusa, J.; Lubojacky, J.; Knizek, M. Distribution of the Double-Spined Spruce Bark Beetle Ips Duplicatus in the Czech Republic: Spreading in 1997–2009. Phytoparasitica 2010, 38, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Davídková, M.; Doležal, P. Temperature-Dependent Development of the Double-Spined Spruce Bark Beetle Ips Duplicatus (Sahlberg, 1836) (Coleoptera; Curculionidae). Agric. For. Entomol. 2019, 21, 388–395. [Google Scholar] [CrossRef]
- Hlásny, T.; Zimová, S.; Merganičová, K.; Štěpánek, P.; Modlinger, R.; Turčáni, M. Devastating Outbreak of Bark Beetles in the Czech Republic: Drivers, Impacts, and Management Implications. For. Ecol. Manag. 2021, 490, 119075. [Google Scholar] [CrossRef]
- Purwestri, R.C.; Hájek, M.; Šodková, M.; Jarský, V. How Are Wood and Non-Wood Forest Products Utilized in the Czech Republic? A Preliminary Assessment of a Nationwide Survey on the Bioeconomy. Sustainability 2020, 12, 566. [Google Scholar] [CrossRef] [Green Version]
- FAO. Towards a Water and Food Secure Future: Critical Perspectives for Policy-Makers; FAO & WWC: Rome, Italy, 2015.
- CDP Worldwide. CDP Global Water Report 2018. Treading Water: Corporate Responses to Rising Water Challenges; CDP Worldwide: London, UK, 2018; p. 84. [Google Scholar]
- Pittock, J.; Hansen, L.J.; Abell, R. Running Dry: Freshwater Biodiversity, Protected Areas and Climate Change. Biodiversity 2008, 9, 30–38. [Google Scholar] [CrossRef]
- Neary, D.G.; Ice, G.G.; Jackson, C.R. Linkages between Forest Soils and Water Quality and Quantity. For. Ecol. Manag. 2009, 258, 2269–2281. [Google Scholar] [CrossRef]
- Lopes, A.F.; Macdonald, J.L.; Quinteiro, P.; Arroja, L.; Carvalho-Santos, C.; Cunha-e-Sá, M.A.; Dias, A.C. Surface vs. Groundwater: The Effect of Forest Cover on the Costs of Drinking Water. Water Resour. Econ. 2019, 28, 100123. [Google Scholar] [CrossRef]
- Pérez-Suárez, M.; Arredondo-Moreno, J.; Huber-Sannwald, E.; Serna-Pérez, A. Forest Structure, Species Traits and Rain Characteristics Influences on Horizontal and Vertical Rainfall Partitioning in a Semiarid Pine–Oak Forest from Central Mexico. Ecohydrology 2014, 7, 532–543. [Google Scholar] [CrossRef]
- Stolton, S.; Dudley, N. Managing Forests for Cleaner Water for Urban Populations. Unasylva 2007, 58, 5. [Google Scholar]
- Vodouhê, F.G.; Coulibaly, O.; Adégbidi, A.; Sinsin, B. Community Perception of Biodiversity Conservation within Protected Areas in Benin. For. Policy Econ. 2010, 12, 505–512. [Google Scholar] [CrossRef]
- Dasgupta, M.; Yildiz, Y. Assessment of Biochemical Oxygen Demand as Indicator of Organic Load in Wastewaters of Morris County, New Jersey, USA. J. Environ. Anal. Toxicol. 2016, 6, 378. [Google Scholar] [CrossRef]
- Kolb, M.; Bahadir, M.; Teichgräber, B. Determination of Chemical Oxygen Demand (COD) Using an Alternative Wet Chemical Method Free of Mercury and Dichromate. Water Res. 2017, 122, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Dodds, W.K.; Smith, V.H. Nitrogen, Phosphorus, and Eutrophication in Streams. Inland Waters 2016, 6, 155–164. [Google Scholar] [CrossRef]
- Leoni, B.; Patelli, M.; Soler, V.; Nava, V. Ammonium Transformation in 14 Lakes along a Trophic Gradient. Water 2018, 10, 265. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Qin, L.; Bao, L.; Li, Y.; Li, X. Critical Nutrient Thresholds Needed to Control Eutrophication and Synergistic Interactions between Phosphorus and Different Nitrogen Sources. Environ. Sci. Pollut. Res. 2016, 23, 21008–21019. [Google Scholar] [CrossRef]
