Testing Accuracy of Land Cover Classification Algorithms in the Qilian Mountains Based on GEE Cloud Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preparation
2.2.1. Sentinel-2 Image Data
2.2.2. Sentinel-1 Image Data
2.2.3. SRTM Data
2.2.4. Land Cover Datasets
2.3. Methods
2.3.1. Sampling Strategies
2.3.2. Feature Construct
- Spectral indices
- Texture features
- Radar features
- Terrain features
2.3.3. Classification Algorithms
- Support Vector Machine
- Classification and Regression Tree
- Random Forest
2.3.4. Accuracy Assessment
3. Results
3.1. Classification Results and Accuracy of Classification Results
3.2. Influence of the Feature Variables on the Classification Accuracy
3.2.1. Importance Scores of the Variables Used in the RF Classification Algorithm
3.2.2. Influence of the Feature Variables on the OA
3.2.3. Influence of the Feature Variables on the PA of the Different Land Cover Types
3.2.4. Influence of the Feature Variables on the UA of the Different Land Cover Types
3.3. Comparison of Classification Results with Other Land Cover Products
4. Discussion
4.1. Comparison of the Performances of the Different Classification Algorithms
4.2. Influence of Feature Variables on Remote Sensing Classification
4.3. Comparison of the Land Cover Results Obtained in This Study with Existing Land Cover Products
4.4. Limitations and Prospects of Land Cover Classification in QLM
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
Code | Land Cover Types | Number |
---|---|---|
1 | Croplands | 328 |
2 | Forests | 1192 |
3 | Grasslands | 9103 |
4 | Shrublands | 113 |
5 | Wetlands | 199 |
6 | Water bodies | 703 |
7 | Construction lands | 261 |
8 | Bare lands | 8730 |
9 | Permanent snow and ice | 482 |
Total | 21,111 |
Land Cover Types | Feature Variable Combinations | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spectral Bands | Spectral Bands + Spectral Indices | Spectral Bands + Spectral Indices + Terrain Features | Spectral Bands + Spectral Indices + Terrain Features + Radar Features | Spectral Bands + Spectral Indices + Terrain Features + Radar Features + Texture Features | |||||||||||
SVM | CART | RF | SVM | CART | RF | SVM | CART | RF | SVM | CART | RF | SVM | CART | RF | |
CR | 9.42 | 55.33 | 61.59 | 34.33 | 58.04 | 63.47 | 47.76 | 66.32 | 68.60 | 59.10 | 60.23 | 71.25 | 55.83 | 65.55 | 66.66 |
FO | 79.24 | 90.09 | 90.93 | 84.67 | 87.14 | 91.95 | 83.18 | 89.38 | 93.02 | 86.43 | 90.49 | 94.02 | 80.44 | 89.70 | 94.13 |
GL | 98.61 | 94.61 | 97.89 | 98.45 | 94.85 | 97.99 | 97.53 | 96.01 | 98.16 | 97.63 | 95.44 | 98.19 | 97.61 | 96.34 | 98.44 |
SL | 8.61 | 66.28 | 58.68 | 14.22 | 62.41 | 50.85 | 11.81 | 66.67 | 51.30 | 13.00 | 64.03 | 55.60 | 33.89 | 57.72 | 52.55 |
WL | 6.26 | 24.30 | 22.55 | 16.09 | 24.44 | 21.80 | 17.08 | 42.35 | 41.87 | 19.78 | 39.49 | 49.00 | 32.71 | 40.79 | 44.97 |
WB | 92.49 | 92.44 | 93.35 | 92.58 | 92.19 | 94.76 | 95.04 | 97.03 | 96.67 | 95.25 | 95.46 | 95.86 | 95.58 | 95.77 | 96.16 |
CL | 2.25 | 56.29 | 49.32 | 5.55 | 55.45 | 46.82 | 50.57 | 69.09 | 73.55 | 91.66 | 83.33 | 84.74 | 90.00 | 82.63 | 87.31 |
BL | 99.15 | 96.80 | 99.05 | 99.40 | 97.02 | 99.01 | 99.01 | 97.80 | 99.21 | 99.23 | 98.15 | 99.26 | 99.17 | 98.18 | 99.37 |
PSI | 100 | 99.11 | 99.42 | 99.07 | 97.93 | 99.31 | 97.51 | 99.08 | 99.44 | 94.22 | 99.08 | 99.42 | 94.44 | 97.90 | 99.57 |
