Evidence of Climate Change Based on Lake Surface Temperature Trends in South Central Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. In Situ Parameters
2.3. MODIS Satellite Imagery
2.3.1. Acquisition of Images
2.3.2. Pre-Processing of MODIS Images
2.4. Statistical Analysis
2.4.1. Linear Fit between MODIS and In Situ Data
2.4.2. Trend Analysis of Time Series
3. Results
3.1. Validated Results for the Relationship between MODIS LSWT and In Situ LSWT
3.2. Annual Trend Analysis of MODIS LSWT Timeseries
3.3. Monthly Trend Analysis of MODIS LSWT Time Series
3.4. Seasonal Trend Analysis of MODIS LSWT Timeseries
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giardino, C.; Brando, V.E.; Gege, P.; Pinnel, N.; Hochberg, E.; Knaeps, E.; Reusen, I.; Doerffer, R.; Bresciani, M.; Braga, F.; et al. Imaging Spectrometry of Inland and Coastal Waters: State of the Art, Achievements and Perspectives. Surv. Geophys. 2019, 40, 401–429. [Google Scholar] [CrossRef] [Green Version]
- Schröter, M.; Bonn, A.; Klotz, S.; Seppelt, R.; Baessler, C. Atlas of Ecosystem Services; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Wu, D.; Zhou, A.; Zhang, J.; Chen, J.; Li, G.; Wang, Q.; Chen, L.; Madsen, D.; Abbott, M.; Cheng, B.; et al. Temperature-Induced Dry Climate in Basins in the Northeastern Tibetan Plateau during the Early to Middle Holocene. Quat. Sci. Rev. 2020, 237, 106311. [Google Scholar] [CrossRef]
- Coats, R.; Perez-Losada, J.; Schladow, G.; Richards, R.; Goldman, C. The Warming of Lake Tahoe. Clim. Chang. 2006, 76, 121–148. [Google Scholar] [CrossRef]
- Schneider, P.; Hook, S.J. Space Observations of Inland Water Bodies Show Rapid Surface Warming since 1985. Geophys. Res. Lett. 2010, 37, L22405. [Google Scholar] [CrossRef] [Green Version]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; Mcintyre, P.B.; Kraemer, B.M.; et al. Rapid and Highly Variable Warming of Lake Surface Waters around the Globe. Geophys. Res. Lett. 2015, 42, 10–773. [Google Scholar] [CrossRef] [Green Version]
- Song, K.; Wang, M.; Du, J.; Yuan, Y.; Ma, J.; Wang, M.; Mu, G. Spatiotemporal Variations of Lake Surface Temperature across the Tibetan Plateau Using MODIS LST Product. Remote Sens. 2016, 8, 854. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Zhang, Y.; Yang, K.; Yu, Z.; Zhu, Y. Spatiotemporal Variations in Dianchi Lake’s Surface Water Temperature from 2001 to 2017 under the Influence of Climate Warming. IEEE Access 2019, 7, 115378–115387. [Google Scholar] [CrossRef]
- Jane, S.F.; Hansen, G.J.A.; Kraemer, B.M.; Leavitt, P.R.; Mincer, J.L.; North, R.L.; Pilla, R.M.; Stetler, J.T.; Williamson, C.E.; Woolway, R.I.; et al. Widespread Deoxygenation of Temperate Lakes. Nature 2021, 594, 66–70. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Choiński, A.; Nowak, B. Effect of Environmental Conditions and Morphometric Parameters on Surface Water Temperature in Polish Lakes. Water 2018, 10, 580. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Yu, Z.; Luo, Y.; Zhou, X.; Shang, C. Spatial-Temporal Variation of Lake Surface Water Temperature and Its Driving Factors in Yunnan-Guizhou Plateau. Water Resour. Res. 2019, 55, 4688–4703. [Google Scholar] [CrossRef]
- Öğlü, B.; Bhele, U.; Järvalt, A.; Tuvikene, L.; Timm, H.; Seller, S.; Haberman, J.; Agasild, H.; Noges, P.; Slim, M.; et al. Is Fish Biomass Controlled by Abiotic or Biotic Factors? Results of Long-Term Monitoring in a Large Eutrophic Lake. J. Great Lakes Res. 2020, 46, 881–890. [Google Scholar] [CrossRef]
