Characterizing the Development Pattern of a Colluvial Landslide Based on Long-Term Monitoring in the Three Gorges Reservoir
Abstract
:1. Introduction
2. Geological and Geomorphological Setting
2.1. Regional Background
2.2. Landslide Features
3. Deformation Characteristics and Movement History
4. Establishment of Landslide Long-Term Monitoring System
5. Monitoring Results
5.1. Surface Deformation
5.2. Subsurface Deformation
5.3. Groundwater Level Change
6. Impacts of the Reservoir and Rainfall on the Landslide Activity
7. Characterizing the Development Pattern of the Landslide
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schuster, R.L. Reservoir-induced landslides. Bull. Eng. Geol. Environ. 1979, 20, 8–15. [Google Scholar] [CrossRef]
- Panizzo, A.; Girolamo, P.D.; Risio, M.D.; Maistri, A.; Petaccia, A. Great landslide events in Italian artificial reservoirs. Nat. Hazards Earth Syst. Sci. 2005, 5, 733–740. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, F.; Linares, R.; Roqué, C.; Zarroca, M.; Carbonel, D.; Rosell, J.; Gutiérrez, M. Large landslides associated with a diapiric fold in Canelles Reservoir (Spanish Pyrenees): Detailed geological-geomorphological mapping, trenching and electrical resistivity imaging. Geomorphology 2015, 241, 224–242. [Google Scholar] [CrossRef]
- Tullos, D. Assessing the influence of environmental impact assessments on science and policy: An analysis of the Three Gorges Project. J. Environ. Manag. 2009, 90, 208–223. [Google Scholar] [CrossRef]
- Li, Y.; Wu, L.G.; Chen, X.Y.; Zhou, W.C. Impacts of Three Gorges Dam on Regional Circulation: A Numerical Simulation. J. Geophys. Res. Atmos. 2019, 124, 7813–7824. [Google Scholar] [CrossRef]
- Wang, F.W.; Zhang, Y.M.; Huo, Z.T.; Peng, X.M.; Wang, S.M.; Yamasaki, S. Mechanism for the rapid motion of the Qianjiangping landslide during reactivation by the first impoundment of the Three Gorges Dam reservoir, China. Landslides 2008, 5, 379–386. [Google Scholar] [CrossRef]
- Yin, Y.P.; Huang, B.L.; Wang, W.P.; Wei, Y.J.; Ma, X.H.; Ma, F.; Zhao, C.J. Reservoir-induced landslides and risk control in Three Gorges Project on Yangtze River, China. J. Rock Mech. Geotech. Eng. 2016, 8, 577–595. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.P.; Miao, F.S.; Li, L.W.; Xie, Y.H.; Chang, B. Time-varying reliability analysis of huangtupo riverside no.2 landslide in the three gorges reservoir based on water-soil coupling. Eng. Geol. 2017, 226, 267–276. [Google Scholar] [CrossRef]
- Asch van, T.W.J.; Malet, J.P.; Bogaard, T.A. The effect of groundwater fluctuations on the velocity pattern of slow-moving landslides. Nat. Hazards Earth Syst. Sci. 2009, 9, 739–749. [Google Scholar] [CrossRef] [Green Version]
- Miao, H.B.; Wang, G.H.; Yin, K.L.; Kamai, T.; Li, Y.Y. Mechanism of the slow-moving landslides in Jurassic red-strata in the Three Gorges Reservoir, China. Eng. Geol. 2014, 171, 59–69. [Google Scholar] [CrossRef] [Green Version]
- He, C.C.; Hu, X.L.; Tannant, D.D.; Tan, F.L.; Zhang, Y.M.; Zhang, H. Response of a landslide to reservoir impoundment in model tests. Eng. Geol. 2018, 247, 84–93. [Google Scholar] [CrossRef]
- Mansour, M.F.; Morgenstern, N.R.; Martin, C.D. Expected damage from displacement of slow-moving slides. Landslides 2011, 8, 117–131. [Google Scholar] [CrossRef]
- Angeli, M.G.; Pasuto, A.; Silvano, S. A critical review of landslide monitoring experiences. Eng. Geol. 2010, 55, 133–147. [Google Scholar] [CrossRef]