Land Cover Types | Feature Variable Combinations | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spectral Bands | Spectral Bands + Spectral Indices | Spectral Bands + spectral Indices + Terrain Features | Spectral Bands + Spectral Indices + Terrain Features + Radar Features | Spectral Bands + Spectral Indices + Terrain Features + Radar Features + Texture Features | |||||||||||
SVM | CART | RF | SVM | CART | RF | SVM | CART | RF | SVM | CART | RF | SVM | CART | RF | |
CR | 100 | 59.26 | 77.65 | 86.79 | 51.01 | 81.25 | 72.07 | 65.26 | 82.90 | 67.34 | 57.78 | 84.50 | 65.52 | 61.44 | 85.52 |
FO | 87.42 | 86.07 | 92.50 | 86.02 | 86.75 | 91.08 | 89.82 | 88.55 | 93.40 | 88.05 | 89.21 | 93.32 | 83.89 | 90.90 | 94.15 |
GL | 91.79 | 95.54 | 95.55 | 93.19 | 95.37 | 95.79 | 93.44 | 96.14 | 96.49 | 94.73 | 95.99 | 96.97 | 94.18 | 96.14 | 96.75 |
SL | 100 | 61.21 | 100 | 100 | 52.35 | 100 | 100 | 62.54 | 100 | 100 | 57.65 | 99.20 | 93.75 | 54.80 | 100 |
WL | 100 | 20.69 | 63.16 | 83.33 | 20.91 | 72.32 | 83.33 | 43.92 | 71.24 | 92.21 | 39.90 | 69.67 | 64.20 | 38.13 | 65.89 |
WB | 99.21 | 94.56 | 98.09 | 98.75 | 94.06 | 97.69 | 98.38 | 95.97 | 97.87 | 98.52 | 96.68 | 98.52 | 97.66 | 97.34 | 98.49 |
CL | 100 | 51.94 | 94.74 | 100 | 59.59 | 90.65 | 72.20 | 73.75 | 95.74 | 92.06 | 87.23 | 98.09 | 92.16 | 82.02 | 96.38 |
BL | 95.48 | 96.71 | 96.94 | 95.48 | 97.12 | 97.02 | 96.54 | 97.71 | 98.10 | 98.06 | 97.82 | 98.21 | 98.34 | 98.46 | 98.63 |
PSI | 99.29 | 97.89 | 98.50 | 99.29 | 98.83 | 98.51 | 99.79 | 99.76 | 98.45 | 100 | 99.53 | 99.18 | 97.77 | 99.75 | 99.14 |
References
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 data for land cover/use mapping: A review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Navin, M.S.; Agilandeeswari, L. Multispectral and hyperspectral images based land use/land cover change prediction analysis: An extensive review. Multimed. Tools Appl. 2020, 79, 1–24. [Google Scholar] [CrossRef]
- Li, D.; Tian, P.; Luo, H.; Hu, T.; Dong, B.; Cui, Y.; Khan, S.; Luo, Y. Impacts of land use and land cover changes on regional climate in the Lhasa River basin, Tibetan Plateau. Sci. Total Environ. 2020, 742, 140570. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad, P.S.; Liou, Y.-A.; Rahman, A. Land-Use Land-Cover classification by machine learning classifiers for satellite Observations—A review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef] [Green Version]
- Kavitha, A.V.; Srikrishna, A.; Satyanarayana, C. A Review on Detection of Land Use and Land Cover from an Optical Remote Sensing Image. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1074, 2002–2023. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. Isprs J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Defries, R.S.; Townshend, J.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Bartholome, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla, M.D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Arino, O.; Bicheron, P.; Achard, F.; Latham, J.; Witt, R.; Weber, J.L. Globcover: The most detailed portrait of earth. Esa Bull.-Eur. Space Agency 2008, 2008, 24–31. [Google Scholar]
- ESA. Land Cover CCI Product User Guide Version 2.0. Available online: http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (accessed on 21 March 2021).