- Zhang, Z.; Fan, X.; Peijnenburg, W.J.G.M.; Zhang, M.; Sun, L.; Zhai, Y.; Yu, Q.; Wu, J.; Lu, T.; Qian, H. Alteration of Dominant Cyanobacteria in Different Bloom Periods Caused by Abiotic Factors and Species Interactions. J. Environ. Sci. 2021, 99, 1–9. [Google Scholar] [CrossRef]
- Peeters, F.; Livingstone, D.M.; Goudsmit, G.-H.; Kipfer, R.; Forster, R. Modeling 50 years of historical temperature profiles in a large central European lake. Limnol. Oceanogr. 2002, 47, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Shuter, B.J.; Schlesinger, D.A.; Zimmerman, A.P. Empirical Predictors of Annual Surface Water Temperature Cycles in North American Lakes. Can. J. Fish. Aquat. Sci. 1983, 40, 1838–1845. [Google Scholar] [CrossRef]
- Oswald, C.J.; Rouse, W.R. Thermal Characteristics and Energy Balance of Various-Size Canadian Shield Lakes in the Mackenzie River Basin. J. Hydrometeorol. 2004, 5, 129–144. [Google Scholar] [CrossRef]
- Aaron-Morrison, A.P.; Ackerman, S.A.; Adams, N.G.; Adler, R.F.; Albanil, A.; Alfaro, E.J.; Allan, R.; Alves, L.M.; Amador, J.A.; Andreassen, L.M.; et al. State of the Climate in 2016. Bull. Am. Meteorol. Soc. 2017, 98, Si-S280. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Walker, S.C.; Jackson, D.A. Empirical Modelling of Lake Water-Temperature Relationships: A Comparison of Approaches. Freshw. Biol. 2008, 53, 897–911. [Google Scholar] [CrossRef]
- Toffolon, M.; Piccolroaz, S.; Majone, B.; Soja, A.M.; Peeters, F.; Schmid, M.; Wüest, A. Prediction of Surface Temperature in Lakes with Different Morphology Using Air Temperature. Limnol. Oceanogr. 2014, 59, 2185–2202. [Google Scholar] [CrossRef] [Green Version]
- Ekercin, S.; Örmeci, C. Evaluating Climate Change Effects on Water and Salt Resources in Salt Lake, Turkey Using Multitemporal SPOT Imagery. Environ. Monit. Assess. 2010, 163, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Rani, N.; Sinha, R.K.; Prasad, K.; Kedia, D.K. Assessment of Temporal Variation in Water Quality of Some Important Rivers in Middle Gangetic Plains, India. Monit. Assess. 2010, 174, 401–415. [Google Scholar] [CrossRef]
- Reinart, A.; Reinhold, M. Mapping Surface Temperature in Large Lakes with MODIS Data. Remote Sens. Environ. 2008, 112, 603–611. [Google Scholar] [CrossRef]
- Alcântara, E.H.; Stech, J.L.; Lorenzzetti, J.A.; Bonnet, M.P.; Casamitjana, X.; Assireu, A.T.; de Moraes Novo, E.M.L. Remote Sensing of Water Surface Temperature and Heat Flux over a Tropical Hydroelectric Reservoir. Remote Sens. Environ. 2010, 114, 2651–2665. [Google Scholar] [CrossRef]
- Hook, S.J.; Vaughan, R.G.; Tonooka, H.; Schladow, S.G. Absolute Radiometric In-Flight Validation of Mid Infrared and Thermal Infrared Data from ASTER and MODIS on the Terra Spacecraft Using the Lake Tahoe, CA/NV, USA, Automated Validation Site. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1798–1807. [Google Scholar] [CrossRef]
- DGA, Dirección General de Agua. (DGA, 2016). Red Hidrométrica. 2016. Available online: Http:Dga.Cl (accessed on 25 November 2020).
- Dirección General de Aguas Dirección General de Aguas. (DGA, 2016a) Atlas Del Agua, Chile. 2016. Available online: Http:Www.Dga.Cl (accessed on 29 October 2021).
