Mid-Infrared Compressive Hyperspectral Imaging
Abstract
:1. Introduction
- A mid-infrared compressive hyperspectral imaging system is built, in which a modified MIR-DMD is employed to implement coded modulation.
- A sensing model based on randomly coded measurement and the other without any coding (side information), along with a dual-stage reconstruction algorithm are proposed to recover high quality MIR hyperspectral images.
- Encouraging results are obtained using CS image reconstruction on the measurements captured by our MIR-CHI system. The results demonstrate that the proposed MIR-CHI system is a feasible method, which presents a less expensive alternative to conventional MIR hyperspectral imaging systems.
2. Principle and Design
2.1. Concept and System Design
2.2. MIR-DMD
2.3. Simulation Using ZEMAX
2.4. Optical Sensing Model of the Proposed Architecture
3. Proposed Reconstruction Algorithm
Reconstruction Implementation
4. Simulation Results and Analysis
5. Experiment Results and Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, F.; Xu, H. Impervious surface information extraction based on hyperspectral remote sensing imagery. Remote Sens. 2017, 9, 550. [Google Scholar] [CrossRef] [Green Version]
- Kim, S. Novel Air Temperature Measurement Using Midwave Hyperspectral Fourier Transform Infrared Imaging in the Carbon Dioxide Absorption Band. Remote Sens. 2020, 12, 1860. [Google Scholar] [CrossRef]
- Leonarski, L.; C-Labonnote, L.; Compiègne, M.; Vidot, J.; Baran, A.J.; Dubuisson, P. Potential of Hyperspectral Thermal Infrared Spaceborne Measurements to Retrieve Ice Cloud Physical Properties: Case Study of IASI and IASI-NG. Remote Sens. 2021, 13, 116. [Google Scholar] [CrossRef]
- Russell, C.; Raymond, C.; Coradini, A.; McSween, H.; Zuber, M.T.; Nathues, A.; De Sanctis, M.C.; Jaumann, R.; Konopliv, A.; Preusker, F.; et al. Dawn at Vesta: Testing the protoplanetary paradigm. Science 2012, 336, 684–686. [Google Scholar] [CrossRef] [Green Version]
- Diener, R.; Tepper, J.; Labadie, L.; Pertsch, T.; Nolte, S.; Minardi, S. Towards 3D-photonic, multi-telescope beam combiners for mid-infrared astrointerferometry. Opt. Express 2017, 25, 19262–19274. [Google Scholar] [CrossRef] [PubMed]
- Tratt, D.M.; Young, S.J.; Hackwell, J.A.; Rudy, D.J.; Warren, D.W.; Vore, A.G.; Johnson, P.D. MAHI: An airborne mid-infrared imaging spectrometer for industrial emissions monitoring. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4558–4566. [Google Scholar] [CrossRef]
- Scafutto, R.D.M.; de Souza Filho, C.R. Detection of methane plumes using airborne midwave infrared (3–5 m) hyperspectral data. Remote Sens. 2018, 10, 1237. [Google Scholar] [CrossRef] [Green Version]
- Wen, M.; Wang, Y.; Yao, Y.; Yuan, L.; Zhou, S.; Wang, J. Design and performance of curved prism-based mid-wave infrared hyperspectral imager. Infrared Phys. Technol. 2018, 95, 5–11. [Google Scholar] [CrossRef]
- Wu, K.; Luo, Z.; Feng, Y.; Yu, G.; Liu, L.; Xiong, Y.; Li, F. 2D visualization of hot gas based on a mid-infrared molecular Faraday imaging filter. Opt. Lett. 2018, 43, 3686–3689. [Google Scholar] [CrossRef]
- He, Z.; Li, J.; Li, C.; Xu, R. Measurement and Correction Model for Temperature Dependence of an Acousto-Optic Tunable Filter (AOTF) Infrared Spectrometer for Lunar Surface Detection. Appl. Spectrosc. 2020, 74, 81–87. [Google Scholar] [CrossRef]