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.; Herold, M.; Bertels, L.; Smets, B. Copernicus global land cover layers—collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef] [Green Version]
- Feranec, J.; Soukup, T.; Hazeu, G.; Jaffrain, G. European Landscape Dynamics: Corine Land Cover Data, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 9–14. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Chen, J.; Liao, A.; Cao, X.; Chen, L.; Mills, J. Global land cover mapping at 30 m resolution: A POKbased operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 482607–482654. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 23–26. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data Discuss. 2020, 2020, 1–31. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, C.; Chen, X.; Gao, Y.; Xie, S.; Zhang, B. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth Syst. Sci. Data 2020, 12, 1625–1648. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, L.; Zhang, X.; Chen, X.; Xie, S. Consistency analysis and accuracy assessment of three global 30-m Land-Cover products over the European Union using the LUCAS dataset. Remote Sens. 2020, 12, 3479. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, H.; Li, Z.; Hackman, K.O.; Liu, C.; Andriamiarisoa, R.L.; Raherivelo, T.; Li, Y.; Gong, P. Automatic high-resolution land cover production in Madagascar using sentinel-2 time series, tile-based image classification and google earth engine. Remote Sens. 2020, 12, 3663. [Google Scholar] [CrossRef]
- Zeng, H.; Bingfang, W.U.; Wang, S.; Walter, M.; Mavengahama, S. A synthesizing Land-cover classification method based on Google Earth Engine: A case study in Nzhelele and Levhuvu catchments. Chin. Geogr. Sci. 2019, 30, 397–409. [Google Scholar] [CrossRef]
- Alemayehu, M.; Felix, H.; Savory, D.J.; Ricardo, A.P.; Gething, P.W.; Bennett, A.; Sturrock, H.J.W. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing. PLoS ONE 2017, 12, e0184926. [Google Scholar] [CrossRef]
- Tassi, A.; Gigante, D.; Modica, G.; Di Martino, L.; Vizzari, M. Pixel- vs. Object-Based Landsat 8 data classification in Google Earth engine using random forest: The case study of Maiella National Park. Remote Sens. 2021, 13, 2299. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Xie, S.; Gao, Y. Fine Land-Cover Mapping in China Using Landsat Datacube and an Operational SPECLib-Based Approach. Remote Sens. 2019, 11, 1056. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.; Zhong, B.; Jue, K.; Wu, J. Land cover dataset at Qilian mountain area from 1985 to 2019 (V2.0). Natl. Tibet. Plateau Data Cent. 2020. [Google Scholar] [CrossRef]
- Wang, H.; Liu, C.; Zang, F.; Yang, J.; Li, N.; Rong, Z.; Zhao, C. Impacts of topography on the land cover classification in the Qilian Mountains, Northwest China. Can. J. Remote Sens. 2020, 46, 344–359. [Google Scholar] [CrossRef]
