Assessing Waterlogging Stress Level of Winter Wheat from Hyperspectral Imagery Based on Harmonic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Canopy Hyperspectral Imagery Acquisition
2.3. Data Processing
2.3.1. Preprocessing
2.3.2. Image Classification
- Classification algorithm
- Accuracy evaluation
2.3.3. Waveband Selection
2.3.4. Harmonic Analysis
3. Results
3.1. Image Classification
3.2. Waveband Selection
3.3. Harmonic Analysis
4. Discussion
4.1. Image Classification and Waveband Selection
4.2. Harmonic Analysis
4.2.1. Pot Experiment
4.2.2. Field Preliminary Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bastawesy, M.E.; Ali, R.R.; Harbi, K.A.; Faid, A. Impact of the geomorphology and soil management on the development of waterlogging in closed drainage basins of Egypt and Saudi Arabia. Environ. Earth Sci. 2012, 68, 1271–1283. [Google Scholar] [CrossRef]
- Gebrehiwot, K.A. A review on waterlogging, salinization and drainage in Ethiopian irrigated agriculture. Sustain. Water Resour. Manag. 2018, 4, 55–62. [Google Scholar] [CrossRef]
- Radda, I.A.; Kumar, B.M.; Pathak, P. Land Degradation in Bihar, India: An Assessment Using Rain-Use Efficiency and Residual Trend Analysis. Agric. Res. 2021, 10, 434–447. [Google Scholar] [CrossRef]
- Pandey, A.C.; Singh, S.K.; Nathawat, M.S. Waterlogging and flood hazards vulnerability and risk assessment in Indo Gangetic plain. Nat. Hazards 2010, 55, 273–289. [Google Scholar] [CrossRef]
- Ding, J.; Liang, P.; Wu, P.; Zhu, M.; Li, C.; Zhu, X.; Gao, D.; Chen, Y.; Guo, W. Effects of waterlogging on grain yield and associated traits of historic wheat cultivars in the middle and lower reaches of the Yangtze River, China. Field Crop. Res. 2020, 246, 107695. [Google Scholar] [CrossRef]
- Yang, H.; Zhai, S.; Li, Y.; Zhou, J.; He, R.; Liu, J.; Xue, Y.; Meng, Y. Waterlogging reduction and wheat yield increase through long-term ditch-buried straw return in a rice—wheat rotation system. Field Crop. Res. 2017, 209, 189–197. [Google Scholar] [CrossRef]
- Zúñiga-Feest, A.; Bustos-Salazar, A.; Alves, F.; Martinez, V.; Smith-Ramírez, C. Physiological and morphological responses to permanent and intermittent waterlogging in seedlings of four evergreen trees of temperate swamp forests. Tree Physiol. 2017, 37, 779–789. [Google Scholar] [CrossRef]
- Romina, P.; Abeledo, L.G.; Miralles, D.J. Physiological traits associated with reductions in grain number in wheat and barley under waterlogging. Plant Soil 2018, 429, 469–481. [Google Scholar]
- Wu, X.; Tang, Y.; Li, C.; McHugh, A.; Li, Z.; Wu, C. Individual and combined effects of soil waterlogging and compaction on physiological characteristics of wheat in southwestern China. Field Crop. Res. 2018, 215, 163–172. [Google Scholar] [CrossRef]
- Das, P.K.; Choudhary, K.K.; Laxman, B.; Rao, S.K.; Seshasai, M. A modified linear extrapolation approach towards red edge position detection and stress monitoring of wheat crop using hyperspectral data. Int. J. Remote Sens. 2014, 35, 1432–1449. [Google Scholar] [CrossRef]
- Hede, A.N.H.; Kashiwaya, K.; Koike, K.; Sakurai, S. A new vegetation index for detecting vegetation anomalies due to mineral deposits with application to a tropical forest area. Remote Sens. Environ. 2015, 171, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Tianjiao, L.; Xiangnan, L.; Meiling, L.; Ling, W. Evaluating heavy metal stress levels in rice based on remote sensing phenology. Sensors 2018, 18, 860. [Google Scholar]
- Zhang, B.; Liu, X.; Liu, M.; Wang, D. Thermal infrared imaging of the variability of canopy-air temperature difference distribution for heavy metal stress levels discrimination in rice. J. Appl. Remote Sens. 2017, 11, 26036. [Google Scholar] [CrossRef]