- Gullà, G.; Peduto, D.; Borrelli, L.; Antronico, L.; Fornaro, G. Geometric and kinematic characterization of landslides affecting urban areas: The Lungro case study (Calabria, Southern Italy). Landslides 2017, 14, 171–188. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Tofani, V.; Raspini, F.; Catani, F.; Casagli, N. Persistent Scatterer Interferometry (PSI) Technique for Landslide Characterization and Monitoring. Remote Sens. 2013, 5, 1045–1065. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Confuorto, P.; Peng, Y.; Raspini, F.; Bianchini, S.; Han, S.; Liu, H.; Casagli, N. Regional Recognition and Classification of Active Loess Landslides Using Two-Dimensional Deformation Derived from Sentinel-1 Interferometric Radar Data. Remote Sens. 2020, 12, 1541. [Google Scholar] [CrossRef]
- Zhou, C.; Cao, Y.; Yin, K.; Wang, Y.; Shi, X.; Catani, F.; Ahmed, B. Landslide Characterization Applying Sentinel-1 Images and InSAR Technique: The Muyubao Landslide in the Three Gorges Reservoir Area, China. Remote Sens. 2020, 12, 3385. [Google Scholar] [CrossRef]
- Massey, C.I.; Petley, D.N.; Mcsaveney, M.J. Patterns of movement in reactivated landslides. Eng. Geol. 2013, 159, 1–19. [Google Scholar] [CrossRef]
- Chen, M.L.; Lu, P.F.; Zhang, S.L.; Chen, X.Z.; Zhou, J.W. Time evolution and spatial accumulation of progressive failure for Xinhua slope in the Dagangshan reservoir, Southwest China. Landslides 2018, 15, 565–580. [Google Scholar] [CrossRef]
- Yin, Y.P.; Wang, H.D.; Gao, Y.L.; Li, X.C. Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir, China. Landslides 2010, 7, 339–349. [Google Scholar] [CrossRef]
- Huntley, D.; Bobrowsky, P.; Zhang, Q.; Sladen, W.; Bunce, C.; Edwards, T.; Hendry, M.; Martin, D.; Choi, E. Fiber optic Strain Monitoring and Evaluation of a slow-moving landslide near Ashcroft, British Columbia, Canada. In Landslide Science for a Safer Geoenvironment; Sassa, K., Canuti, P., Yin, Y.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 415–421. [Google Scholar]
- Wang, J.E.; Su, A.J.; Xiang, W.; Yeh, H.; Xiong, C.; Zou, Z.X.; Zhong, C.; Liu, Q. New data and interpretations of the shallow and deep deformation of Huangtupo No. 1 riverside sliding mass during seasonal rainfall and water level fluctuation. Landslides 2016, 13, 795–804. [Google Scholar] [CrossRef]
- Caterina, D.M.; Fornaro, G.; Gioia, D.; Schiattarella, M.; Vassallo, R. In situ and satellite long-term monitoring of the Latronico landslide, Italy: Displacement evolution, damage to buildings, and effectiveness of remedial works. Eng. Geol. 2018, 245, 218–235. [Google Scholar] [CrossRef]
- Soldato, M.D.; Riquelme, A.; Bianchini, S.; Tomàs, R.; Martire, D.D.; Vita, P.D.; Moretti, S.; Calcaterra, D. Multisource data integration to investigate one century of evolution for the Agnone landslide (Molise, southern Italy). Landslides 2018, 15, 2113–2128. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Yin, K.L.; Lacasse, S. Displacement prediction in colluvial landslides, Three Gorges Reservoir, China. Landslides 2013, 10, 203–218. [Google Scholar] [CrossRef]
- Intrieri, E.; Carlà, T.; Gigli, G. Forecasting the time of failure of landslides at slope-scale: A literature review. Earth Sci. Rev. 2019, 193, 333–349. [Google Scholar] [CrossRef]
- Schulz, W.H.; Kean, J.W.; Wang, G.H. Landslide movement in southwest Colorado triggered by atmospheric tides. Nat. Geosci. 2009, 2, 863–866. [Google Scholar] [CrossRef]
