A Robust InSAR Phase Unwrapping Method via Phase Gradient Estimation Network
Abstract
:1. Introduction
2. PGENet-LS Phase Unwrapping Method
2.1. Principle of Phase Unwrapping
2.2. Problem Analysis
2.3. PGENet
2.4. PGENet-LS Phase Unwrapping Method
3. Experiments
3.1. Data Generation
3.2. Loss Function
3.3. Performance Evaluation Index
3.4. General Experiment Settings
4. Results
4.1. Performance Evaluation of PGENet
4.2. Robustness Testing of PGENet
4.3. Performance Evaluation of Phase Unwrapping on Simulated Data
4.4. Robustness Testing of Phase Unwrapping on Simulated Data
4.5. Performance Evaluation of Phase Unwrapping on Real InSAR Data
4.6. Robustness Testing of Phase Unwrapping on Real InSAR Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Lan, Y.; Yuan, Z.; Xu, J.; Lee, H. Phase Unwrapping in InSAR: A Review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 40–58. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Y.; Montazeri, S.; Ge, N. A Review of Ten-Year Advances of Multi-Baseline SAR Interferometry Using TerraSAR-X Data. Remote Sens. 2018, 10, 1374. [Google Scholar] [CrossRef] [Green Version]
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl. 1998, 14, R1. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Zebker, H.A.; Werner, C.L. Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Sci. 1988, 23, 713–720. [Google Scholar] [CrossRef] [Green Version]
- Itoh, K. Analysis of the phase unwrapping algorithm. Appl. Opt. 1982, 21, 2470. [Google Scholar] [CrossRef] [PubMed]
- Herráez, M.A.; Burton, D.R.; Lalor, M.J.; Gdeisat, M.A. Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path. Appl. Opt. 2002, 41, 7437–7444. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Vesecky, J.F.; Zebker, H.A. New approaches in interferometric SAR data processing. IEEE Trans. Geosci. Remote Sens. 1992, 30, 560–567. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, H.; Zhang, R.; Xie, X.; Chen, B. A robust phase unwrapping algorithm based on reliability mask and weighted minimum least-squares method. Opt. Lasers Eng. 2019, 112, 39–45. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Valadao, G. Phase unwrapping via graph cuts. IEEE Trans. Image Process. 2007, 16, 698–709. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Wang, W.D.; Li, P. Minimum L 2-norm two dimensional phase unwrapping. J. Earth Sci. Enivron. 2005, 1, 80–83. [Google Scholar]
- Pritt, M.D. Phase unwrapping by means of multigrid techniques for interferometric SAR. IEEE Trans. Geosci. Remote Sens. 1996, 34, 728–738. [Google Scholar] [CrossRef]
- Ghiglia, D.C.; Romero, L.A. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. JOSA A 1994, 11, 107–117. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1709–1719. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.W.; Zebker, H.A. Network approaches to two-dimensional phase unwrapping: Intractability and two new algorithms. JOSA A 2000, 17, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zhang, J.; Shao, J.; Song, B.; Yao, B.; Liang, R. Deep Convolutional Neural Network Phase Unwrapping for Fringe Projection 3D Imaging. Sensors 2020, 20, 3691. [Google Scholar] [CrossRef]
- Zhang, T.; Jiang, S.; Zhao, Z.; Dixit, K.; Zhou, X.; Hou, J.; Zhang, Y.; Yan, C. Rapid and robust two-dimensional phase unwrapping via deep learning. Opt. Express 2019, 27, 23173–23185. [Google Scholar] [CrossRef]