- Li, X.; Li, L.; Liu, X. Collaborative inversion heavy metal stress in rice by using two-dimensional spectral feature space based on HJ-1 A HSI and radarsat-2 SAR remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 39–52. [Google Scholar] [CrossRef]
- Dhau, I.; Adam, E.; Mutanga, O.; Ayisi, K.K. Detecting the severity of maize streak virus infestations in maize crop using in situ hyperspectral data. Trans. R. Soc. S. Afr. 2018, 73, 8–15. [Google Scholar] [CrossRef]
- Qiao, H.; Jiao, H.; Shi, Y.; Shi, L.; Guo, W.; Ma, X. Using Hyperspectral Remote Sensing Identification of Wheat Take-All Based on SVM. Secur. Educ. Crit. Infrastruct. 2015, 452, 23–30. [Google Scholar]
- Jin, N.; Huang, W.; Ren, Y.; Luo, J.; Wu, Y.; Jing, Y.; Wang, D. Hyperspectral identification of cotton verticillium disease severity. Opt.-Int. J. Light Electron Opt. 2012, 124, 2569–2573. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, H.; Ding, W.; Huang, W.; Hu, T.; Zhao, J. Monitoring of Wheat Scab Using the Specific Spectral Index from ASD Hyperspectral Dataset. J. Spectrosc. 2019, 2019, 9153195. [Google Scholar] [CrossRef]
- Zhang, J.; Dai, L.; Cheng, F. Identification of Corn Seeds with Different Freezing Damage Degree Based on Hyperspectral Reflectance Imaging and Deep Learning Method. Food Anal. Methods 2021, 14, 389–400. [Google Scholar] [CrossRef]
- Liang, L.; Xiang, L.; Qin, S.; Jia, R.; Hui, L. Diagnosis the dust stress of wheat leaves with hyperspectral indices and random forest algorithm. In Proceedings of the IGARSS 2016–2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 11–15 July 2016; pp. 6385–6388. [Google Scholar]
- Yang, F.-F.; Liu, T.; Wang, Q.-Y.; DU, M.-Z.; Yang, T.-L.; Liu, D.-Z.; Li, S.-J.; Liu, S.-P. Rapid determination of leaf water content for monitoring waterlogging in winter wheat based on hyperspectral parameters. J. Integr. Agric. 2021, 20, 2613–2626. [Google Scholar] [CrossRef]
- Zhao, J.; Pan, F.; Li, Z.; Lan, Y.; Lu, L.; Yang, D.; Wen, Y. Detection of cotton waterlogging stress based on hyperspectral images and convolutional neural network. Int. J. Agric. Biol. Eng. 2021, 14, 167–174. [Google Scholar] [CrossRef]
- Xiong, Q.-X.; Wang, X.-L.; Wang, Y.-N. Spectral Characteristics Analysis of Wheat Damaged by Subsurface Waterlogging. Spectrosc. Spect. Anal. 2016, 36, 2558–2561. [Google Scholar]
- Jiang, J.; Steven, M.D.; He, R.; Chen, Y.; Du, P.; Guo, H. Identifying the spectral responses of several plant species under CO2 leakage and waterlogging stresses. Int. J. Greenh. Gas Control. 2015, 37, 1–11. [Google Scholar] [CrossRef]
- Emengini, E.J.; Blackburn, G.A.; Theobald, J.C. Discrimination of plant stress caused by oil pollution and waterlogging using hyperspectral and thermal remote sensing. J. Appl. Remote Sens. 2013, 7, 073476. [Google Scholar] [CrossRef]
- Xia, J.; Cao, H.; Yang, Y.; Zhang, W.; Wan, Q.; Xu, L.; Ge, D.; Zhang, W.; Ke, Y.; Huang, B. Detection of waterlogging stress based on hyperspectral images of oilseed rape leaves (Brassica napus L.). Comput. Electron. Agric. 2019, 159, 59–68. [Google Scholar] [CrossRef]
- Yang, F.; Liu, S.; Zhu, Y.; Li, S. Identification and level discrimination of waterlogging stress in winter wheat using hyperspectral remote sensing. Smart Agric. 2021, 3, 35–44. [Google Scholar]
- Peng, Y.-Q.; Zhu, J.; Li, W.-J.; Gao, W.; Shen, R.-Y.; Meng, L.-J. Effects of grafting on root growth, anaerobic respiration enzyme activity and aerenchyma of bitter melon under waterlogging stress. Sci. Hortic. 2020, 261, 108977. [Google Scholar] [CrossRef]