- Deng, S.F.; Yang, T.B.; Zeng, B.; Zhu, X.F.; Hao-Jie, X.U. Vegetation cover variation in the Qilian mountains and its response to climate change in 2000-2011. J. Mt. Sci. 2013, 10, 1050–1062. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, X.; Qin, Y.; Wang, J.; Xu, X.; Hu, Y.; Qiao, Z. Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2020, 239, 111624. [Google Scholar] [CrossRef]
- Abdel-Hamid, A.; Dubovyk, O.; Graw, V.; Greve, K. Assessing the impact of drought stress on grasslands using multi-temporal SAR data of Sentinel-1: A case study in Eastern Cape, South Africa. Eur. J. Remote Sens. 2020, 53, 3–16. [Google Scholar] [CrossRef]
- Su, Y.; Li, X.; Feng, M.; Nian, Y.; Huang, L.; Xie, T.; Zhang, K.; Chen, F.; Huang, W.; Chen, J.; et al. High agricultural water consumption led to the continued shrinkage of the Aral Sea during 1992–2015. Sci. Total Environ. 2021, 777, 145993. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Wang, L.; Hu, L.; Gong, P. Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery. Remote Sens. 2013, 6, 964–983. [Google Scholar] [CrossRef] [Green Version]
- Amani, M.; Mahdavi, S.; Afshar, M.; Brisco, B.; Huang, W.; Sayyed, M.J.M.; White, L.; Banks, S.; Montgomery, J.; Hopkinson, C. Canadian wetland inventory using Google Earth Engine: The first map and preliminary results. Remote Sens. 2019, 11, 842–861. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Foody, G.M. Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy. Photogramm. Eng. Remote Sens. 2004, 70, 627–634. [Google Scholar] [CrossRef]
- Card, D.H. Using known map category marginal frequencies to improve estimates of thematic map accuracy. Photogramm. Eng. Remote Sens. 1982, 48, 431–439. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- McFEETERS, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Diek, S.; Fornallaz, F.; Schaepman, M.E.; Jong, R.D. Barest Pixel composite for agricultural areas using Landsat time series. Remote Sens. 2017, 9, 1245. [Google Scholar] [CrossRef] [Green Version]
- Birdi, P.K.; Kale, K. Enhancement of land cover and land use classification accuracy using spectral and textural features of fused images. Commun. Comput. Inf. Sci. 2017, 876, 317–325. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. Stud. Media Commun. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 2012, 70, 78–87. [Google Scholar] [CrossRef]
- Breiman, L. Random forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Csillik, O. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016, 187, 156–168. [Google Scholar] [CrossRef]
- Li, Q.; Qiu, C.; Ma, L.; Schmitt, M.; Zhu, X.X. Mapping the Land Cover of Africa at 10 m resolution from multi-source remote sensing data with google earth engine. Remote Sens. 2020, 12, 602. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Li, W.; Zhu, G.; Zhou, H.; Yan, H.; Xue, P. Land Use/Land cover changes and their driving factors in the Northeastern Tibetan Plateau based on geographical detectors and Google Earth Engine: A case study in Gannan prefecture. Remote Sens. 2020, 12, 3139. [Google Scholar] [CrossRef]