- Ehrlich, M.; da Costa, D.P.; Silva, R.C. Behavior of a colluvial slope located in Southeastern Brazil. Landslides 2018, 15, 1595–1613. [Google Scholar] [CrossRef]
- Yao, W.M.; Li, C.D.; Zuo, Q.J.; Zhan, H.B.; Robert, E. Criss. Spatiotemporal deformation characteristics and triggering factors of Baijiabao landslide in Three Gorges Reservoir region, China. Geomorphology 2019, 343, 34–47. [Google Scholar] [CrossRef]
- Macfarlane, D.F. Observations and predictions of the behaviour of large, slow-moving landslides in schist, Clyde Dam reservoir, New Zealand. Eng. Geol. 2009, 109, 5–15. [Google Scholar] [CrossRef]
- Gu, D.M.; Huang, D.; Yang, W.D.; Zhu, J.L.; Fu, G.Y. Understanding the triggering mechanism and possible kinematic evolution of a reactivated landslide in the Three Gorges Reservoir. Landslides 2017, 14, 2073–2087. [Google Scholar] [CrossRef]
- Li, Z.H.; Cheng, G.X.; Cheng, W.M.; Mei, H.B. People as Sensors: Towards a Human–Machine Cooperation Approach in Monitoring Landslides in the Three Gorges Reservoir Region, China. In Cyber-Physical Systems: Architecture, Security and Application; Guo, S., Zeng, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 43–45. [Google Scholar]
- Wang, P.; Zheng, H.; Chen, L.; Chen, J.; Xu, Y.; Wei, X.; Yao, X. Exhumation of the Huangling anticline in the Three Gorges region: Cenozoic sedimentary record from the western Jianghan Basin, China. Basin Res. 2014, 26, 505–522. [Google Scholar] [CrossRef]
- Tang, H.M.; Wasowski, J.; Juang, C.H. Geohazards in the Three Gorges Reservoir Area, China-Lessons learned from decades of research. Eng. Geol. 2019, 261, 105267. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslide types and processes. In Landslides Investigation and Mitigation. Transportation Research Board, US National Research Council; Turner, A.K., Schuster, R.L., Eds.; Chapter 3; Special Report 247; TRB: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2018, 11, 167–194. [Google Scholar] [CrossRef]
- Baudoin, M.; Henly-Shepard, S.; Fernando, N.; Sitati, A.; Zommers, Z. From Top-Down to “Community-Centric” Approaches to Early Warning Systems: Exploring Pathways to Improve Disaster Risk Reduction through Community Participation. Int. J. Disaster Risk Sci. 2016, 7, 163–174. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yin, K.L.; Chen, L.X.; Wang, W.; Liu, Y.L. A community-based disaster risk reduction system in Wanzhou, China. Int. J. Disaster Risk Reduct. 2016, 19, 379–389. [Google Scholar] [CrossRef]
- Castagnetti, C.; Bertacchini, E.; Corsini, A.; Capra, A. Multi-sensors integrated system for landslide monitoring: Critical issues in system setup and data management. Eur. J. Remote Sens. 2017, 46, 104–124. [Google Scholar] [CrossRef]
- Iverson, M. Landslide triggering by rain infiltration. Water. Resour. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef] [Green Version]
- Kang, X.; Xu, G.L.; Yu, Z.; Wang, S.; Wang, M.T. Experimental investigation of the interaction between water and shear-zone materials of a bedding landslide in the Three Gorges Reservoir Area, China. Bull. Eng. Geol. Environ. 2020, 79, 4079–4092. [Google Scholar] [CrossRef]
- Bansal, R.K.; Das, S.K. Response of an Unconfined Sloping Aquifer to Constant Recharge and Seepage from the Stream of Varying Water Level. Water Resour. Manag. 2011, 25, 893–911. [Google Scholar] [CrossRef]