- Chen, L.; Lopez-Garcia, M.; Taverne, M.P.; Zheng, X.; Ho, Y.L.D.; Rarity, J. Direct wide-angle measurement of a photonic band structure in a three-dimensional photonic crystal using infrared Fourier imaging spectroscopy. Opt. Lett. 2017, 42, 1584–1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köhler, M.H.; Naßl, S.S.; Kienle, P.; Dong, X.; Koch, A.W. Broadband static Fourier transform mid-infrared spectrometer. Appl. Opt. 2019, 58, 3393–3400. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Duarte, M.F.; Davenport, M.A.; Takhar, D.; Laska, J.N.; Sun, T.; Kelly, K.F.; Baraniuk, R.G. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 2008, 25, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Yi, Q.; Heng, L.Z.; Liang, L.; Guangcan, Z.; Siong, C.F.; Guangya, Z. Hadamard transform-based hyperspectral imaging using a single-pixel detector. Opt. Express 2020, 28, 16126–16139. [Google Scholar] [CrossRef] [PubMed]
- Ribes, M.; Russias, G.; Tregoat, D.; Fournier, A. Towards Low-Cost Hyperspectral Single-Pixel Imaging for Plant Phenotyping. Sensors 2020, 20, 1132. [Google Scholar] [CrossRef] [Green Version]
- Gattinger, P.; Kilgus, J.; Zorin, I.; Langer, G.; Nikzad-Langerodi, R.; Rankl, C.; Gröschl, M.; Brandstetter, M. Broadband near-infrared hyperspectral single pixel imaging for chemical characterization. Opt. Express 2019, 27, 12666–12672. [Google Scholar] [CrossRef]
- Shibuya, K.; Minamikawa, T.; Mizutani, Y.; Yamamoto, H.; Minoshima, K.; Yasui, T.; Iwata, T. Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase. Opt. Express 2017, 25, 21947–21957. [Google Scholar] [CrossRef]
- Rousset, F.; Ducros, N.; Peyrin, F.; Valentini, G.; D’andrea, C.; Farina, A. Time-resolved multispectral imaging based on an adaptive single-pixel camera. Opt. Express 2018, 26, 10550–10558. [Google Scholar] [CrossRef]
- Garcia, H.; Correa, C.V.; Arguello, H. Multi-resolution compressive spectral imaging reconstruction from single pixel measurements. IEEE Trans. Image Process. 2018, 27, 6174–6184. [Google Scholar] [CrossRef] [PubMed]
- Bentley, A.; Rowe, J.E.; Dehghani, H. Single pixel hyperspectral bioluminescence tomography based on compressive sensing. Biomed. Opt. Express 2019, 10, 5549–5564. [Google Scholar] [CrossRef] [PubMed]
- Edgar, M.P.; Gibson, G.M.; Padgett, M.J. Principles and prospects for single-pixel imaging. Nat. Photonics 2019, 13, 13–20. [Google Scholar] [CrossRef]
- Rice, J.P.; Neira, J.E.; Kehoe, M.; Swanson, R. DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors. In Proceedings of the Emerging Digital Micromirror Device Based Systems and Applications, San Jose, CA, USA, 14–16 February 2009. [Google Scholar]
- Phillips, D.B.; Sun, M.J.; Taylor, J.M.; Edgar, M.P.; Barnett, S.M.; Gibson, G.G.; Padgett, M.J. Adaptive foveated single-pixel imaging with dynamic super-sampling. Sci. Adv. 2017, 3, e1601782. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Tsai, T.; Zhu, R.; Llull, P.; Brady, D.; Carin, L. Compressive Hyperspectral Imaging with Side Information. IEEE J. Sel. Top. Signal Process. 2015, 9, 964–976. [Google Scholar] [CrossRef] [Green Version]
- Renna, F.; Wang, L.; Yuan, X.; Yang, J.; Reeves, G.; Calderbank, R.; Carin, L.; Rodrigues, M.R. Classification and reconstruction of high-dimensional signals from low-dimensional features in the presence of side information. IEEE Trans. Inf. Theory 2016, 62, 6459–6492. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Sun, Y.; Pang, S. Compressive video sensing with side information. Appl. Opt. 2017, 56, 2697–2704. [Google Scholar] [CrossRef]
- Figueiredo, M.A.; Nowak, R.D.; Wright, S.J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 2007, 1, 586–597. [Google Scholar] [CrossRef] [Green Version]
- Bioucas-Dias, J.M.; Figueiredo, M.A. A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 2007, 16, 2992–3004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tropp, J.A.; Gilbert, A.C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Yin, W.; Jiang, H.; Zhang, Y. An efficient augmented Lagrangian method with applications to total variation minimization. Comput. Optim. Appl. 2013, 56, 507–530. [Google Scholar] [CrossRef] [Green Version]