- Zouari, M.; Bloem, E.; Souguir, D.; Schnug, E.; Hanchi, B.; Hachicha, M. Evaluation of selected plant species under drained saline and waterlogged conditions in pots when irrigated with treated wastewater. Water Environ. J. 2020, 34, 551–560. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, D.; Chen, S.; Han, B. Method Based on Sparse Signal Decomposition for Harmonic and Inter-harmonic Analysis of Power System. J. Electr. Eng. Technol. 2017, 12, 559–568. [Google Scholar] [CrossRef] [Green Version]
- Xue, Z.; Du, P.; Su, H. Harmonic Analysis for Hyperspectral Image Classification Integrated with PSO Optimized SVM. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2131–2146. [Google Scholar] [CrossRef]
- Yang, G.; Shen, H.; Zhang, L.; He, Z.; Li, X. A Moving Weighted Harmonic Analysis Method for Reconstructing High-Quality SPOT VEGETATION NDVI Time-Series Data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6008–6021. [Google Scholar] [CrossRef]
- Jakubauskas, M.E.; Legates, D.R.; Kastens, J.H. Crop identification using harmonic analysis of time-series AVHRR NDVI data. Comput. Electron. Agric. 2002, 37, 127–139. [Google Scholar] [CrossRef]
- Cao, X.; Li, R.; Ge, Y.; Wu, B.; Jiao, L. Densely connected deep random forest for hyperspectral imagery classification. Int. J. Remote Sens. 2018, 40, 3606–3622. [Google Scholar] [CrossRef]
- Ji, Y.; Sun, L.; Li, Y.; Li, J.; Liu, S.; Xie, X.; Xu, Y. Non-destructive classification of defective potatoes based on hyperspectral imaging and support vector machine. Infrared Phys. Technol. 2019, 99, 71–79. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V.N. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Bo, C.; Lu, H.; Wang, N. Spectral-spatial K-Nearest Neighbor approach for hyperspectral image classification. Multimed. Tools Appl. 2018, 77, 10419–10436. [Google Scholar] [CrossRef]
- Tong, Q.X.; Zhang, B.; Zheng, L.F. Hyperspectral Remote Sensing: Principles, Techniques, and Applications; Higher Education Press: Beijing, China, 2006. [Google Scholar]
- Wang, R.; Gamon, J.A.; Cavender-Bares, J.; Townsend, P.A.; Zygielbaum, A.I. The spatial sensitivity of the spectral diversity–biodiversity relationship: An experimental test in a prairie grassland. Ecol. Appl. 2018, 28, 541–556. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Xue, Z.; Jia, T.; Zhang, T.; Wang, L. A harmonic analysis model of small target detection of hyperspectral imagery. Acta Geod. Cartogr. Sin. 2013, 42, 34–43. [Google Scholar]
- Guo, H.; Yang, K.M.; Zhang, W.W.; Liu, C.; Xia, T. Spectra recognition of corn pollution degree under copper and lead lon stress. Guangpuxue Yu Guangpu Fenxi/Spectrosc. Spectr. Anal. 2018, 38, 212–217. [Google Scholar]
- Geng, X.; Sun, K.; Ji, L. Band selection for target detection in hyperspectral imagery using sparse CEM. Remote Sens. Lett. 2014, 5, 1022–1031. [Google Scholar] [CrossRef]
- Sun, K.; Geng, X.; Ji, L. Exemplar Component Analysis: A Fast Band Selection Method for Hyperspectral Imagery. IEEE Geosci. Remote Sens. Lett. 2014, 12, 998–1002. [Google Scholar]
- Yu, W.; Zhang, M.; Shen, Y. Learning a local manifold representation based on improved neighborhood rough set and LLE for hyperspectral dimensionality reduction. Signal Process. 2019, 164, 20–29. [Google Scholar] [CrossRef]
- Vilfan, N.; van der Tol, C.; Yang, P.; Wyber, R.; Malenovský, Z.; Robinson, S.; Verhoef, W. Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics. Remote Sens. Environ. 2018, 211, 345–356. [Google Scholar] [CrossRef]
- Qian, X.; Qiu, S.; Liang, L.; Zhang, L.; Wang, S. Urban green vegetation stress conditions diagnosis based on hyperspectral database—A case study of Xuzhou. In Proceedings of the 2014 Third International Conference on Agro-Geoinformatics, Beijing, China, 11–14 August 2014; pp. 1–4. [Google Scholar]