- Huang, D.; Xu, S.; Sun, J.; Liang, S.; Wang, Z. Accuracy assessment model for classification result of remote sensing image based on spatial sampling. J. Appl. Remote Sens. 2017, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Zhang, Y.; Song, Z.; Chen, B.; Wang, Y. Mapping Coastal Wetlands of the Bohai Rim at a Spatial Resolution of 10 m Using Multiple Open- Access Satellite Data and Terrain Indices. Remote Sens. 2020, 12, 4114. [Google Scholar] [CrossRef]
- Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience Remote Sens. 2019, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Rana, V.K.; Suryanarayana, T.M.V. Performance evaluation of MLE, RF and SVM classification algorithms for watershed scale land use/land cover mapping using sentinel 2 bands. Remote Sens. Appl. Soc. Environ. 2020, 19, 100351. [Google Scholar] [CrossRef]
- Ge, G.; Shi, Z.; Zhu, Y.; Yang, X.; Hao, Y. Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms-ScienceDirect. Glob. Ecol. Conserv. 2020, 22. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, M.; Pu, D.; He, G.; Wang, G.; Long, T. Assessment of annual composite images obtained by Google Earth engine for urban areas mapping using random forest. Remote Sens. 2021, 13, 748. [Google Scholar] [CrossRef]
- Phan, T.N.; Kuch, V.; Lehnert, L.W. Land cover classification using Google Earth engine and random forest classifier-the role of image composition. Remote Sens. 2020, 12, 2411. [Google Scholar] [CrossRef]
- Zhong, B.; Yang, A.; Nie, A.; Yao, Y.; Zhang, H.; Wu, S.; Liu, Q. Finer resolution Land-Cover mapping using multiple classifiers and multisource remotely sensed data in the Heihe River Basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 8, 4973–4992. [Google Scholar] [CrossRef]
- Zhong, B.; Yang, A.; Jue, K.; Wu, J. Long Time Series High-Quality and High-Consistency Land Cover Mapping Based on Machine Learning Method at Heihe River Basin. Remote Sens. 2021, 13, 1596. [Google Scholar] [CrossRef]
Products | Data Source | Time | Spatial Resolution | Classification Algorithms |
---|---|---|---|---|
FROM-GLC30 | Landsat TM/ETM+ | 2010, 2015, 2017 | 30 m | SVM, supervised classification |
GlobeLand30 | Landsat TM/ETM+, HJ-1 | 2000, 2010 | 30 m | Pixel-object-knowledge-based (POK-based) method |
FROM-GLC10 | Sentinel-2 | 2017 | 10 m | RF, supervised classification |
Land Cover Dataset at Qilian Mountain Area from 1985 to 2019 (V2.0) | Landsat 8 TM/ETM+/OLI | 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2016, 2017, 2018, 2019 | 30 m | Supervised classification |
Code | Class | Abbreviation | Description |
---|---|---|---|
1 | Cropland | CO | A land cover type that is greatly affected by intensive human activities. It varies greatly from bare field to seeding to crop growing to harvesting in the course of a year. It includes paddy fields, greenhouse farming, and other arable and tillage land. |
2 | Forest | FO | Areas in which the tree cover percentage is >15% and the tree height is > 3 m, including natural forests, plantations, and fruit trees. |