- Aguilar-Ascon, E. Removal of Nitrogen and Phosphorus from Domestic Wastewater by Electrocoagulation: Application of Multilevel Factorial Design. J. Ecol. Eng. 2020, 21, 124–133. [Google Scholar] [CrossRef]
- Richards, S.; Paterson, E.; Withers, P.J.A.; Stutter, M. The Contribution of Household Chemicals to Environmental Discharges via Effluents: Combining Chemical and Behavioural Data. J. Environ. Manag. 2015, 150, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Stabenau, N.; Zehnsdorf, A.; Rönicke, H.; Wedwitschka, H.; Moeller, L.; Ibrahim, B.; Stinner, W. A Potential Phosphorous Fertilizer for Organic Farming: Recovery of Phosphorous Resources in the Course of Bioenergy Production through Anaerobic Digestion of Aquatic Macrophytes. Energy Sustain. Soc. 2018, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Fitobór, K.; Quant, B. Is the Microfiltration Process Suitable as a Method of Removing Suspended Solids from Rainwater? Resources 2021, 10, 21. [Google Scholar] [CrossRef]
- Koda, E.; Miszkowska, A.; Podlasek, A. Levels of Organic Pollution Indicators in Groundwater at the Old Landfill and Waste Management Site. Appl. Sci. 2017, 7, 638. [Google Scholar] [CrossRef] [Green Version]
- Vaishar, A.; Jakešová, L.; Náplavová, M. Current Problems in the South-Moravian Rural Landscape. Eur. Countrys. 2012, 3, 265–281. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Agriculture of the Czech Republic (MoA); Ministry of the Environment of the Czech Republic (MoE). Report on Water Management in the Czech Republic in 2009; Department of State Administration of Water Management and River Basins: Prague, Czech Republic, 2010.
- Giokas, D.; Vlessidis, A.; Angelidis, M.; Tsimarakis, G.; Karayannis, M. Systematic Analysis of the Operational Response of Activated Sludge Process to Variable Wastewater Flows. A Case Study. Clean Technol. Environ. Policy 2002, 4, 183–190. [Google Scholar] [CrossRef]
- Bersinger, T.; Le Hécho, I.; Bareille, G.; Pigot, T. Assessment of Erosion and Sedimentation Dynamic in a Combined Sewer Network Using Online Turbidity Monitoring. Water Sci. Technol. 2015, 72, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Czech Environmental Information Agency. Report on the Environment of the Czech Republic in 2016; Czech Environmental Information Agency: Prague, Czech Republic, 2017; p. 219. [Google Scholar]
- Nelson, N.; Mikkelsen, R. Meeting the Phosphorus Requirement on Organic Farms. Better Crops 2008, 92, 12–14. [Google Scholar]
- CENIA, Ministry of the Environment of the Czech Republic (MoE). Souhrnná Zpráva o Životním Prostředí v Krajích ČR.; Czech Czech Environmental Information Agency: Prague, Czech Republic, 2021; p. 51. ISBN 978-80-7674-014-3. [Google Scholar]
- Soukopová, J.; Struk, M. Methodology for the Efficiency Evaluation of the Municipal Environmental Protection Expenditure. In Proceedings of the Environmental Software Systems. Frameworks of Environment, Brno, Czech Republic, 27–29 June 2011; Hřebíček, J., Schimak, G., Denzer, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 327–340. [Google Scholar]
- Baun, M.J.; Marek, D. Implementing EU Environmental Law in the New Member States: The Urban Waste Water Treatment Directive in the Czech Republic. Contemp. Eur. Stud. 2013, 1, 5–25. [Google Scholar]
- Krajewski, P. The Impact of Public Environmental Protection Expenditure on Economic Growth. Probl. Ekorozw. Probl. Sustain. Dev. 2016, 11, 99–104. [Google Scholar]