- Riffler, M.; Lieberherr, G.; Wunderle, S. Lake Surface Water Temperatures of European Alpine Lakes (1989–2013) Based on the Advanced Very High Resolution Radiometer (AVHRR) 1 Km Data Set. Earth Syst. Sci. Data 2015, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Thiery, W.; Davin, E.L.; Panitz, H.J.; Demuzere, M.; Lhermitte, S.; van Lipzig, N. The Impact of the African Great Lakes on the Regional Climate. J. Clim. 2015, 28, 4061–4085. [Google Scholar] [CrossRef]
- Austin, J.A.; Colman, S.M. Lake Superior Summer Water Temperatures Are Increasing More Rapidly than Regional Temperatures: A Positive Ice-Albedo Feedback. Geophys. Res. Lett. 2007, 34, L06604. [Google Scholar] [CrossRef] [Green Version]
- Dirección General de Agua. (DGA, 2018). Red Hidrométrica. Available online: www.Dga.Cl (accessed on 29 October 2021).
- Köppen, W.; Geiger, R. Klimate Der Erde. Gotha Verlag. Justus Perthes 1928, 91–102. [Google Scholar]
- Viale, M.; Garreaud, R. Orographic Effects of the Subtropical and Extratropical Andes on Upwind Precipitating Clouds. J. Geophys. Res. 2015, 120, 4962–4974. [Google Scholar] [CrossRef]
- González-Rodríguez, L.; Pérez, L.; Fissore, A.; Rodríguez-López, L.; Jimenez, J. Tilt and Orientation of a Flat Solar Collector to Capture Optimal Solar Irradiation in Chilean Latitudes. In Proceedings of the 2nd International Conference on BioGeoSciences; Springer International Publishing: Cham, Switzerland, 2019; pp. 215–228. [Google Scholar]
- Valdovinos, C.; Pedreros, P. Geographic Variations in Shell Growth Rates of the Mussel Diplodon Chilensis from Temperate Lakes of Chile: Implications for Biodiversity Conservation. Limnologica 2007, 37, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Parra, O.; Valdovinos, C.; Urrutia, R.; Cisternas, M.; Habit, E.; Mardones, M. Caracterización y Tendencias Tróficas de Cinco Lagos Costeros de Chile Central. Limnetica 2003, 22, 51–83. [Google Scholar] [CrossRef]
- Fuentealba, C.; Figueroa, R.; González, F.; Palma, M. Variabilidad Genetica Local Del Bivalvo Dulceacuícola Diplodon Chilensis (Gray 1828) Proveniente de Tres Lagos Nahuelbutanos. Gayana 2010, 74, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Karrasch, B.; Woelfl, S.; Urrutia, R.; Nny González, J.E.; Valdovinos, C.; Cid, H.; Parra, O. Lake Laja: Ecomicrobiology and Microbial Assimilative Capacity of the Oligotrophic Andean Lake Laja, Chile. Rev. Chil. Hist. Nat. 2011, 84, 433–450. [Google Scholar] [CrossRef] [Green Version]
- Briceño, I.; Pérez, W.; San, M.D.; Ramos, S. Determination of Water Quality Vichuquén Lake, Using Satellite Images Landsat 8, Sensor OLI, Year 2016, Chile. Rev. Teledetec. 2018, 52, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Schmid, M.; Hunziker, S.; Wüest, A. Lake Surface Temperatures in a Changing Climate: A Global Sensitivity Analysis. Clim. Chang. 2014, 124, 301–315. [Google Scholar] [CrossRef]
- Dirección General de Aguas (DGA). Redefinición de La Red Mínima de Lagos; POCH Ambiental SA: Santiago, Chile, 2009. [Google Scholar]
- Wan, Z.; Hook, S.; Hulley, G. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1 Km SIN Grid V006, NASA EOSDIS Land Processes DAAC. USGS Earth Resour. Observ. Sci. (EROS) Center 2015. [Google Scholar] [CrossRef]
- Team, R. R: A Language and Environment for Statistical Computing; R Foundaion for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Crosman, E.T.; Horel, J.D. MODIS-Derived Surface Temperature of the Great Salt Lake. Remote Sens. Environ. 2009, 113, 73–81. [Google Scholar] [CrossRef]