3 | Grassland | GL | Areas in which the herbaceous cover percentage is >15%, including natural grassland and pastures. |
4 | Shrublands | SL | Area in which the shrublands’ height range is 0.3–5 m, and cover percentage is >15%, have unique texture. |
5 | Wetlands | WL | Usually has obvious high reflectivity in the NIR band; marshland covered with aquatic herbaceous plants; mudflats are also included. |
6 | Water bodies | WB | All inland waterbodies; dominated by natural waterbodies and artificial waterbodies. |
7 | Construction land | CL | Includes urban areas, rural areas, and industrial and mining land greatly affected by human activities. |
8 | Bare land | BL | Areas without vegetation cover, including wasteland, deserts, and the Gobi Desert. |
9 | Permanent snow and ice | PSI | Perennial snow and ice distributed in the high mountains. |
Methods | Land Cover Types | CR | FO | GL | SL | WL | WB | CL | BL | PSI | PA |
---|---|---|---|---|---|---|---|---|---|---|---|
SVM | CR | 67 | 5 | 43 | 0 | 1 | 0 | 0 | 2 | 0 | 0.57 ± 0.09 |
FO | 2 | 319 | 45 | 0 | 0 | 0 | 0 | 0 | 0 | 0.87 ± 0.03 | |
GL | 19 | 15 | 2669 | 0 | 0 | 0 | 0 | 19 | 0 | 0.98 ± 0.01 | |
SL | 2 | 18 | 10 | 5 | 0 | 0 | 0 | 0 | 0 | 0.14 + 0.12 | |
WL | 1 | 0 | 38 | 0 | 12 | 1 | 0 | 11 | 0 | 0.19 ± 0.10 | |
WB | 1 | 0 | 0 | 0 | 1 | 214 | 2 | 11 | 0 | 0.93 ± 0.03 | |
CL | 1 | 0 | 1 | 0 | 0 | 0 | 60 | 6 | 0 | 0.88 ± 0.08 | |
BL | 0 | 1 | 18 | 0 | 0 | 0 | 5 | 2590 | 0 | 0.99 ± 0.01 | |
PSI | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 126 | 0.97 ± 0.03 | |
UA | 0.72 ± 0.09 | 0.89 ± 0.03 | 0.94 ± 0.01 | 1.00 ± 0 | 0.86 ± 0.14 | 0.99 ± 0.01 | 0.90 ± 0.07 | 0.98 ± 0.01 | 1.00 ± 0 | ||
OA | 0.96 ± 0.01 | ||||||||||
Kappa | 0.93 | ||||||||||
CART | CR | 66 | 0 | 35 | 0 | 4 | 1 | 0 | 1 | 0 | 0.62 ± 0.09 |
FO | 0 | 327 | 28 | 12 | 0 | 0 | 0 | 0 | 0 | 0.89 ± 0.03 | |
GL | 43 | 29 | 2617 | 14 | 12 | 0 | 1 | 38 | 0 | 0.95 ± 0.01 | |
SL | 0 | 10 | 5 | 21 | 0 | 0 | 0 | 0 | 0 | 0.58 ± 0.16 | |
WL | 5 | 0 | 15 | 2 | 23 | 2 | 1 | 7 | 0 | 0.42 ± 0.13 | |
WB | 0 | 0 | 0 | 0 | 1 | 190 | 1 | 3 | 0 | 0.97 ± 0.02 | |
CL | 0 | 0 | 1 | 0 | 1 | 0 | 60 | 8 | 0 | 0.86 ± 0.08 | |
BL | 2 | 0 | 30 | 0 | 7 | 6 | 8 | 2585 | 0 | 0.98 ± 0.01 | |
PSI | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 145 | 0.99 ± 0.01 | |
UA | 0.57 ± 0.09 | 0.89 ± 0.03 | 0.96 ± 0.01 | 0.43 ± 0.14 | 0.48 ± 0.14 | 0.95 ± 0.03 | 0.85 ± 0.08 | 0.98 ± 0.01 | 1.00 ± 0 | ||
OA | 0.95 ± 0.02 | ||||||||||
Kappa | 0.93 | ||||||||||
RF | CR | 78 | 0 | 24 | 0 | 8 | 1 | 0 | 2 | 0 | 0.69 ± 0.09 |
FO | 0 | 329 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0.93 ± 0.03 | |
GL | 13 | 7 | 2717 | 0 | 1 | 1 | 0 | 13 | 0 | 0.99 ± 0.01 | |
SL | 0 | 7 | 5 | 17 | 0 | 0 | 0 | 0 | 0 | 0.59 ± 0.18 | |
WL | 0 | 0 | 19 | 0 | 28 | 2 | 0 | 4 | 0 | 0.53 ± 0.13 | |
WB | 0 | 0 | 0 | 0 | 1 | 190 | 1 | 1 | 3 | 0.97 ± 0.03 | |
CL | 1 | 0 | 1 | 0 | 0 | 1 | 63 | 9 | 0 | 0.84 ± 0.08 | |
