An Improved Assessment Method and Its Application to the Latest IMERG Rainfall Product in Mainland China
Abstract
:1. Introduction
2. Data and Method
2.1. Data
2.2. Statistical Metrics
2.3. Decomposition Scheme
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kucera, P.A.; Ebert, E.E.; Turk, F.J.; Levizzani, V.; Kirschbaum, D.; Tapiador, F.J.; Loew, A.; Borsche, M. Precipitation from space: Advancing earth system science. Bull. Am. Meteorol. Soc. 2013, 94, 365–375. [Google Scholar] [CrossRef]
- Foufoula-Georgiou, E.; Guilloteau, C.; Nguyen, P.; Aghakouchak, A.; Hsu, K.L.; Busalacchi, A.; Joseph Turk, F.; Peters-Lidard, C.; Oki, T.; Duan, Q.; et al. Advancing precipitation estimation, prediction, and impact studies. Bull. Am. Meteorol. Soc. 2020, 101, E1584–E1592. [Google Scholar] [CrossRef] [PubMed]
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.B.; Kakar, R.; Braun, S.A.; Huffman, G.J.; Iguchi, T.; et al. The Global Precipitation Measurement (GPM) Mission for Science and Society. Bull. Am. Meteorol. Soc. 2017, 98, 1679–1695. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Tan, J.; Xie, P. NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theor. Basis Doc. 2020, 4, 26. [Google Scholar]
- Kirschbaum, D.B.; Huffman, G.J.; Adler, R.F.; Braun, S.; Garrett, K.; Jones, E.; McNally, A.; Skofronick-Jackson, G.; Stocker, E.; Wu, H.; et al. NASA’S remotely sensed precipitation: A reservoir for applications users. Bull. Am. Meteorol. Soc. 2017, 98, 1169–1184. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Berg, W.; Bilanow, S.; Chen, R.; Datta, S.; Draper, D.; Ebrahimi, H.; Farrar, S.; Jones, W.L.; Kroodsma, R.; McKague, D.; et al. Intercalibration of the GPM Microwave Radiometer Constellation. J. Atmos. Ocean. Technol. 2016, 33, 2639–2654. [Google Scholar] [CrossRef]
- Hong, Y.; Hsu, K.L.; Sorooshian, S.; Gao, X. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteorol. 2004, 43, 1834–1852. [Google Scholar] [CrossRef] [Green Version]
- Guilloteau, C.; Foufoula-Georgiou, E.; Kummerow, C.D. Global multiscale evaluation of satellite passive microwave retrieval of precipitation during the TRMM and GPM eras: Effective resolution and regional diagnostics for future algorithm development. J. Hydrometeorol. 2017, 18, 3051–3070. [Google Scholar] [CrossRef]
- Joyce, R.J.; Xie, P. Kalman filter-based CMORPH. J. Hydrometeorol. 2011, 12, 1547–1563. [Google Scholar] [CrossRef]
- Tan, J.; Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. IMERG V06: Changes to the morphing algorithm. J. Atmos. Ocean. Technol. 2019, 36, 2471–2482. [Google Scholar] [CrossRef]