- Okeke, C.U.; Wang, F.W. Critical hydraulic gradients for seepage-induced failure of landslide dams. Geoenviron. Disasters 2016, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.G.; Xu, Q.; Yang, H.; Li, S.L.; Lqbal, J.; Fu, X.L.; Cheng, W.M. Activity law and hydraulics mechanism of landslides with different sliding surface and permeability in the Three Gorges Reservoir Area, China. Eng. Geol. 2019, 260, 105212. [Google Scholar] [CrossRef]
- Song, K.; Wang, F.W.; Yi, Q.L.; Lu, S.Q. Landslide deformation behavior influenced by water level fluctuations of the Three Gorges Reservoir (China). Eng. Geol. 2018, 247, 58–68. [Google Scholar] [CrossRef]
- Cancienne, R.M.; Fox, G.A.; Simon, A. Influence of seepage undercutting on the stability of root-reinforced streambanks. Earth Surf. Proc. Land 2008, 33, 1769–1786. [Google Scholar] [CrossRef]
- Skempton, A.W.; Brogan, J.M. Experiments on piping in sandy gravels. Geotechnique 1994, 44, 449–460. [Google Scholar] [CrossRef]
- Lollino, P.; Giordan, D.; Allasia, P. The Montaguto earthflow: A back-analysis of the process of landslide propagation. Eng. Geol. 2014, 170, 66–79. [Google Scholar] [CrossRef]
- Tien, P.V.; Sassa, K.; Takara, K.; Fukuoka, H.; Dang, K.; Shibasaki, T.; Ha, N.D.; Setiawan, H.; Loi, D.H. Formation process of two massive dams following rainfall-induced deep-seated rapid landslide failures in the Kii Peninsula of Japan. Landslides 2018, 15, 1–18. [Google Scholar] [CrossRef]
Number | Type | Trend (°) | Length (m) | Opening Width (cm) | Vertical Displacement (cm) |
---|---|---|---|---|---|
C1 | shear | 6.0 | 140.0 | 1.0–5.0 | 5.0–35.0 |
C2 | tension | 89.0 | 50.0 | 10.0–20.0 | 15.0–20.0 |
C3 | tension | 85.0 | 50.0 | 5.0–8.0 | 10.0–15.0 |
C4 | tension | 341.0 | 25.0 | 1.0–10.0 | 5.0–8.0 |
C5 | tension | 194.0 | 30.0 | 10.0–20.0 | 15.0–20.0 |
C6 | shear | 338.0 | 16.0 | 1.0–3.0 | 1.0 |
C7 | shear | 345.0 | 35.0 | 10.0–20.0 | 1.0 |
C8 | shear | 352.0 | 55.0 | 3.0–5.0 | 2.0 |
C9 | shear | 325.0 | 8.0 | 15.0–20.0 | 1.0 |
C10 | shear | 320.0 | 120.0 | 5.0–60.0 | 10.0–60.0 |
C11 | shear | 320.0 | 12.0 | 1.0–2.0 | 0.5 |
C12 | shear | 322.0 | 10.0 | 0.5–1.0 | 0.5 |
C13 | shear | 329.0 | 22. 0 | 20.0–30.0 | 35.0 |
C14 | tension | 110.0 | 80.0 | 60.0–80.0 | 2.0–5.0 |
C15 | tension | 313.0 | 20.0 | 50.0–80.0 | 8.0–10.0 |
C16 | tension | 92.0 | 30.0 | 20.0–30.0 | 3.0–8.0 |
C17 | tension | 42.0 | 40.0 | 20.0–40.0 | 5.0–10.0 |
C18 | tension | 353.0 | 50.0 | 15.0–20.0 | 3.0–5.0 |
C19 | tension | 285.0 | 35.0 | 5.0–20.0 | 8.0–15.0 |
C20 | tension | 88.0 | 300.0 | 50.0–80.0 | 260.0 |
Number | Sliding Direction (°) | Length (m) | Width (m) | Area (m2) | Volume (m3) |
---|---|---|---|---|---|
F1 | 335 | 62.0 | 20.0 | 1240.0 | 700.0 |
F2 | 352 | 27.0 | 35.0 | 945 | 900.0 |
F3 | 355 | 1.5 | 13.0 | 19.5 | 19.5 |
F4 | 350 | 0.5 | 7.0 | 3.5 | 4.2 |
F5 | 351 | 1.0 | 12.0 | 12.0 | 10.0 |
F6 | 20 | 0.8 | 10.5 | 8.4 | 3.6 |
F7 | 350 | 2.0 | 1.5 | 3.0 | 6.0 |
F8 | 351 | 1.5 | 2.0 | 3.0 | 4.5 |
F9 | 353 | 12.0 | 0.8 | 9.6 | 19.2 |
F10 | 325 | 3.5 | 1.4 | 4.9 | 9.8 |
F11 | 325 | 10.0 | 12.0 | 120.0 | 60.0 |
F12 | 350 | 11.0 | 10.0 | 110.0 | 110.0 |
Method | Measure Point | Trend (°) | Initial Width (mm) | Yearly Deformation (mm) | Total Deformation (mm) | Average Rate (mm/Year) | ||
---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | ||||||
Manual crackmeter | M8 | 107.0 | 1903.5 | 55.6 | 342.8 | 39.8 | 438.2 | 146.1 |
M12 | 320.0 | 3921.0 | 15.8 | 19.0 | 9.0 | 43.8 | 14.6 | |