- Oesch, D.C.; Jaquet, J.M.; Hauser, A.; Wunderle, S. Lake Surface Water Temperature Retrieval Using Advanced Very High Resolution Radiometer and Moderate Resolution Imaging Spectroradiometer Data: Validation and Feasibility Study. J. Geophys. Res. Ocean. 2005, 110, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M.G. The Advanced Theory of Statistics, 2nd ed.; Hafner Publishing Company: New York, NY, USA, 1946. [Google Scholar]
- Wambua, R.M.; Mutua, B.M.; Raude, J.M. Detection of Spatial, Temporal and Trend of Meteorological Drought Using Standardized Precipitation Index (SPI) and Effective Drought Index (EDI) in the Upper Tana River Basin, Kenya. Open J. Mod. Hydrol. 2018, 8, 83–100. [Google Scholar] [CrossRef] [Green Version]
- Alhaji, U.U.; Yusuf, A.S.; Edet, C.O.; Oche, C.O.; Agbo, E.P. Trend Analysis of Temperature in Gombe State Using Mann Kendall Trend Test. J. Sci. Res. Rep. 2018, 20, 1–9. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. n. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Pettitt, A.N. A Non-parametric Approach to the Change-point Problem. J. R. Stat. Soc. Ser. C 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Sneyers, R. Technical Note No 143 on the Statistical Analysis of Series of Observations; World Meteorological Organization: Geneva, Switzerland, 1990. [Google Scholar]
- Hunziker, S.; Brönnimann, S.; Calle, J.; Moreno, I.; Andrade, M.; Ticona, L.; Huerta, A.; Lavado-Casimiro, W. Effects of Undetected Data Quality Issues on Climatological Analyses. Clim. Past 2018, 14, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Cortés, G.; Vargas, X.; McPhee, J. Climatic Sensitivity of Streamflow Timing in the Extratropical Western Andes Cordillera. J. Hydrol. 2011, 405, 93–109. [Google Scholar] [CrossRef]
- Rodrigo, F.S.; Trigo, R.M. Trends in Daily Rainfall in the Iberian Peninsula from 1951 to 2002. Int. J. Climatol. 2007, 27, 513–529. [Google Scholar] [CrossRef]
- Pohlert, T. Non-Parametric Trend Tests and Change-Point Detection; R package version 0.2. 0. 2017. Available online: https://cran.microsoft.com/snapshot/2017-11-08/web/packages/trend/vignettes/trend.pdf (accessed on 29 October 2021).
- Huovinen, P.; Ramírez, J.; Caputo, L.; Gómez, I. Mapping of Spatial and Temporal Variation of Water Characteristics through Satellite Remote Sensing in Lake Panguipulli, Chile. Sci. Total Environ. 2019, 679, 196–208. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Duran-Llacer, I.; González-Rodríguez, L.; Cardenas, R.; Urrutia, R. Retrieving Water Turbidity in Araucanian Lakes (South-Central Chile) Based on Multispectral Landsat Imagery. Remote Sens. 2021, 13, 3133. [Google Scholar] [CrossRef]
- Wan, W.; Li, H.; Xie, H.; Hong, Y.; Long, D.; Zhao, L.; Han, Z.; Cui, Y.; Liu, B.; Wang, C.; et al. A Comprehensive Data Set of Lake Surface Water Temperature over the Tibetan Plateau Derived from MODIS LST Products 2001–2015. Sci. Data 2017, 4, 170095. [Google Scholar] [CrossRef]
- Moser, K.A.; Baron, J.S.; Brahney, J.; Oleksy, I.A.; Saros, J.E.; Hundey, E.J.; Sadro, S.A.; Kopáček, J.; Sommaruga, R.; Kainz, M.J.; et al. Mountain Lakes: Eyes on Global Environmental Change. Glob. Planet. Chang. 2019, 178, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Falvey, M.; Garreaud, R.D. Regional Cooling in a Warming World: Recent Temperature Trends in the Southeast Pacific and along the West Coast of Subtropical South America (1979–2006). J. Geophys. Res. Atmos. 2009, 114, 114. [Google Scholar] [CrossRef]
- Carrasco, J.F. Evidencia de Cambio Climático En Chile Sus Proyecciones y Consecuencias. 2017. Available online: https://www.researchgate.net/profile/Jorge-Carrasco-8/publication/314421068_EVIDENCIA_DE_CAMBIO_CLIMATICO_EN_CHILE_SUS_PROYECCIONES_Y_CONSECUENCIAS/links/590e3142a6fdccad7b10ddf6/EVIDENCIA-DE-CAMBIO-CLIMATICO-EN-CHILE-SUS-PROYECCIONES-Y-CONSECUENCIAS.pdf (accessed on 29 October 2021).