- Ramoelo, A.; Skidmore, A.; Cho, M.A.; Schlerf, M.; Mathieu, R.; Heitkonig, I. Regional estimation of savanna grass nitrogen using the red-edge band of the spaceborne RapidEye sensor. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 151–162. [Google Scholar] [CrossRef]
- Ramoelo, A.; Dzikiti, S.; van Deventer, H.; Maherry, A.; Cho, M.A.; Gush, M. Potential to monitor plant stress using remote sensing tools. J. Arid. Environ. 2015, 113, 134–144. [Google Scholar] [CrossRef]
- Stagakis, S.; Markos, N.; Sykioti, O.; Kyparissis, A. Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations. Remote Sens. Environ. 2010, 114, 977–994. [Google Scholar] [CrossRef]
- Liu, L.-Y.; Huang, W.-J.; Pu, R.-L.; Wang, J.-H. Detection of Internal Leaf Structure Deterioration Using a New Spectral Ratio Index in the Near-Infrared Shoulder Region. J. Integr. Agric. 2014, 13, 760–769. [Google Scholar] [CrossRef]
- Liu, W.; Huang, J.; Wei, C.; Wang, X.; Mansaray, L.R.; Han, J.; Zhang, D.; Chen, Y. Mapping water-logging damage on winter wheat at parcel level using high spatial resolution satellite data. ISPRS J. Photogramm. Remote Sens. 2018, 142, 243–256. [Google Scholar] [CrossRef]
Land Cover Type | RF | SVM | KNN | |||
---|---|---|---|---|---|---|
PA/% 1 | UA/% 1 | PA/% | UA/% | PA/% | UA/% | |
Winter wheat | 94.89 | 95.89 | 93.72 | 94.13 | 93.88 | 92.36 |
Pot | 94.62 | 95.84 | 94.31 | 94.31 | 90.98 | 93.65 |
Soil | 95.21 | 94.45 | 94.59 | 93.28 | 80.29 | 91.23 |
Grass 2 | 93.31 | 93.72 | 86.90 | 85.17 | 85.09 | 67.94 |
OCA/% 1 | 95.86 | 92.47 | 88.25 | |||
Kappa coefficient | 0.9438 | 0.9022 | 0.8376 |
Evaluation Index | BE | GR | YE | RW | RE | NIR |
---|---|---|---|---|---|---|
0.018 | 0.021 | 0.025 | 0.033 | 0.050 | 0.085 | |
0.111 | 0.106 | 0.034 | 0.010 | 0.294 | 0.156 | |
0.021 | 0.024 | 0.027 | 0.033 | 0.077 | 0.098 | |
0.015 | 0.017 | 0.024 | 0.032 | 0.032 | 0.045 |
Growing Stage | Amplitude | CK | ML5d | ML10d | ML15d | SL5d | SL10d | SL15d |
---|---|---|---|---|---|---|---|---|
Heading stage | c1 | 1.5068 | 1.5530 | 1.5921 | 1.6173 | 1.6832 | 1.8298 | 1.9396 |
c2 | 0.6916 | 0.7095 | 0.7252 | 0.7368 | 0.7716 | 0.8160 | 0.8719 | |
c3 | 0.4426 | 0.4476 | 0.4555 | 0.4558 | 0.4855 | 0.5122 | 0.5547 | |
Flowering stage | c1 | 1.2615 | 1.2802 | 1.3234 | 1.2868 | 1.3238 | 1.3844 | 1.4141 |
c2 | 0.5659 | 0.5723 | 0.5979 | 0.5845 | 0.6037 | 0.6256 | 0.6310 | |
c3 | 0.3582 | 0.3623 | 0.3713 | 0.3734 | 0.3872 | 0.3994 | 0.3996 | |
Filling stage | c1 | 0.8124 | 0.9268 | 0.8735 | 0.8885 | 1.0403 | 1.2329 | 1.7480 |
c2 | 0.3956 | 0.4290 | 0.4174 | 0.4213 | 0.4978 | 0.5747 | 0.7937 | |
c3 | 0.2431 | 0.2690 | 0.2756 | 0.2806 | 0.3301 | 0.3509 | 0.5014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Liu, S.; Wang, Q.; Liu, T.; Li, S. Assessing Waterlogging Stress Level of Winter Wheat from Hyperspectral Imagery Based on Harmonic Analysis. Remote Sens. 2022, 14, 122. https://doi.org/10.3390/rs14010122
Yang F, Liu S, Wang Q, Liu T, Li S. Assessing Waterlogging Stress Level of Winter Wheat from Hyperspectral Imagery Based on Harmonic Analysis. Remote Sensing. 2022; 14(1):122. https://doi.org/10.3390/rs14010122
Chicago/Turabian StyleYang, Feifei, Shengping Liu, Qiyuan Wang, Tao Liu, and Shijuan Li. 2022. "Assessing Waterlogging Stress Level of Winter Wheat from Hyperspectral Imagery Based on Harmonic Analysis" Remote Sensing 14, no. 1: 122. https://doi.org/10.3390/rs14010122
APA StyleYang, F., Liu, S., Wang, Q., Liu, T., & Li, S. (2022). Assessing Waterlogging Stress Level of Winter Wheat from Hyperspectral Imagery Based on Harmonic Analysis. Remote Sensing, 14(1), 122. https://doi.org/10.3390/rs14010122