- European Commission. Natural Capital Accounting: Overview and Progress in the European Union; Publications Office of the European Union: Luxembourg, 2019; p. 80. [Google Scholar]
Classification | Definition | ||
---|---|---|---|
Forest and semi-natural areas | Forests | Broad-leaved forest * | Areas occupied by forests and woodlands with trees higher than 5 m and canopy closure of a minimum of 30%, or young shoots with the minimum cut-off-point of 500 subjects per ha. Vegetation formation predominated by broad-leaved species. |
Forests | Coniferous forest * | Areas occupied by forests and woodlands with trees higher than 5 m and canopy closure of a minimum of 30%, or young shoots with the minimum cut-off-point of 500 subjects per ha. Vegetation formation predominated by coniferous species. | |
Forests | Mixed forest * | Areas occupied by forests and woodlands with trees higher than 5 m and canopy closure of a minimum of 30%, or young shoots with the minimum cut-off-point of 500 subjects per ha. Vegetation formation is neither broad-leaved nor coniferous species predominate. | |
Scrub and/or herbaceous vegetation associations | Natural grasslands | Grasslands under no or moderate human intervention. | |
Scrub and/or herbaceous vegetation associations | Moors and heathland | Low and closed cover vegetation is dominated by bushes, shrubs, dwarf shrubs, and herbaceous plants, which form a summit stage. | |
Scrub and/or herbaceous vegetation associations | Transitional woodland–shrub | Transitional bushy and herbaceous vegetation with occasional scattered trees; hence, can correspond to woodland degradation, forest regeneration, or natural succession. | |
Open spaces with little or no vegetation | Bare rocks | Scree, cliffs, rock outcropping that incorporate areas of active erosion, rocks, and reef flats above the high-water mark, inland salt planes. | |
Open spaces with little or no vegetation | Sparsely vegetated areas | Areas with scarce vegetation (covering 10–50% of the surface). | |
Water bodies | Inland waters | Watercourses * | Natural or artificial watercourses serving as water drainage channels with a minimum width of 100 m. |
Inland waters | Water bodies * | Natural or artificial water bodies are characterized by the presence of standing water bodies during most of the year. |
Year | |||||
---|---|---|---|---|---|
Type of Cover | 1990 | 2000 | 2006 | 2012 | 2018 |
Forest area | |||||
Central Bohemia | |||||
Coniferous forests | 156,729.55 b,c,d,e | 166,094.78 a | 167,559.52 a | 164,229.98 a | 164,314.22 a |
Broad-leaved forests | 31,569.65 | 34,807.30 | 34,871.22 | 35,057.24 | 35,147.08 |
Mixed forests | 99,058.62 | 102,642.04 | 102,955.75 | 104,499.25 | 105,319.66 |
Total forest area | 287,357.82 | 303,544.12 | 305,386.48 | 303,786.47 | 304,780.96 |
South Moravia | |||||
Coniferous forests | 59,275.09 | 59,144.17 | 59,821.71 | 59,670.05 | 58,274.98 |
Broad-leaved forests | 73,290.53 | 76,020.69 | 75,855.11 | 75,433.30 | 74,270.16 |
Mixed forests | 63,624.92 | 64,995.51 | 65,372.68 | 65,996.31 | 65,103.12 |
Total forest area | 196,190.54 | 200,160.37 | 201,049.50 | 201,099.66 | 197,648.26 |
Czech Republic | |||||
Coniferous forests | 1,655,719.55 b*, c*, d*, e | 1,701,653.96 a* | 1,722,612.13 a* | 1,692,347.40 a* | 1,665,902.94 a |
Broad-leaved forests | 249,729.32 | 277,702.87 | 278,328.37 | 283,601.69 | 283,338.26 |
Mixed forests | 585,415.17 | 613,367.76 | 617,417.94 | 635,595.63 | 643,699.92 |