- Li, R.; Wang, K.; Qi, D. Validating the Integrated Multisatellite Retrievals for Global Precipitation Measurement in Terms of Diurnal Variability With Hourly Gauge Observations Collected at 50,000 Stations in China. J. Geophys. Res. Atmos. 2018, 123, 423–442. [Google Scholar] [CrossRef]
- Tian, Y.; Peters-Lidard, C.D.; Eylander, J.B.; Joyce, R.J.; Huffman, G.J.; Adler, R.F.; Hsu, K.L.; Turk, F.J.; Garcia, M.; Zeng, J. Component analysis of errors in Satellite-based precipitation estimates. J. Geophys. Res. Atmos. 2009, 114, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Nearing, G.S.; Peters-Lidard, C.D.; Harrison, K.W.; Tang, L. Performance metrics, error modeling, and uncertainty quantification. Mon. Weather. Rev. 2016, 144, 607–613. [Google Scholar] [CrossRef]
- Tang, G.; Ma, Y.; Long, D.; Zhong, L.; Hong, Y. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
- Tan, J.; Petersen, W.A.; Kirchengast, G.; Goodrich, D.C.; Wolff, D.B. Evaluation of global precipitation measurement rainfall estimates against three dense gauge networks. J. Hydrometeorol. 2018, 19, 517–532. [Google Scholar] [CrossRef]
- Li, X.; Sungmin, O.; Wang, N.; Liu, L.; Huang, Y. Evaluation of the GPM IMERG V06 products for light rain over Mainland China. Atmos. Res. 2021, 253, 105510. [Google Scholar] [CrossRef]
- Wang, Q.; Xia, J.; She, D.; Zhang, X.; Liu, J.; Zhang, Y. Assessment of four latest long-term satellite-based precipitation products in capturing the extreme precipitation and streamflow across a humid region of southern China. Atmos. Res. 2021, 257, 105554. [Google Scholar] [CrossRef]
- Chen, F.; Li, X. Evaluation of IMERG and TRMM 3B43 Monthly Precipitation Products over Mainland China. Remote Sens. 2016, 8, 472. [Google Scholar] [CrossRef] [Green Version]
- Murali Krishna, U.V.; Das, S.K.; Deshpande, S.M.; Doiphode, S.L.; Pandithurai, G. The assessment of Global Precipitation Measurement estimates over the Indian subcontinent. Earth Space Sci. 2017, 4, 540–553. [Google Scholar] [CrossRef]
- Anjum, M.N.; Ahmad, I.; Ding, Y.; Shangguan, D.; Zaman, M.; Ijaz, M.W.; Sarwar, K.; Han, H.; Yang, M. Assessment of IMERG-V06 precipitation product over different hydro-climatic regimes in the Tianshan Mountains, North-Western China. Remote Sens. 2019, 11, 2314. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424, 264–277. [Google Scholar] [CrossRef]
- Moazam, S.; Najafi, M.R. A Comprehensive Evaluation of GPM-IMERG V06 and MRMS with Hourly Ground-Based Precipitation Observations across Canada. J. Hydrol. 2020, 29, 125929. [Google Scholar] [CrossRef]
- Derin, Y.; Yilmaz, K.K. Evaluation of multiple satellite-based precipitation products over complex topography. J. Hydrometeorol. 2016, 154, 1498–1516. [Google Scholar] [CrossRef] [Green Version]