- Huggins, P.S.; Zucker, S.W. Greedy basis pursuit. IEEE Trans. Signal Process. 2007, 55, 3760–3772. [Google Scholar] [CrossRef]
- Yuan, X. Generalized alternating projection based total variation minimization for compressive sensing. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 2539–2543. [Google Scholar]
- Liu, Y.; Yuan, X.; Suo, J.; Brady, D.J.; Dai, Q. Rank Minimization for Snapshot Compressive Imaging. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 2990–3006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, X.; Yuan, X.; Pu, Y.; Athitsos, V. λ-net: Reconstruct Hyperspectral Images from a Snapshot Measurement. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 4058–4068. [Google Scholar]
- Meng, Z.; Ma, J.; Yuan, X. End-to-End Low Cost Compressive Spectral Imaging with Spatial-Spectral Self-Attention. Proceedings of European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 187–204. [Google Scholar]
- Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 2006, 54, 4311–4322. [Google Scholar] [CrossRef]
- Xu, H.; Ma, J.; Le, Z.; Jiang, J.; Guo, X. FusionDN: A Unified Densely Connected Network for Image Fusion. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 12484–12491. [Google Scholar]
- Xu, J.; Zhang, L.; Zhang, D.; Feng, X. Multi-channel weighted nuclear norm minimization for real color image denoising. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1105–1113. [Google Scholar]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Found. Trends Mach. Learn. 2010, 3, 1–122. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.; Boardman, J.; Heidebrecht, K.; Shapiro, A.; Barloon, P.; Goetz, A. The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Scan type | gaze |
Spectral range (m) | 3–5 |
Spectral sampling (m) | 0.02 |
Channels | 100 |
Working F-number | 2 |
Cross-track-FOV () | |
Instantaneous FOV (mrad) | 0.107 |
DMD array size (length×width) | |
DMD pixel size (m) | |
Detector array type | InSb |
CR | TVAL3 | OMP-DCT | One-Stage | Dual-Stage | ||||
---|---|---|---|---|---|---|---|---|
W/SI | W/O SI | W/SI | W/O SI | W/SI | W/O SI | W/SI | W/O SI | |
50% | 26.3892 | 25.9950 | 24.8401 | 22.7719 | 25.1046 | 24.2007 | 27.7788 | 26.5584 |
30% | 25.5676 | 24.9654 | 23.4370 | 22.7518 | 23.2535 | 21.2978 | 26.3541 | 25.1254 |
20% | 20.5205 | 20.2104 | 21.6010 | 21.1771 | 21.3790 | 19.3972 | 23.4204 | 23.3864 |
CR | TVAL3 | OMP-DCT | One-Stage | Dual-Stage | ||||
---|---|---|---|---|---|---|---|---|
W/SI | W/O SI | W/SI | W/O SI | W/SI | W/O SI | W/SI | W/O SI | |
50% | 0.9599 | 0.9472 | 0.9533 | 0.9470 | 0.9578 | 0.9516 | 0.9623 | 0.9536 |
30% | 0.9103 | 0.9025 | 0.9269 | 0.9188 | 0.9248 | 0.9194 | 0.9363 | 0.9265 |
20% | 0.8698 | 0.8259 | 0.8404 | 0.8163 | 0.8462 | 0.8114 | 0.8930 | 0.8785 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Yan, X.; Qin, H.; Zeng, Q.; Liang, Y.; Arguello, H.; Yuan, X. Mid-Infrared Compressive Hyperspectral Imaging. Remote Sens. 2021, 13, 741. https://doi.org/10.3390/rs13040741
Yang S, Yan X, Qin H, Zeng Q, Liang Y, Arguello H, Yuan X. Mid-Infrared Compressive Hyperspectral Imaging. Remote Sensing. 2021; 13(4):741. https://doi.org/10.3390/rs13040741
Chicago/Turabian StyleYang, Shuowen, Xiang Yan, Hanlin Qin, Qingjie Zeng, Yi Liang, Henry Arguello, and Xin Yuan. 2021. "Mid-Infrared Compressive Hyperspectral Imaging" Remote Sensing 13, no. 4: 741. https://doi.org/10.3390/rs13040741
APA StyleYang, S., Yan, X., Qin, H., Zeng, Q., Liang, Y., Arguello, H., & Yuan, X. (2021). Mid-Infrared Compressive Hyperspectral Imaging. Remote Sensing, 13(4), 741. https://doi.org/10.3390/rs13040741