- Burger, F.; Brock, B.; Montecinos, A. Seasonal and Elevational Contrasts in Temperature Trends in Central Chile between 1979 and 2015. Glob. Planet. Chang. 2018, 162, 136–147. [Google Scholar] [CrossRef]
- Vuille, M.; Franquist, E.; Garreaud, R.; Lavado Casimiro, W.S.; Cáceres, B. Impact of the Global Warming Hiatus on Andean Temperature. J. Geophys. Res. 2015, 120, 3745–3757. [Google Scholar] [CrossRef] [Green Version]
- Nimptsch, J.; Woelfl, S.; Osorio, S.; Valenzuela, J.; Moreira, C.; Ramos, V.; Castelo-Branco, R.; Leão, P.N.; Vasconcelos, V. First Record of Toxins Associated with Cyanobacterial Blooms in Oligotrophic North Patagonian Lakes of Chile-a Genomic Approach. Int. Rev. Hydrobiol. 2016, 101, 57–68. [Google Scholar] [CrossRef]
- Almanza, V.; Pedreros, P.; Dail Laughinghouse, H.; Félez, J.; Parra, O.; Azócar, M.; Urrutia, R. Association between Trophic State, Watershed Use, and Blooms of Cyanobacteria in South-Central Chile. Limnologica 2019, 75, 30–41. [Google Scholar] [CrossRef]
- Establece Normas Secundarias de Calidad Ambiental Para La Protección de Aguas Continentales Superficiales Del; Chile. 2003.
- Lu, J.; Zhu, B.; Struewing, I.; Xu, N.; Duan, S. Nitrogen–Phosphorus-Associated Metabolic Activities during the Development of a Cyanobacterial Bloom Revealed by Metatranscriptomics. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Adrian, R.; O’reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; van Donk, E.; et al. Lakes as Sentinels of Climate Change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef]
- Dokulil, M.T.; Jagsch, A.; George, G.D.; Anneville, O.; Jankowski, T.; Wahl, B.; Lenhart, B.; Blenckner, T.; Teubner, K. Twenty Years of Spatially Coherent Deepwater Warming in Lakes across Europe Related to the North Atlantic Oscillation. Limnol. Oceanogr. 2006, 51, 2787–2793. [Google Scholar] [CrossRef] [Green Version]
- Salmaso, N.; Mosello, R. Limnological Research in the Deep Southern Subalpine Lakes: Synthesis, Directions and Perspectives. Adv. Oceanogr. Limnol. 2010, 1, 29–66. [Google Scholar] [CrossRef]
- Iestyn Woolway, R.; Merchant, C.J. Amplified Surface Temperature Response of Cold, Deep Lakes to Inter-Annual Air Temperature Variability. Sci. Rep. 2017, 7, 4130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolway, R.I.; Merchant, C.J. Intralake Heterogeneity of Thermal Responses to Climate Change: A Study of Large Northern Hemisphere Lakes. J. Geophys. Res. Atmos. 2018, 123, 3087–3098. [Google Scholar] [CrossRef]
- Straile, D.; Jöhnk, K.; Rossknecht, H. Complex Effects of Winter Warming on the Physicochemical Characteristics of a Deep Lake. Limnol. Oceanogr. 2003, 48, 1432–1438. [Google Scholar] [CrossRef]