- Mei, Y.; Nikolopoulos, E.I.; Anagnostou, E.N.; Borga, M. Evaluating satellite precipitation error propagation in runoff simulations of mountainous basins. J. Hydrometeorol. 2016, 17, 1407–1423. [Google Scholar] [CrossRef]
- Ehsan Bhuiyan, M.A.; Nikolopoulos, E.I.; Anagnostou, E.N. Machine Learning-Based Blending of Satellite and Reanalysis Precipitation Datasets: A Multiregional Tropical Complex Terrain Evaluation. J. Hydrometeorol. 2012, 20, 2147–2161. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.E.; Yang, F.; Biswas, N.K.; Rahat, S.H.; Neelam, T.J. Machine Learning-Based Error Modeling to Improve GPM IMERG Precipitation Product over the Brahmaputra River Basin. Forecasting 2020, 2, 14. [Google Scholar] [CrossRef]
Catchment | Season | Mean_G | Mean_I | RMSE | CC | POD | FAR | CSI | KGE |
---|---|---|---|---|---|---|---|---|---|
SL | Spring | 1.23 | 1.06 | 2.67 | 0.75 | 0.54 | 0.24 | 0.46 | 0.67 |
Summer | 4.31 | 3.90 | 7.34 | 0.72 | 0.65 | 0.11 | 0.60 | 0.64 | |
Autumn | 1.26 | 1.06 | 3.05 | 0.73 | 0.54 | 0.22 | 0.47 | 0.64 | |
Winter | 0.27 | 0.21 | 1.18 | 0.40 | 0.26 | 0.66 | 0.17 | 0.35 | |
HH | Spring | 0.94 | 0.84 | 2.46 | 0.77 | 0.52 | 0.19 | 0.46 | 0.64 |
Summer | 3.90 | 3.70 | 8.43 | 0.69 | 0.61 | 0.13 | 0.56 | 0.61 | |
Autumn | 1.24 | 1.11 | 3.36 | 0.72 | 0.52 | 0.17 | 0.47 | 0.59 | |
Winter | 0.18 | 0.16 | 0.81 | 0.69 | 0.37 | 0.52 | 0.26 | 0.65 | |
IL | Spring | 0.42 | 0.47 | 1.73 | 0.55 | 0.48 | 0.40 | 0.36 | 0.51 |
Summer | 1.20 | 1.11 | 3.05 | 0.60 | 0.55 | 0.19 | 0.49 | 0.53 | |
Autumn | 0.47 | 0.44 | 1.62 | 0.63 | 0.47 | 0.34 | 0.38 | 0.60 | |
Winter | 0.11 | 0.17 | 1.36 | 0.14 | 0.29 | 0.80 | 0.14 | −0.10 | |
YR | Spring | 1.01 | 0.95 | 2.56 | 0.72 | 0.55 | 0.26 | 0.46 | 0.68 |
Summer | 3.19 | 2.95 | 6.56 | 0.68 | 0.64 | 0.16 | 0.57 | 0.63 | |
Autumn | 1.53 | 1.41 | 3.36 | 0.73 | 0.60 | 0.22 | 0.51 | 0.70 | |
Winter | 0.19 | 0.19 | 0.90 | 0.59 | 0.35 | 0.61 | 0.23 | 0.59 | |
HU | Spring | 1.81 | 1.61 | 3.90 | 0.78 | 0.53 | 0.14 | 0.49 | 0.66 |
Summer | 5.75 | 5.34 | 10.96 | 0.73 | 0.63 | 0.14 | 0.57 | 0.68 | |
Autumn | 1.94 | 1.77 | 4.80 | 0.73 | 0.55 | 0.16 | 0.50 | 0.63 | |
Winter | 0.84 | 0.71 | 2.18 | 0.73 | 0.48 | 0.30 | 0.40 | 0.69 | |
YZ | Spring | 3.93 | 3.66 | 6.77 | 0.73 | 0.68 | 0.21 | 0.58 | 0.72 |
Summer | 6.21 | 5.83 | 10.74 | 0.71 | 0.68 | 0.14 | 0.61 | 0.68 | |
Autumn | 2.75 | 2.59 | 5.78 | 0.73 | 0.67 | 0.28 | 0.53 | 0.72 | |
Winter | 1.40 | 1.33 | 4.43 | 0.63 | 0.61 | 0.44 | 0.41 | 0.62 | |
SW | Spring | 1.98 | 1.91 | 4.74 | 0.67 | 0.64 | 0.28 | 0.51 | 0.66 |
Summer | 6.49 | 5.80 | 9.04 | 0.62 | 0.77 | 0.13 | 0.69 | 0.60 | |
Autumn | 2.45 | 2.31 | 5.52 | 0.67 | 0.68 | 0.27 | 0.54 | 0.66 | |
Winter | 0.47 | 0.53 | 2.11 | 0.79 | 0.56 | 0.54 | 0.34 | 0.71 | |
SE | Spring | 5.90 | 5.50 | 8.67 | 0.73 | 0.76 | 0.15 | 0.67 | 0.72 |