- Spoorthi, G.; Gorthi, R.K.S.S.; Gorthi, S. PhaseNet 2.0: Phase Unwrapping of Noisy Data Based on Deep Learning Approach. IEEE Trans. Image Process. 2020, 29, 4862–4872. [Google Scholar] [CrossRef]
- Li, S.; Xu, H.; Gao, S.; Li, C. A non-fuzzy interferometric phase estimation algorithm based on modified Fully Convolutional Network. Pattern Recognit. Lett. 2019, 128, 60–69. [Google Scholar] [CrossRef]
- Sica, F.; Calvanese, F.; Scarpa, G.; Rizzoli, P. A CNN-Based Coherence-Driven Approach for InSAR Phase Unwrapping. IEEE Geosci. Remote Sens. Lett. 2020. early access. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, H.; Lan, Y. Deep Convolutional Neural Network-Based Robust Phase Gradient Estimation for Two-Dimensional Phase Unwrapping Using SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4653–4665. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, H.; Lan, Y.; Xing, m. Artificial Intelligence In Interferometric Synthetic Aperture Radar Phase Unwrapping: A Review. IEEE Geosci. Remote Sens. Mag. 2021, 9, 10–28. [Google Scholar] [CrossRef]
- Wang, H.; Hu, J.; Fu, H.; Wang, C.; Wang, Z. A Novel Quality-Guided Two-Dimensional InSAR Phase Unwrapping Method via GAUNet. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7840–7856. [Google Scholar] [CrossRef]
- Ahmad, A.; Lu, Y. Identifying the phase discontinuities in the wrapped phase maps by a classification framework. Opt. Eng. 2016, 55, 033104. [Google Scholar] [CrossRef]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Pritt, M.D. Weighted least squares phase unwrapping by means of multigrid techniques. In Proceedings of the Synthetic Aperture Radar and Passive Microwave Sensing, Paris, France, 25–28 September 1995; International Society for Optics and Photonics: Paris, France, 1995; Volume 2584, pp. 278–288. [Google Scholar]
- Guo, Y.; Chen, X.; Zhang, T. Robust phase unwrapping algorithm based on least squares. Opt. Lasers Eng. 2014, 63, 25–29. [Google Scholar] [CrossRef]
- Mao, X.; Shen, C.; Yang, Y.B. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. Adv. Neural Inf. Process. Syst. 2016, 29, 2802–2810. [Google Scholar]
- Tao, X.; Gao, H.; Shen, X.; Wang, J.; Jia, J. Scale-recurrent network for deep image deblurring. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8174–8182. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Nah, S.; Hyun Kim, T.; Mu Lee, K. Deep multi-scale convolutional neural network for dynamic scene deblurring. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3883–3891. [Google Scholar]
- Zhou, Y.; Shi, J.; Yang, X.; Wang, C.; Kumar, D.; Wei, S.; Zhang, X. Deep multi-scale recurrent network for synthetic aperture radar images despeckling. Remote Sens. 2019, 11, 2462. [Google Scholar] [CrossRef] [Green Version]
- Pu, L.; Zhang, X.; Zhou, Z.; Shi, J.; Wei, S.; Zhou, Y. A Phase Filtering Method with Scale Recurrent Networks for InSAR. Remote Sens. 2020, 12, 3453. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Yao, Y.; Rosasco, L.; Caponnetto, A. On early stopping in gradient descent learning. Constr. Approx. 2007, 26, 289–315. [Google Scholar] [CrossRef]