BL | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 2567 | 0 | 0.99 ± 0.01 | |
PSI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 144 | 0.99 ± 0.01 | |
UA | 0.85 ± 0.07 | 0.96 ± 0.02 | 0.97 ± 0.01 | 1.00 ± 0 | 0.74 ± 0.14 | 0.97 ± 0.02 | 0.98 ± 0.02 | 0.99 ± 0.01 | 0.98 ± 0.02 | ||
OA | 0.97 ± 0.01 | ||||||||||
Kappa | 0.96 |
Land Cover Types | RF | CART | SVM | FROM-GLC30 | FROM-GLC10 | LCD-QLM (V2.0) | GlobaLand30 |
---|---|---|---|---|---|---|---|
CR | 0.97 | 1.06 | 1.02 | 2.81 | 1.73 | 0.29 | 3.53 |
FO | 1.67 | 1.92 | 3.75 | 2.98 | 4.53 | 1.72 | 2.72 |
GL | 37.19 | 37.11 | 34.53 | 43.73 | 42.59 | 50.54 | 55.34 |
SL | 0.02 | 0.43 | 0.02 | 0.14 | 0.06 | 0.003 | 0.63 |
WL | 0.12 | 0.32 | 0.04 | 0.32 | 0.05 | 0.19 | 0.37 |
WB | 3.24 | 3.56 | 3.15 | 3.73 | 3.02 | 3.12 | 3.11 |
CL | 0.16 | 0.43 | 0.16 | 0.59 | 0.03 | 0.03 | 0.31 |
BL | 55.5 | 53.91 | 56.21 | 43.81 | 46.7 | 38.63 | 31.36 |
PSI | 1.14 | 1.24 | 1.15 | 1.87 | 1.28 | 5.21 | 2.63 |
Land Cover Types | This Study | FROM-GLC10 | FROM-GLC30 | GlobeLand30 | LCD-QLM (V2.0) | |||||
---|---|---|---|---|---|---|---|---|---|---|
PA | UA | PA | UA | PA | UA | PA | UA | PA | UA | |
CR | 71.25 | 85.52 | 59.09 | 64.11 | 64.04 | 57.48 | 86.18 | 51.21 | 80.00 | 91.30 |
FO | 94.02 | 94.15 | 87.50 | 58.79 | 89.22 | 65.16 | 52.86 | 53.78 | 46.67 | 47.14 |
GL | 98.19 | 96.75 | 92.63 | 96.74 | 91.92 | 95.20 | 90.71 | 92.49 | 86.50 | 94.28 |
SL | 55.60 | 100 | 36.57 | 33.54 | 66.67 | 71.43 | 32.25 | 26.32 | 21.36 | 19.09 |
WL | 48.96 | 65.89 | 60.61 | 66.67 | 70.15 | 69.27 | 47.50 | 63.33 | 28.28 | 25.00 |
WB | 95.86 | 98.49 | 98.91 | 96.27 | 89.27 | 90.15 | 92.75 | 97.46 | 88.66 | 72.88 |
CL | 84.74 | 96.38 | 33.33 | 85.71 | 66.67 | 25.88 | 63.86 | 68.64 | 41.18 | 35.90 |
BL | 99.26 | 98.63 | 92.17 | 92.54 | 89.76 | 98.03 | 97.50 | 99.38 | 90.96 | 96.79 |
PSI | 99.42 | 99.14 | 90.00 | 93.75 | 92.00 | 95.83 | 94.00 | 79.66 | 96.00 | 50.53 |
OA (%) | 97.18 | 89.67 | 87.77 | 85.18 | 79.81 | |||||
Kappa | 0.95 | 0.73 | 0.70 | 0.65 | 0.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Yang, D.; Wang, X.; Zhang, Z.; Nawaz, Z. Testing Accuracy of Land Cover Classification Algorithms in the Qilian Mountains Based on GEE Cloud Platform. Remote Sens. 2021, 13, 5064. https://doi.org/10.3390/rs13245064
Yang Y, Yang D, Wang X, Zhang Z, Nawaz Z. Testing Accuracy of Land Cover Classification Algorithms in the Qilian Mountains Based on GEE Cloud Platform. Remote Sensing. 2021; 13(24):5064. https://doi.org/10.3390/rs13245064
Chicago/Turabian StyleYang, Yanpeng, Dong Yang, Xufeng Wang, Zhao Zhang, and Zain Nawaz. 2021. "Testing Accuracy of Land Cover Classification Algorithms in the Qilian Mountains Based on GEE Cloud Platform" Remote Sensing 13, no. 24: 5064. https://doi.org/10.3390/rs13245064
APA StyleYang, Y., Yang, D., Wang, X., Zhang, Z., & Nawaz, Z. (2021). Testing Accuracy of Land Cover Classification Algorithms in the Qilian Mountains Based on GEE Cloud Platform. Remote Sensing, 13(24), 5064. https://doi.org/10.3390/rs13245064