- Penk, M.; Donohue, I.; Récoules, V.; Irvine, K. Elevated Temperatures Interact with Habitat Quality to Undermine Survival of Ectotherms in Climatic Refugia. Divers. Distrib. 2015, 21, 200–210. [Google Scholar] [CrossRef]
- Woolway, R.I.; Merchant, C.J. Worldwide Alteration of Lake Mixing Regimes in Response to Climate Change. Nat. Geosci. 2019, 12, 271–276. [Google Scholar] [CrossRef]
Study Lakes | Latitude | Longitude | Altitude | Surface Area | Perimeter | Volume | Mean Depth | Maximum Depth | Trophic State |
---|---|---|---|---|---|---|---|---|---|
(°S) | (°W) | m a.s.l. | km2 | km | km3 | m | m | ||
Vichuquén | 34°49′ | 72°04′ | 5 | 12.68 | 35.12 | 0.21 | 2.5 | 6.3 | Eutrophic |
Maule | 36°05′ | 70°50′ | 2166 | 58.28 | 78.98 | 170 | NR | NR | Oligotrophic |
Lanalhue | 37°55′ | 73°19′ | 12 | 32.60 | 64.76 | 0.42 | 13.1 | 26 | Eutrophic |
Laja | 37°19′ | 71°18′ | 1360 | 77.90 | 142.9 | 5.59 | 75 | 120 | Oligotrophic |
Lleulleu | 38°09′ | 73°19′ | 5 | 38.96 | 98.51 | 0.93 | 23.5 | 46.9 | Oligotrophic |
Budi | 37°19′ | 71°19′ | 2 | 73.29 | 328.8 | 0.22 | 4.4 | 15 | Oligotrophic |
Galletué | 38°41′ | 71°17′ | 1350 | 13.08 | 20.61 | 0.40 | NR | 50 | Oligotrophic |
Colico | 39°05′ | 71°58′ | 500 | 54.96 | 52.28 | NR | 416 | NR | Oligotrophic |
Huilipilún | 39°08′ | 72°10′ | 343 | 11.33 | 18.74 | NR | NR | 212 | Oligotrophic |
Villarrica | 39°18′ | 72°05′ | 230 | 176.0 | 71.20 | 21 | 120 | 165 | Meso-oligotrophic |
Caburga | 39°07′ | 71°45′ | 505 | 52.27 | 51.73 | 8.88 | 117 | 327 | Oligotrophic |
Calafquén | 39°32′ | 72°09′ | 203 | 114.9 | 122.38 | NR | 115 | 212 | Oligotrophic |
Riñihue | 39°50′ | 72°20′ | 117 | 77.50 | 77.00 | 12.8 | 162 | 323 | Oligotrophic |
Panquipulli | 39°43′ | 71°13′ | 140 | 117 | 124.05 | NR | 126 | 268 | Oligotrophic |
Study Lakes | R2 | RMSE | MAE | Slope | n |
---|---|---|---|---|---|
(°C) | (°C) | ||||
Caburga | 0.85 | 1.88 | 1.50 | 0.87 | 34 |
Villarrica | 0.94 | 1.07 | 0.83 | 0.94 | 31 |
Lanalhue | 0.94 | 1.04 | 0.77 | 0.87 | 34 |
Calafquén | 0.85 | 1.79 | 1.24 | 0.85 | 29 |
Panguipulli | 0.86 | 1.61 | 1.20 | 0.80 | 43 |
Riñihue | 0.88 | 1.34 | 1.01 | 0.81 | 40 |
Study Lakes | Mann-Kendall | Pettitt | |||||||
---|---|---|---|---|---|---|---|---|---|
S | ZMK | P | Sen | Trend (°C/Year) | Confidence Interval (95%) | Kt | P | Change | |
Vichuquén | 78 | 3.31 | 0.001 | 0.15 | 0.009 | [−0.467; 0.895] | 60 | 0.005 | 2007 |
Maule | 48 | 2.02 | 0.048 | 0.27 | 0.016 | [−1.509; 1.896] | 58 | 0.008 | 2011 |
Laja | 54 | 2.28 | 0.026 | 0.27 | 0.016 | [−1.342; 1.929] | 58 | 0.009 | 2011 |
Lleulleu | 56 | 2.36 | 0.021 | 0.16 | 0.010 | [−0.766; 1.314] | 48 | 0.053 | 2007 |