- Raskutti, G.; Wainwright, M.J.; Yu, B. Early stopping and non-parametric regression: An optimal data-dependent stopping rule. J. Mach. Learn. Res. 2014, 15, 335–366. [Google Scholar]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Huang, H.; Dong, Z.; Wu, M. Modified patch-based locally optimal Wiener method for interferometric SAR phase filtering. ISPRS J. Photogramm. Remote Sens. 2016, 114, 10–23. [Google Scholar] [CrossRef] [Green Version]
# | Layer Name | Filter Size | # Feature Maps | Padding | Stride | Image Size |
---|---|---|---|---|---|---|
Encoder Block 1 | Conv + Relu | 64 | 2 | 1 | ||
Conv + Relu | 64 | 2 | 2 | |||
Encoder Block 2 | Conv + Relu | 128 | 2 | 1 | ||
Conv + Relu | 128 | 2 | 2 | |||
Encoder Block 3 | Conv + Relu | 256 | 2 | 1 | ||
Conv + Relu | 256 | 2 | 2 | |||
Encoder Block 4 | Conv + Relu | 512 | 2 | 1 | ||
Conv + Relu | 512 | 2 | 2 | |||
Encoder Block 5 | Conv + Relu | 512 | 2 | 1 | ||
Conv + Relu | 512 | 2 | 2 | |||
Encoder Block 6 | Conv + Relu | 512 | 2 | 1 | ||
Conv + Relu | 512 | 2 | 2 | |||
Encoder Block 7 | Conv + Relu | 512 | 2 | 1 | ||
Conv + Relu | 512 | 2 | 2 | |||
Encoder Block 8 | Conv + Relu | 512 | 2 | 1 | ||
Conv + Relu | 512 | 2 | 2 | |||
Decoder Block 1 | Conv + Relu | 512 | 2 | 1 | ||
Deconv + Relu | 512 | 1 | 2 | |||
Decoder Block 2 | Conv + Relu | 512 | 2 | 1 | ||
Deconv + Relu | 512 | 1 | 2 | |||
Decoder Block 3 | Conv + Relu | 512 | 2 | 1 | ||
Deconv + Relu | 512 | 1 | 2 | |||
Decoder Block 4 | Conv + Relu | 512 | 2 | 1 | ||
Deconv + Relu | 512 | 1 | 2 | |||
Decoder Block 5 | Conv + Relu | 256 | 2 | 1 | ||
Deconv + Relu | 256 | 1 | 2 | |||
Decoder Block 6 | Conv + Relu | 128 | 2 | 1 | ||
Deconv + Relu | 128 | 1 | 2 | |||
Decoder Block 7 | Conv + Relu | 64 | 2 | 1 | ||
Deconv + Relu | 64 | 1 | 2 | |||
Decoder Block 8 | Conv + Relu | 32 | 2 | 1 | ||
Deconv + Relu | 32 | 1 | 2 | |||
Conv + Relu | 1 | 2 | 1 |
Methods | Horizontal Phase Gradient | Vertical Phase Gradient |
---|---|---|
RMSE (Rad) | RMSE (Rad) | |
PGE-PCA | 2.16 | 2.14 |
PGENet | 0.09 | 0.03 |
Methods | Unwrapping Failure Rate (%) | RMSE (Rad) |
---|---|---|
LS | 25.35 | 2.64 |
QGPU | 46.24 | 5.77 |
PUMA | 1.87 | 1.07 |
SNAPHU | 10.49 | 1.65 |
CNN [20] | 5.45 | 1.39 |
Proposed method | 0.20 | 0.54 |
Methods | RMSE (m) |
---|---|
LS | 8.00 |
QGPU | 15.16 |
PUMA | 7.02 |
SNAPHU | 9.09 |
CNN [20] | 7.27 |
Proposed method | 6.76 |
Methods | RMSE (m) |
---|---|
LS | 110.89 |
QGPU | 64.08 |
PUMA | 12.99 |
SNAPHU | 12.69 |
CNN [20] | 12.08 |
Proposed method | 7.25 |
Number of Block | RMSE (rad) |
---|---|
10 | 0.6039 |
8 | 0.5425 |
5 | 0.6150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, L.; Zhang, X.; Zhou, Z.; Li, L.; Zhou, L.; Shi, J.; Wei, S. A Robust InSAR Phase Unwrapping Method via Phase Gradient Estimation Network. Remote Sens. 2021, 13, 4564. https://doi.org/10.3390/rs13224564
Pu L, Zhang X, Zhou Z, Li L, Zhou L, Shi J, Wei S. A Robust InSAR Phase Unwrapping Method via Phase Gradient Estimation Network. Remote Sensing. 2021; 13(22):4564. https://doi.org/10.3390/rs13224564
Chicago/Turabian StylePu, Liming, Xiaoling Zhang, Zenan Zhou, Liang Li, Liming Zhou, Jun Shi, and Shunjun Wei. 2021. "A Robust InSAR Phase Unwrapping Method via Phase Gradient Estimation Network" Remote Sensing 13, no. 22: 4564. https://doi.org/10.3390/rs13224564
APA StylePu, L., Zhang, X., Zhou, Z., Li, L., Zhou, L., Shi, J., & Wei, S. (2021). A Robust InSAR Phase Unwrapping Method via Phase Gradient Estimation Network. Remote Sensing, 13(22), 4564. https://doi.org/10.3390/rs13224564