Total forest area | 2,490,864.05 b,c,d,e | 2,592,724.59 a | 2,618,358.44 a | 2,611,544.72 a | 2,592,941.12 a |
Inland water | |||||
Central Bohemia | |||||
Water courses | 1718.98 b,d,e | 1760.46 a | 1753.10 | 1754.38 a | 1754.38 a |
Water bodies | 5114.35 | 5357.60 | 5444.30 | 5536.74 | 5582.84 |
Total water bodies | 6833.33 | 7118.06 | 7197.40 | 7291.12 | 7337.22 |
South Moravia | |||||
Watercourses | 245.01 | 64.68 | 136.32 | 221.52 | 221.51 |
Water bodies | 6637.31 | 6565.82 | 6577.38 | 6564.66 | 6564.66 |
Total water bodies | 6882.32 | 6630.50 | 6713.70 | 6786.18 | 6786.17 |
Czech Republic | |||||
Water courses | 4542.62 | 4496.86 | 4565.02 | 4685.48 | 4685.46 |
Water bodies | 49,292.53 | 51,657.66 | 52,037.13 | 53,264.60 | 53,608.38 |
Total water bodies | 53,835.15 e | 56,154.52 | 56,602.15 | 57,950.08 | 58,293.84 a |
Type of Land Cover | Change Rate (ha/Year) | % of Area Changes 1 | ||||
---|---|---|---|---|---|---|
1990–2006 | 2006–2018 | 1990–2018 | 1990–2006 | 2006–2018 | 1990–2018 | |
Coniferous forests | 4180.79 | −4725.77 | 363.69 | +3.88 | −3.40 | +0.61 |
Broad-leaved forests | 1787.44 | 417.49 | 1200.32 | +10.28 | +1.77 | +11.86 |
Mixed forests | 2000.17 | 2190.17 | 2081.60 | +5.18 | +4.08 | +9.05 |
Total forest area | 7968.40 | −2118.11 | 3645.61 | +4.87 | −0.98 | +3.94 |
Watercourses | 8.93 | −0.0017 | 5.10 | +3.05 | −0.0004 | +3.05 |
Water bodies | 248.25 | 28.65 | 154.14 | +7.45 | +0.64 | +8.05 |
Total water bodies | 257.18 | 28.65 | 159.24 | +7.1 | +0.59 | +7.65 |
Characteristics | Regions | ||
---|---|---|---|
Central Bohemian (n = 170) | South Moravian (n = 147) | Czech Republic (N = 1338) | |
Gender (male) | 50.6 (86) | 46.3 (68) | 51.2 (685) |
Age (years) ** | 44.9 ± 12.9 | 39.0 ± 13.8 | 42.3 ± 13.4 |
Education level * | |||
Without the secondary school leaving certificate (maturita) | 39.4(67) | 34.0 (50) | 39.5 (528) |
With the secondary school leaving certificate (maturita) and higher | 60.6(103) | 66.0 (97) | 60.5 (810) |
Size of the town ** | |||
Less than 20,000 inhabitants | 82.4 (140) | 62.6 (92) | 57.7 (772) |
≥20,000 inhabitants | 17.6 (30) | 37.4 (55) | 42.3 (566) |
Frequency of forest visits | |||
More than two times per year | 77.1 (131) | 77.6 (114) | 78.0 (1044) |
Two times/year or less and never | 22.9 (39) | 22.4 (33) | 22.0 (294) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huertas Bernal, D.C.; Purwestri, R.C.; Perdana, M.C.; Hájek, M.; Tahri, M.; Palátová, P.; Hochmalová, M. Societal Implications of Forest and Water Body Area Evolution in Czechia and Selected Regions. Remote Sens. 2021, 13, 4019. https://doi.org/10.3390/rs13194019
Huertas Bernal DC, Purwestri RC, Perdana MC, Hájek M, Tahri M, Palátová P, Hochmalová M. Societal Implications of Forest and Water Body Area Evolution in Czechia and Selected Regions. Remote Sensing. 2021; 13(19):4019. https://doi.org/10.3390/rs13194019
Chicago/Turabian StyleHuertas Bernal, Diana Carolina, Ratna Chrismiari Purwestri, Mayang Christy Perdana, Miroslav Hájek, Meryem Tahri, Petra Palátová, and Miroslava Hochmalová. 2021. "Societal Implications of Forest and Water Body Area Evolution in Czechia and Selected Regions" Remote Sensing 13, no. 19: 4019. https://doi.org/10.3390/rs13194019
APA StyleHuertas Bernal, D. C., Purwestri, R. C., Perdana, M. C., Hájek, M., Tahri, M., Palátová, P., & Hochmalová, M. (2021). Societal Implications of Forest and Water Body Area Evolution in Czechia and Selected Regions. Remote Sensing, 13(19), 4019. https://doi.org/10.3390/rs13194019