M17 | 342.0 | 1731.5 | 70.2 | 370.0 | 18.0 | 458.2 | 152.7 | |
M20 | 87.0 | 6296.0 | 148.3 | 470.0 | 104.0 | 722.3 | 240.8 | |
M23 | 32.0 | 5106.0 | 6.0 | 163.0 | 12.0 | 181.0 | 60.3 | |
Extensometer | E1 | 12.0 | \ | 82.9 | 419.0 | 69.0 | 570.9 | 190.3 |
E2 | 20.0 | \ | 21.6 | 1.4 | 19.4 | 42.4 | 14.3 | |
E3 | 351.0 | \ | 190.4 | 132.2 | 98.6 | 421.2 | 140.4 |
Period | GNSS Point Number | Cumulative Displacement (mm) | Average Displacement Rate (mm/d) | Maximum Displacement Rate | Average Reservoir Fluctuation Rate (m/d) | Total Rainfall (mm) | |
---|---|---|---|---|---|---|---|
Value (mm/d) | Date | ||||||
A (2016/1/5–2016/4/27) | 1 | 10.06 | 0.09 | 1.08 | 2016/3/11 | −0.11 | 174.8 |
3 | 13.84 | 0.12 | 1.14 | 2016/1/24 | |||
6 | 19.68 | 0.17 | 2.03 | 2016/4/25 | |||
8 | 46.26 | 0.41 | 3.23 | 2016/4/25 | |||
B (2016/4/28–2016/6/8) | 1 | 15.72 | 0.37 | 1.89 | 2016/6/4 | −0.40 | 218.6 |
3 | 21.40 | 0.51 | 2.99 | 2016/6/8 | |||
6 | 25.00 | 0.60 | 4.40 | 2016/5/15 | |||
8 | 71.37 | 1.70 | 24.66 | 2016/6/8 | |||
C (2016/6/9–2016/8/15) | 1 | 42.51 | 0.63 | 5.81 | 2016/7/6 | 0.01 | 405.3 |
3 | 71.73 | 1.05 | 8.27 | 2016/7/6 | |||
6 | 204.39 | 3.01 | 27.98 | 2016/7/3 | |||
8 | 525.08 | 7.72 | 69.14 | 2016/7/3 | |||
D (2017/1/1–2017/4/17) | 1 | 6.48 | 0.06 | 2.84 | 2017/3/31 | −0.09 | 200.0 |
3 | 4.25 | 0.04 | 1.00 | 2017/2/5 | |||
6 | 12.97 | 0.12 | 1.95 | 2017/2/16 | |||
8 | 23.54 | 0.22 | 2.00 | 2017/3/31 | |||
E (2017/4/18–2017/6/10) | 1 | 14.69 | 0.27 | 2.02 | 2017/5/29 | −0.32 | 229.9 |
3 | 19.13 | 0.35 | 6.05 | 2017/5/16 | |||
6 | 24.09 | 0.45 | 2.08 | 2017/5/17 | |||
8 | 34.08 | 0.63 | 2.47 | 2017/5/25 | |||
F (2017/6/11–2017/8/18) | 1 | 17.96 | 0.26 | 7.84 | 2017/7/31 | 0.02 | 470.0 |
3 | 24.85 | 0.36 | 6.26 | 2017/7/31 | |||
6 | 38.38 | 0.56 | 2.50 | 2017/7/18 | |||
8 | 93.20 | 1.35 | 6.85 | 2017/7/18 |
Stage | Begin | End | Dominant Factor of the Landslide Deformation | Deformation Features |
---|---|---|---|---|
Stable stage | \ | Before the construction of the TGR | \ | Ordinary colluvial slope without deformation |
Initial movement stage | The operation of the TGR | The appearance of the main scarp | Reservoir water level drawdown | Retrogressive failure from toe to the upper part |
Shallow movement stage | The appearance of the main scarp | \ | Rainfall | Plastic deformation within the shallow sliding mass |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Gui, L.; Wang, W.; Du, J.; Ma, F.; Yin, K. Characterizing the Development Pattern of a Colluvial Landslide Based on Long-Term Monitoring in the Three Gorges Reservoir. Remote Sens. 2021, 13, 224. https://doi.org/10.3390/rs13020224
Liang X, Gui L, Wang W, Du J, Ma F, Yin K. Characterizing the Development Pattern of a Colluvial Landslide Based on Long-Term Monitoring in the Three Gorges Reservoir. Remote Sensing. 2021; 13(2):224. https://doi.org/10.3390/rs13020224
Chicago/Turabian StyleLiang, Xin, Lei Gui, Wei Wang, Juan Du, Fei Ma, and Kunlong Yin. 2021. "Characterizing the Development Pattern of a Colluvial Landslide Based on Long-Term Monitoring in the Three Gorges Reservoir" Remote Sensing 13, no. 2: 224. https://doi.org/10.3390/rs13020224
APA StyleLiang, X., Gui, L., Wang, W., Du, J., Ma, F., & Yin, K. (2021). Characterizing the Development Pattern of a Colluvial Landslide Based on Long-Term Monitoring in the Three Gorges Reservoir. Remote Sensing, 13(2), 224. https://doi.org/10.3390/rs13020224