Summer | 7.44 | 7.25 | 12.60 | 0.72 | 0.68 | 0.13 | 0.62 | 0.68 | |
Autumn | 3.26 | 3.15 | 7.92 | 0.74 | 0.69 | 0.28 | 0.55 | 0.73 | |
Winter | 2.53 | 2.40 | 5.55 | 0.77 | 0.76 | 0.38 | 0.52 | 0.67 | |
PD | Spring | 5.05 | 4.81 | 10.09 | 0.70 | 0.72 | 0.27 | 0.57 | 0.70 |
Summer | 8.60 | 8.28 | 14.01 | 0.71 | 0.73 | 0.14 | 0.65 | 0.70 | |
Autumn | 3.53 | 3.37 | 9.02 | 0.74 | 0.67 | 0.29 | 0.52 | 0.74 | |
Winter | 1.35 | 1.43 | 4.47 | 0.74 | 0.65 | 0.57 | 0.35 | 0.67 |
Catchment | MBET (mm d−1) | MBEH (mm d−1) | MBEM (mm d−1) | MBEF (mm d−1) |
---|---|---|---|---|
SL | 0.21 ± 0.13 | 0.03 ± 0.09 | −0.10 ± 0.04 | 0.26 ± 0.06 |
HH | 0.12 ± 0.11 | −0.05 ± 0.09 | −0.09 ± 0.02 | 0.24 ± 0.03 |
IL | 0.00 ± 0.23 | −0.05 ± 0.15 | −0.10 ± 0.08 | 0.14 ± 0.07 |
YR | 0.10 ± 0.16 | −0.01 ± 0.11 | −0.12 ± 0.06 | 0.22 ± 0.07 |
HU | 0.23 ± 0.16 | 0.00 ± 0.13 | −0.12 ± 0.03 | 0.32 ± 0.05 |
YZ | 0.22 ± 0.35 | 0.10 ± 0.25 | −0.25 ± 0.13 | 0.36 ± 0.09 |
SW | 0.22 ± 0.53 | 0.13 ± 0.39 | −0.22 ± 0.11 | 0.31 ± 0.12 |
SE | 0.21 ± 0.38 | 0.14 ± 0.29 | −0.30 ± 0.10 | 0.37 ± 0.04 |
PD | 0.16 ± 0.47 | 0.13 ± 0.37 | −0.35 ± 0.11 | 0.38 ± 0.10 |
Catchment | MSET (mm d−1) | MSEH (mm d−1) | MSEM (mm d−1) | MSEF (mm d−1) |
---|---|---|---|---|
SL | 19.0 ± 8.3 | 87.3 ± 5.6 | 4.3 ± 5.2 | 8.4 ± 2.8 |
HH | 22.7 ± 6.7 | 89.1 ± 3.1 | 3.9 ± 1.9 | 6.9 ± 2.1 |
IL | 4.4 ± 5.5 | 68.0 ± 13.4 | 14.2 ± 10.5 | 17.7 ± 11.6 |
YR | 16.1 ± 7.7 | 85.8 ± 4.0 | 5.6 ± 2.8 | 8.5 ± 3.0 |
HU | 41.4 ± 9.4 | 91.5 ± 2.0 | 3.0 ± 1.4 | 5.4 ± 1.5 |
YZ | 54.4 ± 19.7 | 90.1 ± 3.1 | 4.0 ± 2.2 | 5.9 ± 2.0 |
SW | 36.3 ± 24.3 | 85.1 ± 7.3 | 5.4 ± 2.5 | 9.5 ± 7.4 |
SE | 85.6 ± 22.1 | 91.8 ± 1.8 | 3.7 ± 1.4 | 4.4 ± 1.3 |
PD | 104.9 ± 44.9 | 91.6 ± 3.5 | 4.0 ± 3.1 | 4.3 ± 1.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, X.; Fu, D.; Fei, Y.; Shao, W.; Xia, X. An Improved Assessment Method and Its Application to the Latest IMERG Rainfall Product in Mainland China. Remote Sens. 2021, 13, 5107. https://doi.org/10.3390/rs13245107
Xia X, Fu D, Fei Y, Shao W, Xia X. An Improved Assessment Method and Its Application to the Latest IMERG Rainfall Product in Mainland China. Remote Sensing. 2021; 13(24):5107. https://doi.org/10.3390/rs13245107
Chicago/Turabian StyleXia, Xinran, Disong Fu, Ye Fei, Wei Shao, and Xiangao Xia. 2021. "An Improved Assessment Method and Its Application to the Latest IMERG Rainfall Product in Mainland China" Remote Sensing 13, no. 24: 5107. https://doi.org/10.3390/rs13245107
APA StyleXia, X., Fu, D., Fei, Y., Shao, W., & Xia, X. (2021). An Improved Assessment Method and Its Application to the Latest IMERG Rainfall Product in Mainland China. Remote Sensing, 13(24), 5107. https://doi.org/10.3390/rs13245107