Galletehué | 48 | 2.02 | 0.048 | 0.19 | 0.011 | [−1.301; 1.910] | 50 | 0.035 | 2011 |
Budi | 50 | 2.11 | 0.039 | 0.17 | 0.010 | [−1.712; 1.155] | 38 | 0.020 | 2007 |
Colico | 52 | 2.19 | 0.032 | 0.17 | 0.010 | [−0.972; 1.278] | 44 | 0.094 | 2011 |
Caburga | 54 | 2.28 | 0.026 | 0.11 | 0.007 | [−0.741; 1.220] | 46 | 0.075 | 2007 |
Villarrica | 60 | 2.53 | 0.014 | 0.16 | 0.010 | [−0.705; 1.194] | 46 | 0.069 | 2011 |
Calafquén | 66 | 2.79 | 0.007 | 0.19 | 0.011 | [−0.652; 1.591] | 46 | 0.070 | 2011 |
Panguipulli | 66 | 2.79 | 0.007 | 0.18 | 0.011 | [−0.712; 1.350] | 44 | 0.096 | 2007 |
Riñihue | 62 | 2.62 | 0.011 | 0.19 | 0.011 | [−0.843; 1.248] | 46 | 0.071 | 2010 |
Study Lakes | Mann-Kendall | Pettitt | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Season | S | ZMK | P | Sen | Trend (°C/year) | Confidence Interval (95%) | Kt | P | Change | |
Vichuquén | Winter | 80 | 3.39 | 0.00 | 0.15 | 0.009 | [−0.363; 0.902] | 66 | 0.001 | 2005 |
Maule | Spring | 56 | 2.36 | 0.02 | 0.27 | 0.016 | [−1.837; 2.638] | 58 | 0.008 | 2009 |
Laja | Summer | 64 | 2.71 | 0.01 | 0.25 | 0.015 | [−1.884; 2.569] | 56 | 0.021 | 2007 |
Laja | Spring | 48 | 2.02 | 0.05 | 0.34 | 0.020 | [−1.141; 1.610] | 48 | 0.052 | 2007 |
Caburga | Winter | 54 | 2.28 | 0.03 | 0.06 | 0.003 | [−0.346; 0.676] | 50 | 0.041 | 2011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranda, A.C.; Rivera-Ruiz, D.; Rodríguez-López, L.; Pedreros, P.; Arumí-Ribera, J.L.; Morales-Salinas, L.; Fuentes-Jaque, G.; Urrutia, R. Evidence of Climate Change Based on Lake Surface Temperature Trends in South Central Chile. Remote Sens. 2021, 13, 4535. https://doi.org/10.3390/rs13224535
Aranda AC, Rivera-Ruiz D, Rodríguez-López L, Pedreros P, Arumí-Ribera JL, Morales-Salinas L, Fuentes-Jaque G, Urrutia R. Evidence of Climate Change Based on Lake Surface Temperature Trends in South Central Chile. Remote Sensing. 2021; 13(22):4535. https://doi.org/10.3390/rs13224535
Chicago/Turabian StyleAranda, Arnaldo Collazo, Daniela Rivera-Ruiz, Lien Rodríguez-López, Pablo Pedreros, José Luis Arumí-Ribera, Luis Morales-Salinas, Guillermo Fuentes-Jaque, and Roberto Urrutia. 2021. "Evidence of Climate Change Based on Lake Surface Temperature Trends in South Central Chile" Remote Sensing 13, no. 22: 4535. https://doi.org/10.3390/rs13224535
APA StyleAranda, A. C., Rivera-Ruiz, D., Rodríguez-López, L., Pedreros, P., Arumí-Ribera, J. L., Morales-Salinas, L., Fuentes-Jaque, G., & Urrutia, R. (2021). Evidence of Climate Change Based on Lake Surface Temperature Trends in South Central Chile. Remote Sensing, 13(22), 4535. https://doi.org/10.3390/rs13224535